rust/src/libstd/rt/unwind.rs
2014-02-23 01:07:53 -08:00

521 lines
18 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Implementation of Rust stack unwinding
//
// For background on exception handling and stack unwinding please see
// "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
// documents linked from it.
// These are also good reads:
// http://theofilos.cs.columbia.edu/blog/2013/09/22/base_abi/
// http://monoinfinito.wordpress.com/series/exception-handling-in-c/
// http://www.airs.com/blog/index.php?s=exception+frames
//
// ~~~ A brief summary ~~~
// Exception handling happens in two phases: a search phase and a cleanup phase.
//
// In both phases the unwinder walks stack frames from top to bottom using
// information from the stack frame unwind sections of the current process's
// modules ("module" here refers to an OS module, i.e. an executable or a
// dynamic library).
//
// For each stack frame, it invokes the associated "personality routine", whose
// address is also stored in the unwind info section.
//
// In the search phase, the job of a personality routine is to examine exception
// object being thrown, and to decide whether it should be caught at that stack
// frame. Once the handler frame has been identified, cleanup phase begins.
//
// In the cleanup phase, personality routines invoke cleanup code associated
// with their stack frames (i.e. destructors). Once stack has been unwound down
// to the handler frame level, unwinding stops and the last personality routine
// transfers control to its' catch block.
//
// ~~~ Frame unwind info registration ~~~
// Each module has its' own frame unwind info section (usually ".eh_frame"), and
// unwinder needs to know about all of them in order for unwinding to be able to
// cross module boundaries.
//
// On some platforms, like Linux, this is achieved by dynamically enumerating
// currently loaded modules via the dl_iterate_phdr() API and finding all
// .eh_frame sections.
//
// Others, like Windows, require modules to actively register their unwind info
// sections by calling __register_frame_info() API at startup. In the latter
// case it is essential that there is only one copy of the unwinder runtime in
// the process. This is usually achieved by linking to the dynamic version of
// the unwind runtime.
//
// Currently Rust uses unwind runtime provided by libgcc.
use any::{Any, AnyRefExt};
use c_str::CString;
use cast;
use fmt;
use kinds::Send;
use mem;
use option::{Some, None, Option};
use prelude::drop;
use ptr::RawPtr;
use result::{Err, Ok};
use rt::local::Local;
use rt::task::Task;
use str::Str;
use task::TaskResult;
use intrinsics;
use uw = self::libunwind;
#[allow(dead_code)]
mod libunwind {
//! Unwind library interface
#[allow(non_camel_case_types)];
#[allow(dead_code)]; // these are just bindings
use libc::{uintptr_t};
#[cfg(not(target_arch = "arm"))]
#[repr(C)]
pub enum _Unwind_Action
{
_UA_SEARCH_PHASE = 1,
_UA_CLEANUP_PHASE = 2,
_UA_HANDLER_FRAME = 4,
_UA_FORCE_UNWIND = 8,
_UA_END_OF_STACK = 16,
}
#[cfg(target_arch = "arm")]
#[repr(C)]
pub enum _Unwind_State
{
_US_VIRTUAL_UNWIND_FRAME = 0,
_US_UNWIND_FRAME_STARTING = 1,
_US_UNWIND_FRAME_RESUME = 2,
_US_ACTION_MASK = 3,
_US_FORCE_UNWIND = 8,
_US_END_OF_STACK = 16
}
#[repr(C)]
pub enum _Unwind_Reason_Code {
_URC_NO_REASON = 0,
_URC_FOREIGN_EXCEPTION_CAUGHT = 1,
_URC_FATAL_PHASE2_ERROR = 2,
_URC_FATAL_PHASE1_ERROR = 3,
_URC_NORMAL_STOP = 4,
_URC_END_OF_STACK = 5,
_URC_HANDLER_FOUND = 6,
_URC_INSTALL_CONTEXT = 7,
_URC_CONTINUE_UNWIND = 8,
_URC_FAILURE = 9, // used only by ARM EABI
}
pub type _Unwind_Exception_Class = u64;
pub type _Unwind_Word = uintptr_t;
#[cfg(target_arch = "x86")]
pub static unwinder_private_data_size: int = 5;
#[cfg(target_arch = "x86_64")]
pub static unwinder_private_data_size: int = 2;
#[cfg(target_arch = "arm")]
pub static unwinder_private_data_size: int = 20;
pub struct _Unwind_Exception {
exception_class: _Unwind_Exception_Class,
exception_cleanup: _Unwind_Exception_Cleanup_Fn,
private: [_Unwind_Word, ..unwinder_private_data_size],
}
pub enum _Unwind_Context {}
pub type _Unwind_Exception_Cleanup_Fn = extern "C" fn(unwind_code: _Unwind_Reason_Code,
exception: *_Unwind_Exception);
#[cfg(target_os = "linux")]
#[cfg(target_os = "freebsd")]
#[cfg(target_os = "win32")]
#[link(name = "gcc_s")]
extern {}
#[cfg(target_os = "android")]
#[link(name = "gcc")]
extern {}
extern "C" {
pub fn _Unwind_RaiseException(exception: *_Unwind_Exception) -> _Unwind_Reason_Code;
pub fn _Unwind_DeleteException(exception: *_Unwind_Exception);
}
}
pub struct Unwinder {
priv unwinding: bool,
priv cause: Option<~Any>
}
impl Unwinder {
pub fn new() -> Unwinder {
Unwinder {
unwinding: false,
cause: None,
}
}
pub fn unwinding(&self) -> bool {
self.unwinding
}
pub fn try(&mut self, f: ||) {
use unstable::raw::Closure;
use libc::{c_void};
unsafe {
let closure: Closure = cast::transmute(f);
let ep = rust_try(try_fn, closure.code as *c_void,
closure.env as *c_void);
if !ep.is_null() {
rtdebug!("caught {}", (*ep).exception_class);
uw::_Unwind_DeleteException(ep);
}
}
extern fn try_fn(code: *c_void, env: *c_void) {
unsafe {
let closure: || = cast::transmute(Closure {
code: code as *(),
env: env as *(),
});
closure();
}
}
extern {
// Rust's try-catch
// When f(...) returns normally, the return value is null.
// When f(...) throws, the return value is a pointer to the caught
// exception object.
fn rust_try(f: extern "C" fn(*c_void, *c_void),
code: *c_void,
data: *c_void) -> *uw::_Unwind_Exception;
}
}
pub fn begin_unwind(&mut self, cause: ~Any) -> ! {
rtdebug!("begin_unwind()");
self.unwinding = true;
self.cause = Some(cause);
rust_fail();
// An uninlined, unmangled function upon which to slap yer breakpoints
#[inline(never)]
#[no_mangle]
fn rust_fail() -> ! {
unsafe {
let exception = ~uw::_Unwind_Exception {
exception_class: rust_exception_class(),
exception_cleanup: exception_cleanup,
private: [0, ..uw::unwinder_private_data_size],
};
let error = uw::_Unwind_RaiseException(cast::transmute(exception));
rtabort!("Could not unwind stack, error = {}", error as int)
}
extern "C" fn exception_cleanup(_unwind_code: uw::_Unwind_Reason_Code,
exception: *uw::_Unwind_Exception) {
rtdebug!("exception_cleanup()");
unsafe {
let _: ~uw::_Unwind_Exception = cast::transmute(exception);
}
}
}
}
pub fn result(&mut self) -> TaskResult {
if self.unwinding {
Err(self.cause.take().unwrap())
} else {
Ok(())
}
}
}
// Rust's exception class identifier. This is used by personality routines to
// determine whether the exception was thrown by their own runtime.
fn rust_exception_class() -> uw::_Unwind_Exception_Class {
// M O Z \0 R U S T -- vendor, language
0x4d4f5a_00_52555354
}
// We could implement our personality routine in pure Rust, however exception
// info decoding is tedious. More importantly, personality routines have to
// handle various platform quirks, which are not fun to maintain. For this
// reason, we attempt to reuse personality routine of the C language:
// __gcc_personality_v0.
//
// Since C does not support exception catching, __gcc_personality_v0 simply
// always returns _URC_CONTINUE_UNWIND in search phase, and always returns
// _URC_INSTALL_CONTEXT (i.e. "invoke cleanup code") in cleanup phase.
//
// This is pretty close to Rust's exception handling approach, except that Rust
// does have a single "catch-all" handler at the bottom of each task's stack.
// So we have two versions:
// - rust_eh_personality, used by all cleanup landing pads, which never catches,
// so the behavior of __gcc_personality_v0 is perfectly adequate there, and
// - rust_eh_personality_catch, used only by rust_try(), which always catches.
// This is achieved by overriding the return value in search phase to always
// say "catch!".
#[cfg(not(target_arch = "arm"), not(test))]
#[doc(hidden)]
pub mod eabi {
use uw = super::libunwind;
use libc::c_int;
extern "C" {
fn __gcc_personality_v0(version: c_int,
actions: uw::_Unwind_Action,
exception_class: uw::_Unwind_Exception_Class,
ue_header: *uw::_Unwind_Exception,
context: *uw::_Unwind_Context)
-> uw::_Unwind_Reason_Code;
}
#[lang="eh_personality"]
#[no_mangle] // so we can reference it by name from middle/trans/base.rs
pub extern "C" fn rust_eh_personality(
version: c_int,
actions: uw::_Unwind_Action,
exception_class: uw::_Unwind_Exception_Class,
ue_header: *uw::_Unwind_Exception,
context: *uw::_Unwind_Context
) -> uw::_Unwind_Reason_Code
{
unsafe {
__gcc_personality_v0(version, actions, exception_class, ue_header,
context)
}
}
#[no_mangle] // referenced from rust_try.ll
pub extern "C" fn rust_eh_personality_catch(
version: c_int,
actions: uw::_Unwind_Action,
exception_class: uw::_Unwind_Exception_Class,
ue_header: *uw::_Unwind_Exception,
context: *uw::_Unwind_Context
) -> uw::_Unwind_Reason_Code
{
if (actions as c_int & uw::_UA_SEARCH_PHASE as c_int) != 0 { // search phase
uw::_URC_HANDLER_FOUND // catch!
}
else { // cleanup phase
unsafe {
__gcc_personality_v0(version, actions, exception_class, ue_header,
context)
}
}
}
}
// ARM EHABI uses a slightly different personality routine signature,
// but otherwise works the same.
#[cfg(target_arch = "arm", not(test))]
pub mod eabi {
use uw = super::libunwind;
use libc::c_int;
extern "C" {
fn __gcc_personality_v0(state: uw::_Unwind_State,
ue_header: *uw::_Unwind_Exception,
context: *uw::_Unwind_Context)
-> uw::_Unwind_Reason_Code;
}
#[lang="eh_personality"]
#[no_mangle] // so we can reference it by name from middle/trans/base.rs
pub extern "C" fn rust_eh_personality(
state: uw::_Unwind_State,
ue_header: *uw::_Unwind_Exception,
context: *uw::_Unwind_Context
) -> uw::_Unwind_Reason_Code
{
unsafe {
__gcc_personality_v0(state, ue_header, context)
}
}
#[no_mangle] // referenced from rust_try.ll
pub extern "C" fn rust_eh_personality_catch(
state: uw::_Unwind_State,
ue_header: *uw::_Unwind_Exception,
context: *uw::_Unwind_Context
) -> uw::_Unwind_Reason_Code
{
if (state as c_int & uw::_US_ACTION_MASK as c_int)
== uw::_US_VIRTUAL_UNWIND_FRAME as c_int { // search phase
uw::_URC_HANDLER_FOUND // catch!
}
else { // cleanup phase
unsafe {
__gcc_personality_v0(state, ue_header, context)
}
}
}
}
/// This is the entry point of unwinding for things like lang items and such.
/// The arguments are normally generated by the compiler, and need to
/// have static lifetimes.
#[inline(never)] #[cold] // this is the slow path, please never inline this
pub fn begin_unwind_raw(msg: *u8, file: *u8, line: uint) -> ! {
use libc::c_char;
#[inline]
fn static_char_ptr(p: *u8) -> &'static str {
let s = unsafe { CString::new(p as *c_char, false) };
match s.as_str() {
Some(s) => unsafe { cast::transmute::<&str, &'static str>(s) },
None => rtabort!("message wasn't utf8?")
}
}
let msg = static_char_ptr(msg);
let file = static_char_ptr(file);
begin_unwind(msg, file, line as uint)
}
/// The entry point for unwinding with a formatted message.
///
/// This is designed to reduce the amount of code required at the call
/// site as much as possible (so that `fail!()` has as low an impact
/// on (e.g.) the inlining of other functions as possible), by moving
/// the actual formatting into this shared place.
#[inline(never)] #[cold]
pub fn begin_unwind_fmt(msg: &fmt::Arguments, file: &'static str, line: uint) -> ! {
// We do two allocations here, unfortunately. But (a) they're
// required with the current scheme, and (b) we don't handle
// failure + OOM properly anyway (see comment in begin_unwind
// below).
begin_unwind_inner(~fmt::format(msg), file, line)
}
/// This is the entry point of unwinding for fail!() and assert!().
#[inline(never)] #[cold] // avoid code bloat at the call sites as much as possible
pub fn begin_unwind<M: Any + Send>(msg: M, file: &'static str, line: uint) -> ! {
// Note that this should be the only allocation performed in this code path.
// Currently this means that fail!() on OOM will invoke this code path,
// but then again we're not really ready for failing on OOM anyway. If
// we do start doing this, then we should propagate this allocation to
// be performed in the parent of this task instead of the task that's
// failing.
// see below for why we do the `Any` coercion here.
begin_unwind_inner(~msg, file, line)
}
/// The core of the unwinding.
///
/// This is non-generic to avoid instantiation bloat in other crates
/// (which makes compilation of small crates noticably slower). (Note:
/// we need the `Any` object anyway, we're not just creating it to
/// avoid being generic.)
///
/// Do this split took the LLVM IR line counts of `fn main() { fail!()
/// }` from ~1900/3700 (-O/no opts) to 180/590.
#[inline(never)] #[cold] // this is the slow path, please never inline this
fn begin_unwind_inner(msg: ~Any, file: &'static str, line: uint) -> ! {
let mut task;
{
let msg_s = match msg.as_ref::<&'static str>() {
Some(s) => *s,
None => match msg.as_ref::<~str>() {
Some(s) => s.as_slice(),
None => "~Any",
}
};
// It is assumed that all reasonable rust code will have a local task at
// all times. This means that this `try_take` will succeed almost all of
// the time. There are border cases, however, when the runtime has
// *almost* set up the local task, but hasn't quite gotten there yet. In
// order to get some better diagnostics, we print on failure and
// immediately abort the whole process if there is no local task
// available.
let opt_task: Option<~Task> = Local::try_take();
task = match opt_task {
Some(t) => t,
None => {
rterrln!("failed at '{}', {}:{}", msg_s, file, line);
unsafe { intrinsics::abort() }
}
};
// See comments in io::stdio::with_task_stdout as to why we have to be
// careful when using an arbitrary I/O handle from the task. We
// essentially need to dance to make sure when a task is in TLS when
// running user code.
let name = task.name.take();
{
let n = name.as_ref().map(|n| n.as_slice()).unwrap_or("<unnamed>");
match task.stderr.take() {
Some(mut stderr) => {
Local::put(task);
// FIXME: what to do when the task printing fails?
let _err = format_args!(|args| ::fmt::writeln(stderr, args),
"task '{}' failed at '{}', {}:{}",
n, msg_s, file, line);
task = Local::take();
match mem::replace(&mut task.stderr, Some(stderr)) {
Some(prev) => {
Local::put(task);
drop(prev);
task = Local::take();
}
None => {}
}
}
None => {
rterrln!("task '{}' failed at '{}', {}:{}", n, msg_s,
file, line);
}
}
}
task.name = name;
if task.unwinder.unwinding {
// If a task fails while it's already unwinding then we
// have limited options. Currently our preference is to
// just abort. In the future we may consider resuming
// unwinding or otherwise exiting the task cleanly.
rterrln!("task failed during unwinding (double-failure - total drag!)")
rterrln!("rust must abort now. so sorry.");
unsafe { intrinsics::abort() }
}
}
// The unwinder won't actually use the task at all, so we put the task back
// into TLS right before we invoke the unwinder, but this means we need an
// unsafe reference back to the unwinder once it's in TLS.
Local::put(task);
unsafe {
let task: *mut Task = Local::unsafe_borrow();
(*task).unwinder.begin_unwind(msg);
}
}