1828 lines
58 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A 'lint' check is a kind of miscellaneous constraint that a user _might_
//! want to enforce, but might reasonably want to permit as well, on a
//! module-by-module basis. They contrast with static constraints enforced by
//! other phases of the compiler, which are generally required to hold in order
//! to compile the program at all.
//!
//! The lint checking is all consolidated into one pass which runs just before
//! translation to LLVM bytecode. Throughout compilation, lint warnings can be
//! added via the `add_lint` method on the Session structure. This requires a
//! span and an id of the node that the lint is being added to. The lint isn't
//! actually emitted at that time because it is unknown what the actual lint
//! level at that location is.
//!
//! To actually emit lint warnings/errors, a separate pass is used just before
//! translation. A context keeps track of the current state of all lint levels.
//! Upon entering a node of the ast which can modify the lint settings, the
//! previous lint state is pushed onto a stack and the ast is then recursed
//! upon. As the ast is traversed, this keeps track of the current lint level
//! for all lint attributes.
//!
//! To add a new lint warning, all you need to do is to either invoke `add_lint`
//! on the session at the appropriate time, or write a few linting functions and
//! modify the Context visitor appropriately. If you're adding lints from the
//! Context itself, span_lint should be used instead of add_lint.
#![allow(non_camel_case_types)]
use driver::session;
use metadata::csearch;
use middle::dead::DEAD_CODE_LINT_STR;
use middle::pat_util;
use middle::privacy;
use middle::trans::adt; // for `adt::is_ffi_safe`
use middle::ty;
use middle::typeck::astconv::{ast_ty_to_ty, AstConv};
use middle::typeck::infer;
use middle::typeck;
use util::ppaux::{ty_to_str};
use std::cmp;
use collections::HashMap;
use std::i16;
use std::i32;
use std::i64;
use std::i8;
use std::rc::Rc;
use std::to_str::ToStr;
use std::u16;
use std::u32;
use std::u64;
use std::u8;
use collections::SmallIntMap;
use syntax::abi;
use syntax::ast_map;
use syntax::ast_util::IdVisitingOperation;
use syntax::attr::{AttrMetaMethods, AttributeMethods};
use syntax::attr;
use syntax::codemap::Span;
use syntax::parse::token::InternedString;
use syntax::parse::token;
use syntax::visit::Visitor;
use syntax::{ast, ast_util, visit};
#[deriving(Clone, Eq, Ord, TotalEq, TotalOrd)]
pub enum Lint {
CTypes,
UnusedImports,
UnnecessaryQualification,
WhileTrue,
PathStatement,
UnrecognizedLint,
NonCamelCaseTypes,
NonUppercaseStatics,
NonUppercasePatternStatics,
UppercaseVariables,
UnnecessaryParens,
TypeLimits,
TypeOverflow,
UnusedUnsafe,
UnsafeBlock,
AttributeUsage,
UnknownFeatures,
UnknownCrateType,
ManagedHeapMemory,
OwnedHeapMemory,
HeapMemory,
UnusedVariable,
DeadAssignment,
UnusedMut,
UnnecessaryAllocation,
DeadCode,
VisiblePrivateTypes,
UnnecessaryTypecast,
MissingDoc,
UnreachableCode,
Deprecated,
Experimental,
Unstable,
UnusedMustUse,
UnusedResult,
DeprecatedOwnedVector,
Warnings,
RawPointerDeriving,
}
pub fn level_to_str(lv: level) -> &'static str {
match lv {
allow => "allow",
warn => "warn",
deny => "deny",
forbid => "forbid"
}
}
#[deriving(Clone, Eq, Ord, TotalEq, TotalOrd)]
pub enum level {
allow, warn, deny, forbid
}
#[deriving(Clone, Eq, Ord, TotalEq, TotalOrd)]
pub struct LintSpec {
pub default: level,
pub lint: Lint,
pub desc: &'static str,
}
pub type LintDict = HashMap<&'static str, LintSpec>;
#[deriving(Eq)]
enum LintSource {
Node(Span),
Default,
CommandLine
}
static lint_table: &'static [(&'static str, LintSpec)] = &[
("ctypes",
LintSpec {
lint: CTypes,
desc: "proper use of libc types in foreign modules",
default: warn
}),
("unused_imports",
LintSpec {
lint: UnusedImports,
desc: "imports that are never used",
default: warn
}),
("unnecessary_qualification",
LintSpec {
lint: UnnecessaryQualification,
desc: "detects unnecessarily qualified names",
default: allow
}),
("while_true",
LintSpec {
lint: WhileTrue,
desc: "suggest using `loop { }` instead of `while true { }`",
default: warn
}),
("path_statement",
LintSpec {
lint: PathStatement,
desc: "path statements with no effect",
default: warn
}),
("unrecognized_lint",
LintSpec {
lint: UnrecognizedLint,
desc: "unrecognized lint attribute",
default: warn
}),
("non_camel_case_types",
LintSpec {
lint: NonCamelCaseTypes,
desc: "types, variants and traits should have camel case names",
default: warn
}),
("non_uppercase_statics",
LintSpec {
lint: NonUppercaseStatics,
desc: "static constants should have uppercase identifiers",
default: allow
}),
("non_uppercase_pattern_statics",
LintSpec {
lint: NonUppercasePatternStatics,
desc: "static constants in match patterns should be all caps",
default: warn
}),
("uppercase_variables",
LintSpec {
lint: UppercaseVariables,
desc: "variable and structure field names should start with a lowercase character",
default: warn
}),
("unnecessary_parens",
LintSpec {
lint: UnnecessaryParens,
desc: "`if`, `match`, `while` and `return` do not need parentheses",
default: warn
}),
("managed_heap_memory",
LintSpec {
lint: ManagedHeapMemory,
desc: "use of managed (@ type) heap memory",
default: allow
}),
("owned_heap_memory",
LintSpec {
lint: OwnedHeapMemory,
desc: "use of owned (~ type) heap memory",
default: allow
}),
("heap_memory",
LintSpec {
lint: HeapMemory,
desc: "use of any (~ type or @ type) heap memory",
default: allow
}),
("type_limits",
LintSpec {
lint: TypeLimits,
desc: "comparisons made useless by limits of the types involved",
default: warn
}),
("type_overflow",
LintSpec {
lint: TypeOverflow,
desc: "literal out of range for its type",
default: warn
}),
("unused_unsafe",
LintSpec {
lint: UnusedUnsafe,
desc: "unnecessary use of an `unsafe` block",
default: warn
}),
("unsafe_block",
LintSpec {
lint: UnsafeBlock,
desc: "usage of an `unsafe` block",
default: allow
}),
("attribute_usage",
LintSpec {
lint: AttributeUsage,
desc: "detects bad use of attributes",
default: warn
}),
("unused_variable",
LintSpec {
lint: UnusedVariable,
desc: "detect variables which are not used in any way",
default: warn
}),
("dead_assignment",
LintSpec {
lint: DeadAssignment,
desc: "detect assignments that will never be read",
default: warn
}),
("unnecessary_typecast",
LintSpec {
lint: UnnecessaryTypecast,
desc: "detects unnecessary type casts, that can be removed",
default: allow,
}),
("unused_mut",
LintSpec {
lint: UnusedMut,
desc: "detect mut variables which don't need to be mutable",
default: warn
}),
("unnecessary_allocation",
LintSpec {
lint: UnnecessaryAllocation,
desc: "detects unnecessary allocations that can be eliminated",
default: warn
}),
(DEAD_CODE_LINT_STR,
LintSpec {
lint: DeadCode,
desc: "detect piece of code that will never be used",
default: warn
}),
("visible_private_types",
LintSpec {
lint: VisiblePrivateTypes,
desc: "detect use of private types in exported type signatures",
default: warn
}),
("missing_doc",
LintSpec {
lint: MissingDoc,
desc: "detects missing documentation for public members",
default: allow
}),
("unreachable_code",
LintSpec {
lint: UnreachableCode,
desc: "detects unreachable code",
default: warn
}),
("deprecated",
LintSpec {
lint: Deprecated,
desc: "detects use of #[deprecated] items",
default: warn
}),
("experimental",
LintSpec {
lint: Experimental,
desc: "detects use of #[experimental] items",
default: warn
}),
("unstable",
LintSpec {
lint: Unstable,
desc: "detects use of #[unstable] items (incl. items with no stability attribute)",
default: allow
}),
("warnings",
LintSpec {
lint: Warnings,
desc: "mass-change the level for lints which produce warnings",
default: warn
}),
("unknown_features",
LintSpec {
lint: UnknownFeatures,
desc: "unknown features found in crate-level #[feature] directives",
default: deny,
}),
("unknown_crate_type",
LintSpec {
lint: UnknownCrateType,
desc: "unknown crate type found in #[crate_type] directive",
default: deny,
}),
("unused_must_use",
LintSpec {
lint: UnusedMustUse,
desc: "unused result of a type flagged as #[must_use]",
default: warn,
}),
("unused_result",
LintSpec {
lint: UnusedResult,
desc: "unused result of an expression in a statement",
default: allow,
}),
("deprecated_owned_vector",
LintSpec {
lint: DeprecatedOwnedVector,
desc: "use of a `~[T]` vector",
default: allow,
}),
("raw_pointer_deriving",
LintSpec {
lint: RawPointerDeriving,
desc: "uses of #[deriving] with raw pointers are rarely correct",
default: warn,
}),
];
/*
Pass names should not contain a '-', as the compiler normalizes
'-' to '_' in command-line flags
*/
pub fn get_lint_dict() -> LintDict {
lint_table.iter().map(|&(k, v)| (k, v)).collect()
}
struct Context<'a> {
// All known lint modes (string versions)
dict: LintDict,
// Current levels of each lint warning
cur: SmallIntMap<(level, LintSource)>,
// context we're checking in (used to access fields like sess)
tcx: &'a ty::ctxt,
// Items exported by the crate; used by the missing_doc lint.
exported_items: &'a privacy::ExportedItems,
// The id of the current `ast::StructDef` being walked.
cur_struct_def_id: ast::NodeId,
// Whether some ancestor of the current node was marked
// #[doc(hidden)].
is_doc_hidden: bool,
// When recursing into an attributed node of the ast which modifies lint
// levels, this stack keeps track of the previous lint levels of whatever
// was modified.
lint_stack: Vec<(Lint, level, LintSource)> ,
// id of the last visited negated expression
negated_expr_id: ast::NodeId
}
impl<'a> Context<'a> {
fn get_level(&self, lint: Lint) -> level {
match self.cur.find(&(lint as uint)) {
Some(&(lvl, _)) => lvl,
None => allow
}
}
fn get_source(&self, lint: Lint) -> LintSource {
match self.cur.find(&(lint as uint)) {
Some(&(_, src)) => src,
None => Default
}
}
fn set_level(&mut self, lint: Lint, level: level, src: LintSource) {
if level == allow {
self.cur.remove(&(lint as uint));
} else {
self.cur.insert(lint as uint, (level, src));
}
}
fn lint_to_str(&self, lint: Lint) -> &'static str {
for (k, v) in self.dict.iter() {
if v.lint == lint {
return *k;
}
}
fail!("unregistered lint {:?}", lint);
}
fn span_lint(&self, lint: Lint, span: Span, msg: &str) {
let (level, src) = match self.cur.find(&(lint as uint)) {
None => { return }
Some(&(warn, src)) => (self.get_level(Warnings), src),
Some(&pair) => pair,
};
if level == allow { return }
let mut note = None;
let msg = match src {
Default => {
format!("{}, \\#[{}({})] on by default", msg,
level_to_str(level), self.lint_to_str(lint))
},
CommandLine => {
format!("{} [-{} {}]", msg,
match level {
warn => 'W', deny => 'D', forbid => 'F',
allow => fail!()
}, self.lint_to_str(lint).replace("_", "-"))
},
Node(src) => {
note = Some(src);
msg.to_str()
}
};
match level {
warn => { self.tcx.sess.span_warn(span, msg); }
deny | forbid => { self.tcx.sess.span_err(span, msg); }
allow => fail!(),
}
for &span in note.iter() {
self.tcx.sess.span_note(span, "lint level defined here");
}
}
/**
* Merge the lints specified by any lint attributes into the
* current lint context, call the provided function, then reset the
* lints in effect to their previous state.
*/
fn with_lint_attrs(&mut self,
attrs: &[ast::Attribute],
f: |&mut Context|) {
// Parse all of the lint attributes, and then add them all to the
// current dictionary of lint information. Along the way, keep a history
// of what we changed so we can roll everything back after invoking the
// specified closure
let mut pushed = 0u;
each_lint(&self.tcx.sess, attrs, |meta, level, lintname| {
match self.dict.find_equiv(&lintname) {
None => {
self.span_lint(
UnrecognizedLint,
meta.span,
format!("unknown `{}` attribute: `{}`",
level_to_str(level), lintname));
}
Some(lint) => {
let lint = lint.lint;
let now = self.get_level(lint);
if now == forbid && level != forbid {
self.tcx.sess.span_err(meta.span,
format!("{}({}) overruled by outer forbid({})",
level_to_str(level),
lintname, lintname));
} else if now != level {
let src = self.get_source(lint);
self.lint_stack.push((lint, now, src));
pushed += 1;
self.set_level(lint, level, Node(meta.span));
}
}
}
true
});
let old_is_doc_hidden = self.is_doc_hidden;
self.is_doc_hidden =
self.is_doc_hidden ||
attrs.iter()
.any(|attr| {
attr.name().equiv(&("doc")) &&
match attr.meta_item_list() {
None => false,
Some(l) => {
attr::contains_name(l.as_slice(), "hidden")
}
}
});
f(self);
// rollback
self.is_doc_hidden = old_is_doc_hidden;
for _ in range(0, pushed) {
let (lint, lvl, src) = self.lint_stack.pop().unwrap();
self.set_level(lint, lvl, src);
}
}
fn visit_ids(&self, f: |&mut ast_util::IdVisitor<Context>|) {
let mut v = ast_util::IdVisitor {
operation: self,
pass_through_items: false,
visited_outermost: false,
};
f(&mut v);
}
}
// Check that every lint from the list of attributes satisfies `f`.
// Return true if that's the case. Otherwise return false.
pub fn each_lint(sess: &session::Session,
attrs: &[ast::Attribute],
f: |@ast::MetaItem, level, InternedString| -> bool)
-> bool {
let xs = [allow, warn, deny, forbid];
for &level in xs.iter() {
let level_name = level_to_str(level);
for attr in attrs.iter().filter(|m| m.name().equiv(&level_name)) {
let meta = attr.node.value;
let metas = match meta.node {
ast::MetaList(_, ref metas) => metas,
_ => {
sess.span_err(meta.span, "malformed lint attribute");
continue;
}
};
for meta in metas.iter() {
match meta.node {
ast::MetaWord(ref lintname) => {
if !f(*meta, level, (*lintname).clone()) {
return false;
}
}
_ => {
sess.span_err(meta.span, "malformed lint attribute");
}
}
}
}
}
true
}
// Check from a list of attributes if it contains the appropriate
// `#[level(lintname)]` attribute (e.g. `#[allow(dead_code)]).
pub fn contains_lint(attrs: &[ast::Attribute],
level: level,
lintname: &'static str)
-> bool {
let level_name = level_to_str(level);
for attr in attrs.iter().filter(|m| m.name().equiv(&level_name)) {
if attr.meta_item_list().is_none() {
continue
}
let list = attr.meta_item_list().unwrap();
for meta_item in list.iter() {
if meta_item.name().equiv(&lintname) {
return true;
}
}
}
false
}
fn check_while_true_expr(cx: &Context, e: &ast::Expr) {
match e.node {
ast::ExprWhile(cond, _) => {
match cond.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitBool(true) => {
cx.span_lint(WhileTrue,
e.span,
"denote infinite loops with loop \
{ ... }");
}
_ => {}
}
}
_ => ()
}
}
_ => ()
}
}
impl<'a> AstConv for Context<'a>{
fn tcx<'a>(&'a self) -> &'a ty::ctxt { self.tcx }
fn get_item_ty(&self, id: ast::DefId) -> ty::ty_param_bounds_and_ty {
ty::lookup_item_type(self.tcx, id)
}
fn get_trait_def(&self, id: ast::DefId) -> Rc<ty::TraitDef> {
ty::lookup_trait_def(self.tcx, id)
}
fn ty_infer(&self, _span: Span) -> ty::t {
infer::new_infer_ctxt(self.tcx).next_ty_var()
}
}
fn check_unused_casts(cx: &Context, e: &ast::Expr) {
return match e.node {
ast::ExprCast(expr, ty) => {
let t_t = ast_ty_to_ty(cx, &infer::new_infer_ctxt(cx.tcx), ty);
if ty::get(ty::expr_ty(cx.tcx, expr)).sty == ty::get(t_t).sty {
cx.span_lint(UnnecessaryTypecast, ty.span,
"unnecessary type cast");
}
}
_ => ()
};
}
fn check_type_limits(cx: &Context, e: &ast::Expr) {
return match e.node {
ast::ExprBinary(binop, l, r) => {
if is_comparison(binop) && !check_limits(cx.tcx, binop, l, r) {
cx.span_lint(TypeLimits, e.span,
"comparison is useless due to type limits");
}
},
ast::ExprLit(lit) => {
match ty::get(ty::expr_ty(cx.tcx, e)).sty {
ty::ty_int(t) => {
let int_type = if t == ast::TyI {
cx.tcx.sess.targ_cfg.int_type
} else { t };
let (min, max) = int_ty_range(int_type);
let mut lit_val: i64 = match lit.node {
ast::LitInt(v, _) => v,
ast::LitUint(v, _) => v as i64,
ast::LitIntUnsuffixed(v) => v,
_ => fail!()
};
if cx.negated_expr_id == e.id {
lit_val *= -1;
}
if lit_val < min || lit_val > max {
cx.span_lint(TypeOverflow, e.span,
"literal out of range for its type");
}
},
ty::ty_uint(t) => {
let uint_type = if t == ast::TyU {
cx.tcx.sess.targ_cfg.uint_type
} else { t };
let (min, max) = uint_ty_range(uint_type);
let lit_val: u64 = match lit.node {
ast::LitInt(v, _) => v as u64,
ast::LitUint(v, _) => v,
ast::LitIntUnsuffixed(v) => v as u64,
_ => fail!()
};
if lit_val < min || lit_val > max {
cx.span_lint(TypeOverflow, e.span,
"literal out of range for its type");
}
},
_ => ()
};
},
_ => ()
};
fn is_valid<T:cmp::Ord>(binop: ast::BinOp, v: T,
min: T, max: T) -> bool {
match binop {
ast::BiLt => v <= max,
ast::BiLe => v < max,
ast::BiGt => v >= min,
ast::BiGe => v > min,
ast::BiEq | ast::BiNe => v >= min && v <= max,
_ => fail!()
}
}
fn rev_binop(binop: ast::BinOp) -> ast::BinOp {
match binop {
ast::BiLt => ast::BiGt,
ast::BiLe => ast::BiGe,
ast::BiGt => ast::BiLt,
ast::BiGe => ast::BiLe,
_ => binop
}
}
// for int & uint, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms
fn int_ty_range(int_ty: ast::IntTy) -> (i64, i64) {
match int_ty {
ast::TyI => (i64::MIN, i64::MAX),
ast::TyI8 => (i8::MIN as i64, i8::MAX as i64),
ast::TyI16 => (i16::MIN as i64, i16::MAX as i64),
ast::TyI32 => (i32::MIN as i64, i32::MAX as i64),
ast::TyI64 => (i64::MIN, i64::MAX)
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u64, u64) {
match uint_ty {
ast::TyU => (u64::MIN, u64::MAX),
ast::TyU8 => (u8::MIN as u64, u8::MAX as u64),
ast::TyU16 => (u16::MIN as u64, u16::MAX as u64),
ast::TyU32 => (u32::MIN as u64, u32::MAX as u64),
ast::TyU64 => (u64::MIN, u64::MAX)
}
}
fn check_limits(tcx: &ty::ctxt, binop: ast::BinOp,
l: &ast::Expr, r: &ast::Expr) -> bool {
let (lit, expr, swap) = match (&l.node, &r.node) {
(&ast::ExprLit(_), _) => (l, r, true),
(_, &ast::ExprLit(_)) => (r, l, false),
_ => return true
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap { rev_binop(binop) } else { binop };
match ty::get(ty::expr_ty(tcx, expr)).sty {
ty::ty_int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i64 = match lit.node {
ast::ExprLit(li) => match li.node {
ast::LitInt(v, _) => v,
ast::LitUint(v, _) => v as i64,
ast::LitIntUnsuffixed(v) => v,
_ => return true
},
_ => fail!()
};
is_valid(norm_binop, lit_val, min, max)
}
ty::ty_uint(uint_ty) => {
let (min, max): (u64, u64) = uint_ty_range(uint_ty);
let lit_val: u64 = match lit.node {
ast::ExprLit(li) => match li.node {
ast::LitInt(v, _) => v as u64,
ast::LitUint(v, _) => v,
ast::LitIntUnsuffixed(v) => v as u64,
_ => return true
},
_ => fail!()
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true
}
}
fn is_comparison(binop: ast::BinOp) -> bool {
match binop {
ast::BiEq | ast::BiLt | ast::BiLe |
ast::BiNe | ast::BiGe | ast::BiGt => true,
_ => false
}
}
}
fn check_item_ctypes(cx: &Context, it: &ast::Item) {
fn check_ty(cx: &Context, ty: &ast::Ty) {
match ty.node {
ast::TyPath(_, _, id) => {
match cx.tcx.def_map.borrow().get_copy(&id) {
ast::DefPrimTy(ast::TyInt(ast::TyI)) => {
cx.span_lint(CTypes, ty.span,
"found rust type `int` in foreign module, while \
libc::c_int or libc::c_long should be used");
}
ast::DefPrimTy(ast::TyUint(ast::TyU)) => {
cx.span_lint(CTypes, ty.span,
"found rust type `uint` in foreign module, while \
libc::c_uint or libc::c_ulong should be used");
}
ast::DefTy(def_id) => {
if !adt::is_ffi_safe(cx.tcx, def_id) {
cx.span_lint(CTypes, ty.span,
"found enum type without foreign-function-safe \
representation annotation in foreign module");
// hmm... this message could be more helpful
}
}
_ => ()
}
}
ast::TyPtr(ref mt) => { check_ty(cx, mt.ty) }
_ => {}
}
}
fn check_foreign_fn(cx: &Context, decl: &ast::FnDecl) {
for input in decl.inputs.iter() {
check_ty(cx, input.ty);
}
check_ty(cx, decl.output)
}
match it.node {
ast::ItemForeignMod(ref nmod) if nmod.abi != abi::RustIntrinsic => {
for ni in nmod.items.iter() {
match ni.node {
ast::ForeignItemFn(decl, _) => check_foreign_fn(cx, decl),
ast::ForeignItemStatic(t, _) => check_ty(cx, t)
}
}
}
_ => {/* nothing to do */ }
}
}
fn check_heap_type(cx: &Context, span: Span, ty: ty::t) {
let xs = [ManagedHeapMemory, OwnedHeapMemory, HeapMemory];
for &lint in xs.iter() {
if cx.get_level(lint) == allow { continue }
let mut n_box = 0;
let mut n_uniq = 0;
ty::fold_ty(cx.tcx, ty, |t| {
match ty::get(t).sty {
ty::ty_box(_) => {
n_box += 1;
}
ty::ty_uniq(_) |
ty::ty_trait(~ty::TyTrait { store: ty::UniqTraitStore, .. }) |
ty::ty_closure(~ty::ClosureTy { store: ty::UniqTraitStore, .. }) => {
n_uniq += 1;
}
_ => ()
};
t
});
if n_uniq > 0 && lint != ManagedHeapMemory {
let s = ty_to_str(cx.tcx, ty);
let m = format!("type uses owned (~ type) pointers: {}", s);
cx.span_lint(lint, span, m);
}
if n_box > 0 && lint != OwnedHeapMemory {
let s = ty_to_str(cx.tcx, ty);
let m = format!("type uses managed (@ type) pointers: {}", s);
cx.span_lint(lint, span, m);
}
}
}
fn check_heap_item(cx: &Context, it: &ast::Item) {
match it.node {
ast::ItemFn(..) |
ast::ItemTy(..) |
ast::ItemEnum(..) |
ast::ItemStruct(..) => check_heap_type(cx, it.span,
ty::node_id_to_type(cx.tcx,
it.id)),
_ => ()
}
// If it's a struct, we also have to check the fields' types
match it.node {
ast::ItemStruct(struct_def, _) => {
for struct_field in struct_def.fields.iter() {
check_heap_type(cx, struct_field.span,
ty::node_id_to_type(cx.tcx,
struct_field.node.id));
}
}
_ => ()
}
}
struct RawPtrDerivingVisitor<'a> {
cx: &'a Context<'a>
}
impl<'a> Visitor<()> for RawPtrDerivingVisitor<'a> {
fn visit_ty(&mut self, ty: &ast::Ty, _: ()) {
static MSG: &'static str = "use of `#[deriving]` with a raw pointer";
match ty.node {
ast::TyPtr(..) => self.cx.span_lint(RawPointerDeriving, ty.span, MSG),
_ => {}
}
visit::walk_ty(self, ty, ());
}
// explicit override to a no-op to reduce code bloat
fn visit_expr(&mut self, _: &ast::Expr, _: ()) {}
fn visit_block(&mut self, _: &ast::Block, _: ()) {}
}
fn check_raw_ptr_deriving(cx: &Context, item: &ast::Item) {
if !attr::contains_name(item.attrs.as_slice(), "deriving") {
return
}
match item.node {
ast::ItemStruct(..) | ast::ItemEnum(..) => {
let mut visitor = RawPtrDerivingVisitor { cx: cx };
visit::walk_item(&mut visitor, item, ());
}
_ => {}
}
}
static crate_attrs: &'static [&'static str] = &[
"crate_type", "feature", "no_start", "no_main", "no_std", "crate_id",
"desc", "comment", "license", "copyright", // not used in rustc now
];
static obsolete_attrs: &'static [(&'static str, &'static str)] = &[
("abi", "Use `extern \"abi\" fn` instead"),
("auto_encode", "Use `#[deriving(Encodable)]` instead"),
("auto_decode", "Use `#[deriving(Decodable)]` instead"),
("fast_ffi", "Remove it"),
("fixed_stack_segment", "Remove it"),
("rust_stack", "Remove it"),
];
static other_attrs: &'static [&'static str] = &[
// item-level
"address_insignificant", // can be crate-level too
"thread_local", // for statics
"allow", "deny", "forbid", "warn", // lint options
"deprecated", "experimental", "unstable", "stable", "locked", "frozen", //item stability
"cfg", "doc", "export_name", "link_section",
"no_mangle", "static_assert", "unsafe_no_drop_flag", "packed",
"simd", "repr", "deriving", "unsafe_destructor", "link", "phase",
"macro_export", "must_use", "automatically_derived",
//mod-level
"path", "link_name", "link_args", "macro_escape", "no_implicit_prelude",
// fn-level
"test", "bench", "should_fail", "ignore", "inline", "lang", "main", "start",
"no_split_stack", "cold", "macro_registrar", "linkage",
// internal attribute: bypass privacy inside items
"!resolve_unexported",
];
fn check_crate_attrs_usage(cx: &Context, attrs: &[ast::Attribute]) {
for attr in attrs.iter() {
let name = attr.node.value.name();
let mut iter = crate_attrs.iter().chain(other_attrs.iter());
if !iter.any(|other_attr| { name.equiv(other_attr) }) {
cx.span_lint(AttributeUsage, attr.span, "unknown crate attribute");
}
if name.equiv(&("link")) {
cx.tcx.sess.span_err(attr.span,
"obsolete crate `link` attribute");
cx.tcx.sess.note("the link attribute has been superceded by the crate_id \
attribute, which has the format `#[crate_id = \"name#version\"]`");
}
}
}
fn check_attrs_usage(cx: &Context, attrs: &[ast::Attribute]) {
// check if element has crate-level, obsolete, or any unknown attributes.
for attr in attrs.iter() {
let name = attr.node.value.name();
for crate_attr in crate_attrs.iter() {
if name.equiv(crate_attr) {
let msg = match attr.node.style {
ast::AttrOuter => "crate-level attribute should be an inner attribute: \
add an exclamation mark: #![foo]",
ast::AttrInner => "crate-level attribute should be in the root module",
};
cx.span_lint(AttributeUsage, attr.span, msg);
return;
}
}
for &(obs_attr, obs_alter) in obsolete_attrs.iter() {
if name.equiv(&obs_attr) {
cx.span_lint(AttributeUsage, attr.span,
format!("obsolete attribute: {:s}", obs_alter));
return;
}
}
if !other_attrs.iter().any(|other_attr| { name.equiv(other_attr) }) {
cx.span_lint(AttributeUsage, attr.span, "unknown attribute");
}
}
}
fn check_heap_expr(cx: &Context, e: &ast::Expr) {
let ty = ty::expr_ty(cx.tcx, e);
check_heap_type(cx, e.span, ty);
}
fn check_path_statement(cx: &Context, s: &ast::Stmt) {
match s.node {
ast::StmtSemi(expr, _) => {
match expr.node {
ast::ExprPath(_) => {
cx.span_lint(PathStatement,
s.span,
"path statement with no effect");
}
_ => {}
}
}
_ => ()
}
}
fn check_unused_result(cx: &Context, s: &ast::Stmt) {
let expr = match s.node {
ast::StmtSemi(expr, _) => expr,
_ => return
};
let t = ty::expr_ty(cx.tcx, expr);
match ty::get(t).sty {
ty::ty_nil | ty::ty_bot | ty::ty_bool => return,
_ => {}
}
match expr.node {
ast::ExprRet(..) => return,
_ => {}
}
let t = ty::expr_ty(cx.tcx, expr);
let mut warned = false;
match ty::get(t).sty {
ty::ty_struct(did, _) |
ty::ty_enum(did, _) => {
if ast_util::is_local(did) {
match cx.tcx.map.get(did.node) {
ast_map::NodeItem(it) => {
if attr::contains_name(it.attrs.as_slice(),
"must_use") {
cx.span_lint(UnusedMustUse, s.span,
"unused result which must be used");
warned = true;
}
}
_ => {}
}
} else {
csearch::get_item_attrs(&cx.tcx.sess.cstore, did, |attrs| {
if attr::contains_name(attrs.as_slice(), "must_use") {
cx.span_lint(UnusedMustUse, s.span,
"unused result which must be used");
warned = true;
}
});
}
}
_ => {}
}
if !warned {
cx.span_lint(UnusedResult, s.span, "unused result");
}
}
fn check_deprecated_owned_vector(cx: &Context, e: &ast::Expr) {
let t = ty::expr_ty(cx.tcx, e);
match ty::get(t).sty {
ty::ty_uniq(t) => match ty::get(t).sty {
ty::ty_vec(_, None) => {
cx.span_lint(DeprecatedOwnedVector, e.span,
"use of deprecated `~[]` vector; replaced by `std::vec::Vec`")
}
_ => {}
},
_ => {}
}
}
fn check_item_non_camel_case_types(cx: &Context, it: &ast::Item) {
fn is_camel_case(ident: ast::Ident) -> bool {
let ident = token::get_ident(ident);
assert!(!ident.get().is_empty());
let ident = ident.get().trim_chars('_');
// start with a non-lowercase letter rather than non-uppercase
// ones (some scripts don't have a concept of upper/lowercase)
!ident.char_at(0).is_lowercase() && !ident.contains_char('_')
}
fn check_case(cx: &Context, sort: &str, ident: ast::Ident, span: Span) {
if !is_camel_case(ident) {
cx.span_lint(
NonCamelCaseTypes, span,
format!("{} `{}` should have a camel case identifier",
sort, token::get_ident(ident)));
}
}
match it.node {
ast::ItemTy(..) | ast::ItemStruct(..) => {
check_case(cx, "type", it.ident, it.span)
}
ast::ItemTrait(..) => {
check_case(cx, "trait", it.ident, it.span)
}
ast::ItemEnum(ref enum_definition, _) => {
check_case(cx, "type", it.ident, it.span);
for variant in enum_definition.variants.iter() {
check_case(cx, "variant", variant.node.name, variant.span);
}
}
_ => ()
}
}
fn check_item_non_uppercase_statics(cx: &Context, it: &ast::Item) {
match it.node {
// only check static constants
ast::ItemStatic(_, ast::MutImmutable, _) => {
let s = token::get_ident(it.ident);
// check for lowercase letters rather than non-uppercase
// ones (some scripts don't have a concept of
// upper/lowercase)
if s.get().chars().any(|c| c.is_lowercase()) {
cx.span_lint(NonUppercaseStatics, it.span,
"static constant should have an uppercase identifier");
}
}
_ => {}
}
}
fn check_pat_non_uppercase_statics(cx: &Context, p: &ast::Pat) {
// Lint for constants that look like binding identifiers (#7526)
match (&p.node, cx.tcx.def_map.borrow().find(&p.id)) {
(&ast::PatIdent(_, ref path, _), Some(&ast::DefStatic(_, false))) => {
// last identifier alone is right choice for this lint.
let ident = path.segments.last().unwrap().identifier;
let s = token::get_ident(ident);
if s.get().chars().any(|c| c.is_lowercase()) {
cx.span_lint(NonUppercasePatternStatics, path.span,
"static constant in pattern should be all caps");
}
}
_ => {}
}
}
fn check_pat_uppercase_variable(cx: &Context, p: &ast::Pat) {
match &p.node {
&ast::PatIdent(_, ref path, _) => {
match cx.tcx.def_map.borrow().find(&p.id) {
Some(&ast::DefLocal(_, _)) | Some(&ast::DefBinding(_, _)) |
Some(&ast::DefArg(_, _)) => {
// last identifier alone is right choice for this lint.
let ident = path.segments.last().unwrap().identifier;
let s = token::get_ident(ident);
if s.get().char_at(0).is_uppercase() {
cx.span_lint(
UppercaseVariables,
path.span,
"variable names should start with a lowercase character");
}
}
_ => {}
}
}
_ => {}
}
}
fn check_struct_uppercase_variable(cx: &Context, s: &ast::StructDef) {
for sf in s.fields.iter() {
match sf.node {
ast::StructField_ { kind: ast::NamedField(ident, _), .. } => {
let s = token::get_ident(ident);
if s.get().char_at(0).is_uppercase() {
cx.span_lint(
UppercaseVariables,
sf.span,
"structure field names should start with a lowercase character");
}
}
_ => {}
}
}
}
fn check_unnecessary_parens_core(cx: &Context, value: &ast::Expr, msg: &str) {
match value.node {
ast::ExprParen(_) => {
cx.span_lint(UnnecessaryParens, value.span,
format!("unnecessary parentheses around {}", msg))
}
_ => {}
}
}
fn check_unnecessary_parens_expr(cx: &Context, e: &ast::Expr) {
let (value, msg) = match e.node {
ast::ExprIf(cond, _, _) => (cond, "`if` condition"),
ast::ExprWhile(cond, _) => (cond, "`while` condition"),
ast::ExprMatch(head, _) => (head, "`match` head expression"),
ast::ExprRet(Some(value)) => (value, "`return` value"),
ast::ExprAssign(_, value) => (value, "assigned value"),
ast::ExprAssignOp(_, _, value) => (value, "assigned value"),
_ => return
};
check_unnecessary_parens_core(cx, value, msg);
}
fn check_unnecessary_parens_stmt(cx: &Context, s: &ast::Stmt) {
let (value, msg) = match s.node {
ast::StmtDecl(decl, _) => match decl.node {
ast::DeclLocal(local) => match local.init {
Some(value) => (value, "assigned value"),
None => return
},
_ => return
},
_ => return
};
check_unnecessary_parens_core(cx, value, msg);
}
fn check_unused_unsafe(cx: &Context, e: &ast::Expr) {
match e.node {
// Don't warn about generated blocks, that'll just pollute the output.
ast::ExprBlock(ref blk) => {
if blk.rules == ast::UnsafeBlock(ast::UserProvided) &&
!cx.tcx.used_unsafe.borrow().contains(&blk.id) {
cx.span_lint(UnusedUnsafe, blk.span,
"unnecessary `unsafe` block");
}
}
_ => ()
}
}
fn check_unsafe_block(cx: &Context, e: &ast::Expr) {
match e.node {
// Don't warn about generated blocks, that'll just pollute the output.
ast::ExprBlock(ref blk) if blk.rules == ast::UnsafeBlock(ast::UserProvided) => {
cx.span_lint(UnsafeBlock, blk.span, "usage of an `unsafe` block");
}
_ => ()
}
}
fn check_unused_mut_pat(cx: &Context, p: &ast::Pat) {
match p.node {
ast::PatIdent(ast::BindByValue(ast::MutMutable),
ref path, _) if pat_util::pat_is_binding(&cx.tcx.def_map, p) => {
// `let mut _a = 1;` doesn't need a warning.
let initial_underscore = if path.segments.len() == 1 {
token::get_ident(path.segments
.get(0)
.identifier).get().starts_with("_")
} else {
cx.tcx.sess.span_bug(p.span,
"mutable binding that doesn't consist \
of exactly one segment")
};
if !initial_underscore &&
!cx.tcx.used_mut_nodes.borrow().contains(&p.id) {
cx.span_lint(UnusedMut, p.span,
"variable does not need to be mutable");
}
}
_ => ()
}
}
enum Allocation {
VectorAllocation,
BoxAllocation
}
fn check_unnecessary_allocation(cx: &Context, e: &ast::Expr) {
// Warn if string and vector literals with sigils, or boxing expressions,
// are immediately borrowed.
let allocation = match e.node {
ast::ExprVstore(e2, ast::ExprVstoreUniq) => {
match e2.node {
ast::ExprLit(lit) if ast_util::lit_is_str(lit) => {
VectorAllocation
}
ast::ExprVec(..) => VectorAllocation,
_ => return
}
}
ast::ExprUnary(ast::UnUniq, _) |
ast::ExprUnary(ast::UnBox, _) => BoxAllocation,
_ => return
};
let report = |msg| {
cx.span_lint(UnnecessaryAllocation, e.span, msg);
};
match cx.tcx.adjustments.borrow().find(&e.id) {
Some(adjustment) => {
match *adjustment {
ty::AutoDerefRef(ty::AutoDerefRef { autoref, .. }) => {
match (allocation, autoref) {
(VectorAllocation, Some(ty::AutoBorrowVec(..))) => {
report("unnecessary allocation, the sigil can be \
removed");
}
(BoxAllocation,
Some(ty::AutoPtr(_, ast::MutImmutable))) => {
report("unnecessary allocation, use & instead");
}
(BoxAllocation,
Some(ty::AutoPtr(_, ast::MutMutable))) => {
report("unnecessary allocation, use &mut \
instead");
}
_ => ()
}
}
_ => {}
}
}
_ => ()
}
}
fn check_missing_doc_attrs(cx: &Context,
id: Option<ast::NodeId>,
attrs: &[ast::Attribute],
sp: Span,
desc: &'static str) {
// If we're building a test harness, then warning about
// documentation is probably not really relevant right now.
if cx.tcx.sess.opts.test { return }
// `#[doc(hidden)]` disables missing_doc check.
if cx.is_doc_hidden { return }
// Only check publicly-visible items, using the result from the privacy pass. It's an option so
// the crate root can also use this function (it doesn't have a NodeId).
match id {
Some(ref id) if !cx.exported_items.contains(id) => return,
_ => ()
}
let has_doc = attrs.iter().any(|a| {
match a.node.value.node {
ast::MetaNameValue(ref name, _) if name.equiv(&("doc")) => true,
_ => false
}
});
if !has_doc {
cx.span_lint(MissingDoc, sp,
format!("missing documentation for {}", desc));
}
}
fn check_missing_doc_item(cx: &Context, it: &ast::Item) {
let desc = match it.node {
ast::ItemFn(..) => "a function",
ast::ItemMod(..) => "a module",
ast::ItemEnum(..) => "an enum",
ast::ItemStruct(..) => "a struct",
ast::ItemTrait(..) => "a trait",
_ => return
};
check_missing_doc_attrs(cx,
Some(it.id),
it.attrs.as_slice(),
it.span,
desc);
}
fn check_missing_doc_method(cx: &Context, m: &ast::Method) {
let did = ast::DefId {
krate: ast::LOCAL_CRATE,
node: m.id
};
match cx.tcx.methods.borrow().find_copy(&did) {
None => cx.tcx.sess.span_bug(m.span, "missing method descriptor?!"),
Some(md) => {
match md.container {
// Always check default methods defined on traits.
ty::TraitContainer(..) => {}
// For methods defined on impls, it depends on whether
// it is an implementation for a trait or is a plain
// impl.
ty::ImplContainer(cid) => {
match ty::impl_trait_ref(cx.tcx, cid) {
Some(..) => return, // impl for trait: don't doc
None => {} // plain impl: doc according to privacy
}
}
}
}
}
check_missing_doc_attrs(cx,
Some(m.id),
m.attrs.as_slice(),
m.span,
"a method");
}
fn check_missing_doc_ty_method(cx: &Context, tm: &ast::TypeMethod) {
check_missing_doc_attrs(cx,
Some(tm.id),
tm.attrs.as_slice(),
tm.span,
"a type method");
}
fn check_missing_doc_struct_field(cx: &Context, sf: &ast::StructField) {
match sf.node.kind {
ast::NamedField(_, vis) if vis == ast::Public =>
check_missing_doc_attrs(cx,
Some(cx.cur_struct_def_id),
sf.node.attrs.as_slice(),
sf.span,
"a struct field"),
_ => {}
}
}
fn check_missing_doc_variant(cx: &Context, v: &ast::Variant) {
check_missing_doc_attrs(cx,
Some(v.node.id),
v.node.attrs.as_slice(),
v.span,
"a variant");
}
/// Checks for use of items with #[deprecated], #[experimental] and
/// #[unstable] (or none of them) attributes.
fn check_stability(cx: &Context, e: &ast::Expr) {
let id = match e.node {
ast::ExprPath(..) | ast::ExprStruct(..) => {
match cx.tcx.def_map.borrow().find(&e.id) {
Some(&def) => ast_util::def_id_of_def(def),
None => return
}
}
ast::ExprMethodCall(..) => {
let method_call = typeck::MethodCall::expr(e.id);
match cx.tcx.method_map.borrow().find(&method_call) {
Some(method) => {
match method.origin {
typeck::MethodStatic(def_id) => {
// If this implements a trait method, get def_id
// of the method inside trait definition.
// Otherwise, use the current def_id (which refers
// to the method inside impl).
ty::trait_method_of_method(
cx.tcx, def_id).unwrap_or(def_id)
}
typeck::MethodParam(typeck::MethodParam {
trait_id: trait_id,
method_num: index,
..
})
| typeck::MethodObject(typeck::MethodObject {
trait_id: trait_id,
method_num: index,
..
}) => ty::trait_method(cx.tcx, trait_id, index).def_id
}
}
None => return
}
}
_ => return
};
let stability = if ast_util::is_local(id) {
// this crate
let s = cx.tcx.map.with_attrs(id.node, |attrs| {
attrs.map(|a| {
attr::find_stability(a.iter().map(|a| a.meta()))
})
});
match s {
Some(s) => s,
// no possibility of having attributes
// (e.g. it's a local variable), so just
// ignore it.
None => return
}
} else {
// cross-crate
let mut s = None;
// run through all the attributes and take the first
// stability one.
csearch::get_item_attrs(&cx.tcx.sess.cstore, id, |meta_items| {
if s.is_none() {
s = attr::find_stability(meta_items.move_iter())
}
});
s
};
let (lint, label) = match stability {
// no stability attributes == Unstable
None => (Unstable, "unmarked"),
Some(attr::Stability { level: attr::Unstable, .. }) =>
(Unstable, "unstable"),
Some(attr::Stability { level: attr::Experimental, .. }) =>
(Experimental, "experimental"),
Some(attr::Stability { level: attr::Deprecated, .. }) =>
(Deprecated, "deprecated"),
_ => return
};
let msg = match stability {
Some(attr::Stability { text: Some(ref s), .. }) => {
format!("use of {} item: {}", label, *s)
}
_ => format!("use of {} item", label)
};
cx.span_lint(lint, e.span, msg);
}
impl<'a> Visitor<()> for Context<'a> {
fn visit_item(&mut self, it: &ast::Item, _: ()) {
self.with_lint_attrs(it.attrs.as_slice(), |cx| {
check_item_ctypes(cx, it);
check_item_non_camel_case_types(cx, it);
check_item_non_uppercase_statics(cx, it);
check_heap_item(cx, it);
check_missing_doc_item(cx, it);
check_attrs_usage(cx, it.attrs.as_slice());
check_raw_ptr_deriving(cx, it);
cx.visit_ids(|v| v.visit_item(it, ()));
visit::walk_item(cx, it, ());
})
}
fn visit_foreign_item(&mut self, it: &ast::ForeignItem, _: ()) {
self.with_lint_attrs(it.attrs.as_slice(), |cx| {
check_attrs_usage(cx, it.attrs.as_slice());
visit::walk_foreign_item(cx, it, ());
})
}
fn visit_view_item(&mut self, i: &ast::ViewItem, _: ()) {
self.with_lint_attrs(i.attrs.as_slice(), |cx| {
check_attrs_usage(cx, i.attrs.as_slice());
cx.visit_ids(|v| v.visit_view_item(i, ()));
visit::walk_view_item(cx, i, ());
})
}
fn visit_pat(&mut self, p: &ast::Pat, _: ()) {
check_pat_non_uppercase_statics(self, p);
check_pat_uppercase_variable(self, p);
check_unused_mut_pat(self, p);
visit::walk_pat(self, p, ());
}
fn visit_expr(&mut self, e: &ast::Expr, _: ()) {
match e.node {
ast::ExprUnary(ast::UnNeg, expr) => {
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != e.id {
self.negated_expr_id = expr.id;
}
},
ast::ExprParen(expr) => if self.negated_expr_id == e.id {
self.negated_expr_id = expr.id
},
_ => ()
};
check_while_true_expr(self, e);
check_stability(self, e);
check_unnecessary_parens_expr(self, e);
check_unused_unsafe(self, e);
check_unsafe_block(self, e);
check_unnecessary_allocation(self, e);
check_heap_expr(self, e);
check_type_limits(self, e);
check_unused_casts(self, e);
check_deprecated_owned_vector(self, e);
visit::walk_expr(self, e, ());
}
fn visit_stmt(&mut self, s: &ast::Stmt, _: ()) {
check_path_statement(self, s);
check_unused_result(self, s);
check_unnecessary_parens_stmt(self, s);
visit::walk_stmt(self, s, ());
}
fn visit_fn(&mut self, fk: &visit::FnKind, decl: &ast::FnDecl,
body: &ast::Block, span: Span, id: ast::NodeId, _: ()) {
let recurse = |this: &mut Context| {
visit::walk_fn(this, fk, decl, body, span, id, ());
};
match *fk {
visit::FkMethod(_, _, m) => {
self.with_lint_attrs(m.attrs.as_slice(), |cx| {
check_missing_doc_method(cx, m);
check_attrs_usage(cx, m.attrs.as_slice());
cx.visit_ids(|v| {
v.visit_fn(fk, decl, body, span, id, ());
});
recurse(cx);
})
}
_ => recurse(self),
}
}
fn visit_ty_method(&mut self, t: &ast::TypeMethod, _: ()) {
self.with_lint_attrs(t.attrs.as_slice(), |cx| {
check_missing_doc_ty_method(cx, t);
check_attrs_usage(cx, t.attrs.as_slice());
visit::walk_ty_method(cx, t, ());
})
}
fn visit_struct_def(&mut self,
s: &ast::StructDef,
i: ast::Ident,
g: &ast::Generics,
id: ast::NodeId,
_: ()) {
check_struct_uppercase_variable(self, s);
let old_id = self.cur_struct_def_id;
self.cur_struct_def_id = id;
visit::walk_struct_def(self, s, i, g, id, ());
self.cur_struct_def_id = old_id;
}
fn visit_struct_field(&mut self, s: &ast::StructField, _: ()) {
self.with_lint_attrs(s.node.attrs.as_slice(), |cx| {
check_missing_doc_struct_field(cx, s);
check_attrs_usage(cx, s.node.attrs.as_slice());
visit::walk_struct_field(cx, s, ());
})
}
fn visit_variant(&mut self, v: &ast::Variant, g: &ast::Generics, _: ()) {
self.with_lint_attrs(v.node.attrs.as_slice(), |cx| {
check_missing_doc_variant(cx, v);
check_attrs_usage(cx, v.node.attrs.as_slice());
visit::walk_variant(cx, v, g, ());
})
}
// FIXME(#10894) should continue recursing
fn visit_ty(&mut self, _t: &ast::Ty, _: ()) {}
}
impl<'a> IdVisitingOperation for Context<'a> {
fn visit_id(&self, id: ast::NodeId) {
match self.tcx.sess.lints.borrow_mut().pop(&id) {
None => {}
Some(l) => {
for (lint, span, msg) in l.move_iter() {
self.span_lint(lint, span, msg)
}
}
}
}
}
pub fn check_crate(tcx: &ty::ctxt,
exported_items: &privacy::ExportedItems,
krate: &ast::Crate) {
let mut cx = Context {
dict: get_lint_dict(),
cur: SmallIntMap::new(),
tcx: tcx,
exported_items: exported_items,
cur_struct_def_id: -1,
is_doc_hidden: false,
lint_stack: Vec::new(),
negated_expr_id: -1
};
// Install default lint levels, followed by the command line levels, and
// then actually visit the whole crate.
for (_, spec) in cx.dict.iter() {
if spec.default != allow {
cx.cur.insert(spec.lint as uint, (spec.default, Default));
}
}
for &(lint, level) in tcx.sess.opts.lint_opts.iter() {
cx.set_level(lint, level, CommandLine);
}
cx.with_lint_attrs(krate.attrs.as_slice(), |cx| {
cx.visit_id(ast::CRATE_NODE_ID);
cx.visit_ids(|v| {
v.visited_outermost = true;
visit::walk_crate(v, krate, ());
});
check_crate_attrs_usage(cx, krate.attrs.as_slice());
// since the root module isn't visited as an item (because it isn't an item), warn for it
// here.
check_missing_doc_attrs(cx,
None,
krate.attrs.as_slice(),
krate.span,
"crate");
visit::walk_crate(cx, krate, ());
});
// If we missed any lints added to the session, then there's a bug somewhere
// in the iteration code.
for (id, v) in tcx.sess.lints.borrow().iter() {
for &(lint, span, ref msg) in v.iter() {
tcx.sess.span_bug(span, format!("unprocessed lint {:?} at {}: {}",
lint, tcx.map.node_to_str(*id), *msg))
}
}
tcx.sess.abort_if_errors();
}