4570 lines
169 KiB
Rust
4570 lines
169 KiB
Rust
import driver::session::session;
|
|
import metadata::csearch::{each_path, get_impls_for_mod};
|
|
import metadata::csearch::{get_method_names_if_trait, lookup_defs};
|
|
import metadata::cstore::find_use_stmt_cnum;
|
|
import metadata::decoder::{def_like, dl_def, dl_field, dl_impl};
|
|
import middle::lint::{error, ignore, level, unused_imports, warn};
|
|
import syntax::ast::{_mod, arm, blk, bound_const, bound_copy, bound_trait};
|
|
import syntax::ast::{bound_owned};
|
|
import syntax::ast::{bound_send, capture_clause, class_ctor, class_dtor};
|
|
import syntax::ast::{class_member, class_method, crate, crate_num, decl_item};
|
|
import syntax::ast::{def, def_arg, def_binding, def_class, def_const, def_fn};
|
|
import syntax::ast::{def_foreign_mod, def_id, def_local, def_mod};
|
|
import syntax::ast::{def_prim_ty, def_region, def_self, def_ty, def_ty_param};
|
|
import syntax::ast::{def_upvar, def_use, def_variant, expr, expr_assign_op};
|
|
import syntax::ast::{expr_binary, expr_cast, expr_field, expr_fn};
|
|
import syntax::ast::{expr_fn_block, expr_index, expr_new, expr_path};
|
|
import syntax::ast::{expr_struct, expr_unary, fn_decl, foreign_item};
|
|
import syntax::ast::{foreign_item_fn, ident, trait_ref, impure_fn};
|
|
import syntax::ast::{instance_var, item, item_class, item_const, item_enum};
|
|
import syntax::ast::{item_fn, item_mac, item_foreign_mod, item_impl};
|
|
import syntax::ast::{item_mod, item_trait, item_ty, local, local_crate};
|
|
import syntax::ast::{method, node_id, pat, pat_enum, pat_ident};
|
|
import syntax::ast::{path, prim_ty, pat_box, pat_uniq, pat_lit, pat_range};
|
|
import syntax::ast::{pat_rec, pat_tup, pat_wild, stmt_decl};
|
|
import syntax::ast::{ty, ty_bool, ty_char, ty_f, ty_f32, ty_f64};
|
|
import syntax::ast::{ty_float, ty_i, ty_i16, ty_i32, ty_i64, ty_i8, ty_int};
|
|
import syntax::ast::{ty_param, ty_path, ty_str, ty_u, ty_u16, ty_u32, ty_u64};
|
|
import syntax::ast::{ty_u8, ty_uint, variant, view_item, view_item_export};
|
|
import syntax::ast::{view_item_import, view_item_use, view_path_glob};
|
|
import syntax::ast::{view_path_list, view_path_simple};
|
|
import syntax::ast::{required, provided};
|
|
import syntax::ast_util::{def_id_of_def, dummy_sp, local_def, new_def_hash};
|
|
import syntax::ast_util::{walk_pat};
|
|
import syntax::attr::{attr_metas, contains_name};
|
|
import syntax::print::pprust::path_to_str;
|
|
import syntax::codemap::span;
|
|
import syntax::visit::{default_visitor, fk_method, mk_vt, visit_block};
|
|
import syntax::visit::{visit_crate, visit_expr, visit_expr_opt, visit_fn};
|
|
import syntax::visit::{visit_foreign_item, visit_item, visit_method_helper};
|
|
import syntax::visit::{visit_mod, visit_ty, vt};
|
|
|
|
import box::ptr_eq;
|
|
import dvec::{dvec, extensions};
|
|
import option::get;
|
|
import str::{connect, split_str};
|
|
import vec::pop;
|
|
|
|
import std::list::{cons, list, nil};
|
|
import std::map::{hashmap, int_hash, str_hash};
|
|
import ASTMap = syntax::ast_map::map;
|
|
import str_eq = str::eq;
|
|
|
|
// Definition mapping
|
|
type DefMap = hashmap<node_id,def>;
|
|
|
|
// Implementation resolution
|
|
type MethodInfo = { did: def_id, n_tps: uint, ident: ident };
|
|
type Impl = { did: def_id, ident: ident, methods: ~[@MethodInfo] };
|
|
type ImplScope = @~[@Impl];
|
|
type ImplScopes = @list<ImplScope>;
|
|
type ImplMap = hashmap<node_id,ImplScopes>;
|
|
|
|
// Trait method resolution
|
|
type TraitMap = @hashmap<node_id,@dvec<def_id>>;
|
|
|
|
// Export mapping
|
|
type Export = { reexp: bool, id: def_id };
|
|
type ExportMap = hashmap<node_id, ~[Export]>;
|
|
|
|
enum PatternBindingMode {
|
|
RefutableMode,
|
|
IrrefutableMode
|
|
}
|
|
|
|
enum Namespace {
|
|
ModuleNS,
|
|
TypeNS,
|
|
ValueNS,
|
|
ImplNS
|
|
}
|
|
|
|
enum NamespaceResult {
|
|
UnknownResult,
|
|
UnboundResult,
|
|
BoundResult(@Module, @NameBindings)
|
|
}
|
|
|
|
enum ImplNamespaceResult {
|
|
UnknownImplResult,
|
|
UnboundImplResult,
|
|
BoundImplResult(@dvec<@Target>)
|
|
}
|
|
|
|
enum NameDefinition {
|
|
NoNameDefinition, //< The name was unbound.
|
|
ChildNameDefinition(def), //< The name identifies an immediate child.
|
|
ImportNameDefinition(def) //< The name identifies an import.
|
|
|
|
}
|
|
|
|
enum Mutability {
|
|
Mutable,
|
|
Immutable
|
|
}
|
|
|
|
enum SelfBinding {
|
|
NoSelfBinding,
|
|
HasSelfBinding(node_id)
|
|
}
|
|
|
|
enum CaptureClause {
|
|
NoCaptureClause,
|
|
HasCaptureClause(capture_clause)
|
|
}
|
|
|
|
type ResolveVisitor = vt<()>;
|
|
|
|
enum ModuleDef {
|
|
NoModuleDef, // Does not define a module.
|
|
ModuleDef(@Module), // Defines a module.
|
|
}
|
|
|
|
/// Contains data for specific types of import directives.
|
|
enum ImportDirectiveSubclass {
|
|
SingleImport(Atom /* target */, Atom /* source */),
|
|
GlobImport
|
|
}
|
|
|
|
/// The context that we thread through while building the reduced graph.
|
|
enum ReducedGraphParent {
|
|
ModuleReducedGraphParent(@Module)
|
|
}
|
|
|
|
enum ResolveResult<T> {
|
|
Failed, // Failed to resolve the name.
|
|
Indeterminate, // Couldn't determine due to unresolved globs.
|
|
Success(T) // Successfully resolved the import.
|
|
}
|
|
|
|
enum TypeParameters/& {
|
|
NoTypeParameters, //< No type parameters.
|
|
HasTypeParameters(&~[ty_param], //< Type parameters.
|
|
node_id, //< ID of the enclosing item
|
|
|
|
// The index to start numbering the type parameters at.
|
|
// This is zero if this is the outermost set of type
|
|
// parameters, or equal to the number of outer type
|
|
// parameters. For example, if we have:
|
|
//
|
|
// impl I<T> {
|
|
// fn method<U>() { ... }
|
|
// }
|
|
//
|
|
// The index at the method site will be 1, because the
|
|
// outer T had index 0.
|
|
|
|
uint,
|
|
|
|
// The kind of the rib used for type parameters.
|
|
RibKind)
|
|
}
|
|
|
|
// The rib kind controls the translation of argument or local definitions
|
|
// (`def_arg` or `def_local`) to upvars (`def_upvar`).
|
|
|
|
enum RibKind {
|
|
// No translation needs to be applied.
|
|
NormalRibKind,
|
|
|
|
// We passed through a function scope at the given node ID. Translate
|
|
// upvars as appropriate.
|
|
FunctionRibKind(node_id),
|
|
|
|
// We passed through a function *item* scope. Disallow upvars.
|
|
OpaqueFunctionRibKind
|
|
}
|
|
|
|
// The X-ray flag indicates that a context has the X-ray privilege, which
|
|
// allows it to reference private names. Currently, this is used for the test
|
|
// runner.
|
|
//
|
|
// XXX: The X-ray flag is kind of questionable in the first place. It might
|
|
// be better to introduce an expr_xray_path instead.
|
|
|
|
enum XrayFlag {
|
|
NoXray, //< Private items cannot be accessed.
|
|
Xray //< Private items can be accessed.
|
|
}
|
|
|
|
enum AllowCapturingSelfFlag {
|
|
AllowCapturingSelf, //< The "self" definition can be captured.
|
|
DontAllowCapturingSelf, //< The "self" definition cannot be captured.
|
|
}
|
|
|
|
enum EnumVariantOrConstResolution {
|
|
FoundEnumVariant(def),
|
|
FoundConst,
|
|
EnumVariantOrConstNotFound
|
|
}
|
|
|
|
// FIXME (issue #2550): Should be a class but then it becomes not implicitly
|
|
// copyable due to a kind bug.
|
|
|
|
type Atom = uint;
|
|
|
|
fn Atom(n: uint) -> Atom {
|
|
ret n;
|
|
}
|
|
|
|
class AtomTable {
|
|
let atoms: hashmap<@~str,Atom>;
|
|
let strings: dvec<@~str>;
|
|
let mut atom_count: uint;
|
|
|
|
new() {
|
|
self.atoms = hashmap::<@~str,Atom>(|x| str::hash(*x),
|
|
|x, y| str::eq(*x, *y));
|
|
self.strings = dvec();
|
|
self.atom_count = 0u;
|
|
}
|
|
|
|
fn intern(string: @~str) -> Atom {
|
|
alt self.atoms.find(string) {
|
|
none { /* fall through */ }
|
|
some(atom) { ret atom; }
|
|
}
|
|
|
|
let atom = Atom(self.atom_count);
|
|
self.atom_count += 1u;
|
|
self.atoms.insert(string, atom);
|
|
self.strings.push(string);
|
|
|
|
ret atom;
|
|
}
|
|
|
|
fn atom_to_str(atom: Atom) -> @~str {
|
|
ret self.strings.get_elt(atom);
|
|
}
|
|
|
|
fn atoms_to_strs(atoms: ~[Atom], f: fn(@~str) -> bool) {
|
|
for atoms.each |atom| {
|
|
if !f(self.atom_to_str(atom)) {
|
|
ret;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn atoms_to_str(atoms: ~[Atom]) -> @~str {
|
|
// XXX: str::connect should do this.
|
|
let mut result = ~"";
|
|
let mut first = true;
|
|
for self.atoms_to_strs(atoms) |string| {
|
|
if first {
|
|
first = false;
|
|
} else {
|
|
result += ~"::";
|
|
}
|
|
|
|
result += *string;
|
|
}
|
|
|
|
// XXX: Shouldn't copy here. We need string builder functionality.
|
|
ret @result;
|
|
}
|
|
}
|
|
|
|
/// Creates a hash table of atoms.
|
|
fn atom_hashmap<V:copy>() -> hashmap<Atom,V> {
|
|
ret hashmap::<Atom,V>(|a| a, |a, b| a == b);
|
|
}
|
|
|
|
/**
|
|
* One local scope. In Rust, local scopes can only contain value bindings.
|
|
* Therefore, we don't have to worry about the other namespaces here.
|
|
*/
|
|
class Rib {
|
|
let bindings: hashmap<Atom,def_like>;
|
|
let kind: RibKind;
|
|
|
|
new(kind: RibKind) {
|
|
self.bindings = atom_hashmap();
|
|
self.kind = kind;
|
|
}
|
|
}
|
|
|
|
/// One import directive.
|
|
class ImportDirective {
|
|
let module_path: @dvec<Atom>;
|
|
let subclass: @ImportDirectiveSubclass;
|
|
let span: span;
|
|
|
|
new(module_path: @dvec<Atom>,
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: span) {
|
|
|
|
self.module_path = module_path;
|
|
self.subclass = subclass;
|
|
self.span = span;
|
|
}
|
|
}
|
|
|
|
/// The item that an import resolves to.
|
|
class Target {
|
|
let target_module: @Module;
|
|
let bindings: @NameBindings;
|
|
|
|
new(target_module: @Module, bindings: @NameBindings) {
|
|
self.target_module = target_module;
|
|
self.bindings = bindings;
|
|
}
|
|
}
|
|
|
|
class ImportResolution {
|
|
let span: span;
|
|
|
|
// The number of outstanding references to this name. When this reaches
|
|
// zero, outside modules can count on the targets being correct. Before
|
|
// then, all bets are off; future imports could override this name.
|
|
|
|
let mut outstanding_references: uint;
|
|
|
|
let mut module_target: option<Target>;
|
|
let mut value_target: option<Target>;
|
|
let mut type_target: option<Target>;
|
|
let mut impl_target: @dvec<@Target>;
|
|
|
|
let mut used: bool;
|
|
|
|
new(span: span) {
|
|
self.span = span;
|
|
|
|
self.outstanding_references = 0u;
|
|
|
|
self.module_target = none;
|
|
self.value_target = none;
|
|
self.type_target = none;
|
|
self.impl_target = @dvec();
|
|
|
|
self.used = false;
|
|
}
|
|
|
|
fn target_for_namespace(namespace: Namespace) -> option<Target> {
|
|
alt namespace {
|
|
ModuleNS { ret copy self.module_target; }
|
|
TypeNS { ret copy self.type_target; }
|
|
ValueNS { ret copy self.value_target; }
|
|
|
|
ImplNS {
|
|
if (*self.impl_target).len() > 0u {
|
|
ret some(copy *(*self.impl_target).get_elt(0u));
|
|
}
|
|
ret none;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The link from a module up to its nearest parent node.
|
|
enum ParentLink {
|
|
NoParentLink,
|
|
ModuleParentLink(@Module, Atom),
|
|
BlockParentLink(@Module, node_id)
|
|
}
|
|
|
|
/// One node in the tree of modules.
|
|
class Module {
|
|
let parent_link: ParentLink;
|
|
let mut def_id: option<def_id>;
|
|
|
|
let children: hashmap<Atom,@NameBindings>;
|
|
let imports: dvec<@ImportDirective>;
|
|
|
|
// The anonymous children of this node. Anonymous children are pseudo-
|
|
// modules that are implicitly created around items contained within
|
|
// blocks.
|
|
//
|
|
// For example, if we have this:
|
|
//
|
|
// fn f() {
|
|
// fn g() {
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// There will be an anonymous module created around `g` with the ID of the
|
|
// entry block for `f`.
|
|
|
|
let anonymous_children: hashmap<node_id,@Module>;
|
|
|
|
// XXX: This is about to be reworked so that exports are on individual
|
|
// items, not names.
|
|
//
|
|
// The atom is the name of the exported item, while the node ID is the
|
|
// ID of the export path.
|
|
|
|
let exported_names: hashmap<Atom,node_id>;
|
|
|
|
// The status of resolving each import in this module.
|
|
let import_resolutions: hashmap<Atom,@ImportResolution>;
|
|
|
|
// The number of unresolved globs that this module exports.
|
|
let mut glob_count: uint;
|
|
|
|
// The index of the import we're resolving.
|
|
let mut resolved_import_count: uint;
|
|
|
|
// The list of implementation scopes, rooted from this module.
|
|
let mut impl_scopes: ImplScopes;
|
|
|
|
new(parent_link: ParentLink, def_id: option<def_id>) {
|
|
self.parent_link = parent_link;
|
|
self.def_id = def_id;
|
|
|
|
self.children = atom_hashmap();
|
|
self.imports = dvec();
|
|
|
|
self.anonymous_children = int_hash();
|
|
|
|
self.exported_names = atom_hashmap();
|
|
|
|
self.import_resolutions = atom_hashmap();
|
|
self.glob_count = 0u;
|
|
self.resolved_import_count = 0u;
|
|
|
|
self.impl_scopes = @nil;
|
|
}
|
|
|
|
fn all_imports_resolved() -> bool {
|
|
ret self.imports.len() == self.resolved_import_count;
|
|
}
|
|
}
|
|
|
|
// XXX: This is a workaround due to is_none in the standard library mistakenly
|
|
// requiring a T:copy.
|
|
|
|
pure fn is_none<T>(x: option<T>) -> bool {
|
|
alt x {
|
|
none { ret true; }
|
|
some(_) { ret false; }
|
|
}
|
|
}
|
|
|
|
fn unused_import_lint_level(session: session) -> level {
|
|
for session.opts.lint_opts.each |lint_option_pair| {
|
|
let (lint_type, lint_level) = lint_option_pair;
|
|
if lint_type == unused_imports {
|
|
ret lint_level;
|
|
}
|
|
}
|
|
ret ignore;
|
|
}
|
|
|
|
// Records the definitions (at most one for each namespace) that a name is
|
|
// bound to.
|
|
class NameBindings {
|
|
let mut module_def: ModuleDef; //< Meaning in the module namespace.
|
|
let mut type_def: option<def>; //< Meaning in the type namespace.
|
|
let mut value_def: option<def>; //< Meaning in the value namespace.
|
|
let mut impl_defs: ~[@Impl]; //< Meaning in the impl namespace.
|
|
|
|
new() {
|
|
self.module_def = NoModuleDef;
|
|
self.type_def = none;
|
|
self.value_def = none;
|
|
self.impl_defs = ~[];
|
|
}
|
|
|
|
/// Creates a new module in this set of name bindings.
|
|
fn define_module(parent_link: ParentLink, def_id: option<def_id>) {
|
|
if self.module_def == NoModuleDef {
|
|
let module = @Module(parent_link, def_id);
|
|
self.module_def = ModuleDef(module);
|
|
}
|
|
}
|
|
|
|
/// Records a type definition.
|
|
fn define_type(def: def) {
|
|
self.type_def = some(def);
|
|
}
|
|
|
|
/// Records a value definition.
|
|
fn define_value(def: def) {
|
|
self.value_def = some(def);
|
|
}
|
|
|
|
/// Records an impl definition.
|
|
fn define_impl(implementation: @Impl) {
|
|
self.impl_defs += ~[implementation];
|
|
}
|
|
|
|
/// Returns the module node if applicable.
|
|
fn get_module_if_available() -> option<@Module> {
|
|
alt self.module_def {
|
|
NoModuleDef { ret none; }
|
|
ModuleDef(module) { ret some(module); }
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the module node. Fails if this node does not have a module
|
|
* definition.
|
|
*/
|
|
fn get_module() -> @Module {
|
|
alt self.module_def {
|
|
NoModuleDef {
|
|
fail
|
|
~"get_module called on a node with no module definition!";
|
|
}
|
|
ModuleDef(module) {
|
|
ret module;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn defined_in_namespace(namespace: Namespace) -> bool {
|
|
alt namespace {
|
|
ModuleNS { ret self.module_def != NoModuleDef; }
|
|
TypeNS { ret self.type_def != none; }
|
|
ValueNS { ret self.value_def != none; }
|
|
ImplNS { ret self.impl_defs.len() >= 1u; }
|
|
}
|
|
}
|
|
|
|
fn def_for_namespace(namespace: Namespace) -> option<def> {
|
|
alt namespace {
|
|
TypeNS {
|
|
ret self.type_def;
|
|
}
|
|
ValueNS {
|
|
ret self.value_def;
|
|
}
|
|
ModuleNS {
|
|
alt self.module_def {
|
|
NoModuleDef {
|
|
ret none;
|
|
}
|
|
ModuleDef(module) {
|
|
alt module.def_id {
|
|
none {
|
|
ret none;
|
|
}
|
|
some(def_id) {
|
|
ret some(def_mod(def_id));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ImplNS {
|
|
// Danger: Be careful what you use this for! def_ty is not
|
|
// necessarily the right def.
|
|
|
|
if self.impl_defs.len() == 0u {
|
|
ret none;
|
|
}
|
|
ret some(def_ty(self.impl_defs[0].did));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Interns the names of the primitive types.
|
|
class PrimitiveTypeTable {
|
|
let primitive_types: hashmap<Atom,prim_ty>;
|
|
|
|
new(atom_table: @AtomTable) {
|
|
self.primitive_types = atom_hashmap();
|
|
|
|
self.intern(atom_table, @~"bool", ty_bool);
|
|
self.intern(atom_table, @~"char", ty_int(ty_char));
|
|
self.intern(atom_table, @~"float", ty_float(ty_f));
|
|
self.intern(atom_table, @~"f32", ty_float(ty_f32));
|
|
self.intern(atom_table, @~"f64", ty_float(ty_f64));
|
|
self.intern(atom_table, @~"int", ty_int(ty_i));
|
|
self.intern(atom_table, @~"i8", ty_int(ty_i8));
|
|
self.intern(atom_table, @~"i16", ty_int(ty_i16));
|
|
self.intern(atom_table, @~"i32", ty_int(ty_i32));
|
|
self.intern(atom_table, @~"i64", ty_int(ty_i64));
|
|
self.intern(atom_table, @~"str", ty_str);
|
|
self.intern(atom_table, @~"uint", ty_uint(ty_u));
|
|
self.intern(atom_table, @~"u8", ty_uint(ty_u8));
|
|
self.intern(atom_table, @~"u16", ty_uint(ty_u16));
|
|
self.intern(atom_table, @~"u32", ty_uint(ty_u32));
|
|
self.intern(atom_table, @~"u64", ty_uint(ty_u64));
|
|
}
|
|
|
|
fn intern(atom_table: @AtomTable, string: @~str,
|
|
primitive_type: prim_ty) {
|
|
let atom = (*atom_table).intern(string);
|
|
self.primitive_types.insert(atom, primitive_type);
|
|
}
|
|
}
|
|
|
|
/// The main resolver class.
|
|
class Resolver {
|
|
let session: session;
|
|
let ast_map: ASTMap;
|
|
let crate: @crate;
|
|
|
|
let atom_table: @AtomTable;
|
|
|
|
let graph_root: @NameBindings;
|
|
|
|
let unused_import_lint_level: level;
|
|
|
|
let trait_info: hashmap<def_id,@hashmap<Atom,()>>;
|
|
let structs: hashmap<def_id,()>;
|
|
|
|
// The number of imports that are currently unresolved.
|
|
let mut unresolved_imports: uint;
|
|
|
|
// The module that represents the current item scope.
|
|
let mut current_module: @Module;
|
|
|
|
// The current set of local scopes, for values.
|
|
// XXX: Reuse ribs to avoid allocation.
|
|
|
|
let value_ribs: @dvec<@Rib>;
|
|
|
|
// The current set of local scopes, for types.
|
|
let type_ribs: @dvec<@Rib>;
|
|
|
|
// Whether the current context is an X-ray context. An X-ray context is
|
|
// allowed to access private names of any module.
|
|
let mut xray_context: XrayFlag;
|
|
|
|
// The trait that the current context can refer to.
|
|
let mut current_trait_refs: option<@dvec<def_id>>;
|
|
|
|
// The atom for the keyword "self".
|
|
let self_atom: Atom;
|
|
|
|
// The atoms for the primitive types.
|
|
let primitive_type_table: @PrimitiveTypeTable;
|
|
|
|
// The four namespaces.
|
|
let namespaces: ~[Namespace];
|
|
|
|
let def_map: DefMap;
|
|
let impl_map: ImplMap;
|
|
let export_map: ExportMap;
|
|
let trait_map: TraitMap;
|
|
|
|
new(session: session, ast_map: ASTMap, crate: @crate) {
|
|
self.session = session;
|
|
self.ast_map = ast_map;
|
|
self.crate = crate;
|
|
|
|
self.atom_table = @AtomTable();
|
|
|
|
// The outermost module has def ID 0; this is not reflected in the
|
|
// AST.
|
|
|
|
self.graph_root = @NameBindings();
|
|
(*self.graph_root).define_module(NoParentLink,
|
|
some({ crate: 0, node: 0 }));
|
|
|
|
self.unused_import_lint_level = unused_import_lint_level(session);
|
|
|
|
self.trait_info = new_def_hash();
|
|
self.structs = new_def_hash();
|
|
|
|
self.unresolved_imports = 0u;
|
|
|
|
self.current_module = (*self.graph_root).get_module();
|
|
self.value_ribs = @dvec();
|
|
self.type_ribs = @dvec();
|
|
|
|
self.xray_context = NoXray;
|
|
self.current_trait_refs = none;
|
|
|
|
self.self_atom = (*self.atom_table).intern(@~"self");
|
|
self.primitive_type_table = @PrimitiveTypeTable(self.atom_table);
|
|
|
|
self.namespaces = ~[ ModuleNS, TypeNS, ValueNS, ImplNS ];
|
|
|
|
self.def_map = int_hash();
|
|
self.impl_map = int_hash();
|
|
self.export_map = int_hash();
|
|
self.trait_map = @int_hash();
|
|
}
|
|
|
|
/// The main name resolution procedure.
|
|
fn resolve(this: @Resolver) {
|
|
self.build_reduced_graph(this);
|
|
self.session.abort_if_errors();
|
|
|
|
self.resolve_imports();
|
|
self.session.abort_if_errors();
|
|
|
|
self.record_exports();
|
|
self.session.abort_if_errors();
|
|
|
|
self.build_impl_scopes();
|
|
self.session.abort_if_errors();
|
|
|
|
self.resolve_crate();
|
|
self.session.abort_if_errors();
|
|
|
|
self.check_for_unused_imports_if_necessary();
|
|
}
|
|
|
|
//
|
|
// Reduced graph building
|
|
//
|
|
// Here we build the "reduced graph": the graph of the module tree without
|
|
// any imports resolved.
|
|
//
|
|
|
|
/// Constructs the reduced graph for the entire crate.
|
|
fn build_reduced_graph(this: @Resolver) {
|
|
let initial_parent =
|
|
ModuleReducedGraphParent((*self.graph_root).get_module());
|
|
visit_crate(*self.crate, initial_parent, mk_vt(@{
|
|
visit_item: |item, context, visitor|
|
|
(*this).build_reduced_graph_for_item(item, context, visitor),
|
|
|
|
visit_foreign_item: |foreign_item, context, visitor|
|
|
(*this).build_reduced_graph_for_foreign_item(foreign_item,
|
|
context,
|
|
visitor),
|
|
|
|
visit_view_item: |view_item, context, visitor|
|
|
(*this).build_reduced_graph_for_view_item(view_item,
|
|
context,
|
|
visitor),
|
|
|
|
visit_block: |block, context, visitor|
|
|
(*this).build_reduced_graph_for_block(block,
|
|
context,
|
|
visitor)
|
|
|
|
with *default_visitor()
|
|
}));
|
|
}
|
|
|
|
/// Returns the current module tracked by the reduced graph parent.
|
|
fn get_module_from_parent(reduced_graph_parent: ReducedGraphParent)
|
|
-> @Module {
|
|
alt reduced_graph_parent {
|
|
ModuleReducedGraphParent(module) {
|
|
ret module;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Adds a new child item to the module definition of the parent node and
|
|
* returns its corresponding name bindings as well as the current parent.
|
|
* Or, if we're inside a block, creates (or reuses) an anonymous module
|
|
* corresponding to the innermost block ID and returns the name bindings
|
|
* as well as the newly-created parent.
|
|
*
|
|
* If this node does not have a module definition and we are not inside
|
|
* a block, fails.
|
|
*/
|
|
fn add_child(name: Atom,
|
|
reduced_graph_parent: ReducedGraphParent)
|
|
-> (@NameBindings, ReducedGraphParent) {
|
|
|
|
// If this is the immediate descendant of a module, then we add the
|
|
// child name directly. Otherwise, we create or reuse an anonymous
|
|
// module and add the child to that.
|
|
|
|
let mut module;
|
|
alt reduced_graph_parent {
|
|
ModuleReducedGraphParent(parent_module) {
|
|
module = parent_module;
|
|
}
|
|
}
|
|
|
|
// Add or reuse the child.
|
|
let new_parent = ModuleReducedGraphParent(module);
|
|
alt module.children.find(name) {
|
|
none {
|
|
let child = @NameBindings();
|
|
module.children.insert(name, child);
|
|
ret (child, new_parent);
|
|
}
|
|
some(child) {
|
|
ret (child, new_parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn block_needs_anonymous_module(block: blk) -> bool {
|
|
// If the block has view items, we need an anonymous module.
|
|
if block.node.view_items.len() > 0u {
|
|
ret true;
|
|
}
|
|
|
|
// Check each statement.
|
|
for block.node.stmts.each |statement| {
|
|
alt statement.node {
|
|
stmt_decl(declaration, _) {
|
|
alt declaration.node {
|
|
decl_item(_) {
|
|
ret true;
|
|
}
|
|
_ {
|
|
// Keep searching.
|
|
}
|
|
}
|
|
}
|
|
_ {
|
|
// Keep searching.
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we found neither view items nor items, we don't need to create
|
|
// an anonymous module.
|
|
|
|
ret false;
|
|
}
|
|
|
|
fn get_parent_link(parent: ReducedGraphParent, name: Atom) -> ParentLink {
|
|
alt parent {
|
|
ModuleReducedGraphParent(module) {
|
|
ret ModuleParentLink(module, name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one item.
|
|
fn build_reduced_graph_for_item(item: @item,
|
|
parent: ReducedGraphParent,
|
|
&&visitor: vt<ReducedGraphParent>) {
|
|
|
|
let atom = (*self.atom_table).intern(item.ident);
|
|
let (name_bindings, new_parent) = self.add_child(atom, parent);
|
|
|
|
alt item.node {
|
|
item_mod(module) {
|
|
let parent_link = self.get_parent_link(new_parent, atom);
|
|
let def_id = { crate: 0, node: item.id };
|
|
(*name_bindings).define_module(parent_link, some(def_id));
|
|
|
|
let new_parent =
|
|
ModuleReducedGraphParent((*name_bindings).get_module());
|
|
|
|
visit_mod(module, item.span, item.id, new_parent, visitor);
|
|
}
|
|
item_foreign_mod(foreign_module) {
|
|
let parent_link = self.get_parent_link(new_parent, atom);
|
|
let def_id = { crate: 0, node: item.id };
|
|
(*name_bindings).define_module(parent_link, some(def_id));
|
|
|
|
let new_parent =
|
|
ModuleReducedGraphParent((*name_bindings).get_module());
|
|
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
// These items live in the value namespace.
|
|
item_const(*) {
|
|
(*name_bindings).define_value(def_const(local_def(item.id)));
|
|
}
|
|
item_fn(decl, _, _) {
|
|
let def = def_fn(local_def(item.id), decl.purity);
|
|
(*name_bindings).define_value(def);
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
// These items live in the type namespace.
|
|
item_ty(*) {
|
|
(*name_bindings).define_type(def_ty(local_def(item.id)));
|
|
}
|
|
|
|
// These items live in both the type and value namespaces.
|
|
item_enum(variants, _) {
|
|
(*name_bindings).define_type(def_ty(local_def(item.id)));
|
|
|
|
for variants.each |variant| {
|
|
self.build_reduced_graph_for_variant(variant,
|
|
local_def(item.id),
|
|
new_parent,
|
|
visitor);
|
|
}
|
|
}
|
|
item_class(_, _, class_members, optional_ctor, _) {
|
|
(*name_bindings).define_type(def_ty(local_def(item.id)));
|
|
|
|
alt optional_ctor {
|
|
none => {
|
|
// Nothing to do.
|
|
}
|
|
some(ctor) => {
|
|
let purity = ctor.node.dec.purity;
|
|
let ctor_def = def_fn(local_def(ctor.node.id),
|
|
purity);
|
|
(*name_bindings).define_value(ctor_def);
|
|
}
|
|
}
|
|
|
|
// Create the set of implementation information that the
|
|
// implementation scopes (ImplScopes) need and write it into
|
|
// the implementation definition list for this set of name
|
|
// bindings.
|
|
|
|
let mut method_infos = ~[];
|
|
for class_members.each |class_member| {
|
|
alt class_member.node {
|
|
class_method(method) {
|
|
// XXX: Combine with impl method code below.
|
|
method_infos += ~[
|
|
@{
|
|
did: local_def(method.id),
|
|
n_tps: method.tps.len(),
|
|
ident: method.ident
|
|
}
|
|
];
|
|
}
|
|
instance_var(*) {
|
|
// Don't need to do anything with this.
|
|
}
|
|
}
|
|
}
|
|
|
|
let impl_info = @{
|
|
did: local_def(item.id),
|
|
ident: /* XXX: bad */ copy item.ident,
|
|
methods: method_infos
|
|
};
|
|
|
|
(*name_bindings).define_impl(impl_info);
|
|
|
|
// Record the def ID of this struct.
|
|
self.structs.insert(local_def(item.id), ());
|
|
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
item_impl(_, _, _, methods) {
|
|
// Create the set of implementation information that the
|
|
// implementation scopes (ImplScopes) need and write it into
|
|
// the implementation definition list for this set of name
|
|
// bindings.
|
|
|
|
let mut method_infos = ~[];
|
|
for methods.each |method| {
|
|
method_infos += ~[
|
|
@{
|
|
did: local_def(method.id),
|
|
n_tps: method.tps.len(),
|
|
ident: method.ident
|
|
}
|
|
];
|
|
}
|
|
|
|
let impl_info = @{
|
|
did: local_def(item.id),
|
|
ident: /* XXX: bad */ copy item.ident,
|
|
methods: method_infos
|
|
};
|
|
|
|
(*name_bindings).define_impl(impl_info);
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
item_trait(_, methods) {
|
|
// Add the names of all the methods to the trait info.
|
|
let method_names = @atom_hashmap();
|
|
for methods.each |method| {
|
|
let atom;
|
|
alt method {
|
|
required(required_method) {
|
|
atom = (*self.atom_table).intern
|
|
(required_method.ident);
|
|
}
|
|
provided(provided_method) {
|
|
atom = (*self.atom_table).intern
|
|
(provided_method.ident);
|
|
}
|
|
}
|
|
(*method_names).insert(atom, ());
|
|
}
|
|
|
|
let def_id = local_def(item.id);
|
|
self.trait_info.insert(def_id, method_names);
|
|
|
|
(*name_bindings).define_type(def_ty(def_id));
|
|
visit_item(item, new_parent, visitor);
|
|
}
|
|
|
|
item_mac(*) {
|
|
fail ~"item macros unimplemented"
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs the reduced graph for one variant. Variants exist in the
|
|
* type namespace.
|
|
*/
|
|
fn build_reduced_graph_for_variant(variant: variant,
|
|
item_id: def_id,
|
|
parent: ReducedGraphParent,
|
|
&&_visitor: vt<ReducedGraphParent>) {
|
|
|
|
let atom = (*self.atom_table).intern(variant.node.name);
|
|
let (child, _) = self.add_child(atom, parent);
|
|
|
|
(*child).define_value(def_variant(item_id,
|
|
local_def(variant.node.id)));
|
|
}
|
|
|
|
/**
|
|
* Constructs the reduced graph for one 'view item'. View items consist
|
|
* of imports and use directives.
|
|
*/
|
|
fn build_reduced_graph_for_view_item(view_item: @view_item,
|
|
parent: ReducedGraphParent,
|
|
&&_visitor: vt<ReducedGraphParent>) {
|
|
alt view_item.node {
|
|
view_item_import(view_paths) {
|
|
for view_paths.each |view_path| {
|
|
// Extract and intern the module part of the path. For
|
|
// globs and lists, the path is found directly in the AST;
|
|
// for simple paths we have to munge the path a little.
|
|
|
|
let module_path = @dvec();
|
|
alt view_path.node {
|
|
view_path_simple(_, full_path, _) {
|
|
let path_len = full_path.idents.len();
|
|
assert path_len != 0u;
|
|
|
|
for full_path.idents.eachi |i, ident| {
|
|
if i != path_len - 1u {
|
|
let atom =
|
|
(*self.atom_table).intern(ident);
|
|
(*module_path).push(atom);
|
|
}
|
|
}
|
|
}
|
|
|
|
view_path_glob(module_ident_path, _) |
|
|
view_path_list(module_ident_path, _, _) {
|
|
for module_ident_path.idents.each |ident| {
|
|
let atom = (*self.atom_table).intern(ident);
|
|
(*module_path).push(atom);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Build up the import directives.
|
|
let module = self.get_module_from_parent(parent);
|
|
alt view_path.node {
|
|
view_path_simple(binding, full_path, _) {
|
|
let target_atom =
|
|
(*self.atom_table).intern(binding);
|
|
let source_ident = full_path.idents.last();
|
|
let source_atom =
|
|
(*self.atom_table).intern(source_ident);
|
|
let subclass = @SingleImport(target_atom,
|
|
source_atom);
|
|
self.build_import_directive(module,
|
|
module_path,
|
|
subclass,
|
|
view_path.span);
|
|
}
|
|
view_path_list(_, source_idents, _) {
|
|
for source_idents.each |source_ident| {
|
|
let name = source_ident.node.name;
|
|
let atom = (*self.atom_table).intern(name);
|
|
let subclass = @SingleImport(atom, atom);
|
|
self.build_import_directive(module,
|
|
module_path,
|
|
subclass,
|
|
view_path.span);
|
|
}
|
|
}
|
|
view_path_glob(_, _) {
|
|
self.build_import_directive(module,
|
|
module_path,
|
|
@GlobImport,
|
|
view_path.span);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
view_item_export(view_paths) {
|
|
let module = self.get_module_from_parent(parent);
|
|
for view_paths.each |view_path| {
|
|
alt view_path.node {
|
|
view_path_simple(ident, full_path, ident_id) {
|
|
let last_ident = full_path.idents.last();
|
|
if last_ident != ident {
|
|
self.session.span_err(view_item.span,
|
|
~"cannot export under \
|
|
a new name");
|
|
}
|
|
if full_path.idents.len() != 1u {
|
|
self.session.span_err(
|
|
view_item.span,
|
|
~"cannot export an item \
|
|
that is not in this \
|
|
module");
|
|
}
|
|
|
|
let atom = (*self.atom_table).intern(ident);
|
|
module.exported_names.insert(atom, ident_id);
|
|
}
|
|
|
|
view_path_glob(*) {
|
|
self.session.span_err(view_item.span,
|
|
~"export globs are \
|
|
unsupported");
|
|
}
|
|
|
|
view_path_list(path, path_list_idents, _) {
|
|
if path.idents.len() == 1u &&
|
|
path_list_idents.len() == 0u {
|
|
|
|
self.session.span_warn(view_item.span,
|
|
~"this syntax for \
|
|
exporting no \
|
|
variants is \
|
|
unsupported; export \
|
|
variants \
|
|
individually");
|
|
} else {
|
|
if path.idents.len() != 0u {
|
|
self.session.span_err(view_item.span,
|
|
~"cannot export an \
|
|
item that is not \
|
|
in this module");
|
|
}
|
|
|
|
for path_list_idents.each |path_list_ident| {
|
|
let atom = (*self.atom_table).intern
|
|
(path_list_ident.node.name);
|
|
let id = path_list_ident.node.id;
|
|
module.exported_names.insert(atom, id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
view_item_use(name, _, node_id) {
|
|
alt find_use_stmt_cnum(self.session.cstore, node_id) {
|
|
some(crate_id) {
|
|
let atom = (*self.atom_table).intern(name);
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(atom, parent);
|
|
|
|
let def_id = { crate: crate_id, node: 0 };
|
|
let parent_link = ModuleParentLink
|
|
(self.get_module_from_parent(new_parent), atom);
|
|
|
|
(*child_name_bindings).define_module(parent_link,
|
|
some(def_id));
|
|
self.build_reduced_graph_for_external_crate
|
|
((*child_name_bindings).get_module());
|
|
}
|
|
none {
|
|
/* Ignore. */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Constructs the reduced graph for one foreign item.
|
|
fn build_reduced_graph_for_foreign_item(foreign_item: @foreign_item,
|
|
parent: ReducedGraphParent,
|
|
&&visitor:
|
|
vt<ReducedGraphParent>) {
|
|
|
|
let name = (*self.atom_table).intern(foreign_item.ident);
|
|
let (name_bindings, new_parent) = self.add_child(name, parent);
|
|
|
|
alt foreign_item.node {
|
|
foreign_item_fn(fn_decl, type_parameters) {
|
|
let def = def_fn(local_def(foreign_item.id), fn_decl.purity);
|
|
(*name_bindings).define_value(def);
|
|
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters,
|
|
foreign_item.id,
|
|
0u,
|
|
NormalRibKind)) || {
|
|
|
|
visit_foreign_item(foreign_item, new_parent, visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
fn build_reduced_graph_for_block(block: blk,
|
|
parent: ReducedGraphParent,
|
|
&&visitor: vt<ReducedGraphParent>) {
|
|
|
|
let mut new_parent;
|
|
if self.block_needs_anonymous_module(block) {
|
|
let block_id = block.node.id;
|
|
|
|
#debug("(building reduced graph for block) creating a new \
|
|
anonymous module for block %d",
|
|
block_id);
|
|
|
|
let parent_module = self.get_module_from_parent(parent);
|
|
let new_module = @Module(BlockParentLink(parent_module, block_id),
|
|
none);
|
|
parent_module.anonymous_children.insert(block_id, new_module);
|
|
new_parent = ModuleReducedGraphParent(new_module);
|
|
} else {
|
|
new_parent = parent;
|
|
}
|
|
|
|
visit_block(block, new_parent, visitor);
|
|
}
|
|
|
|
/**
|
|
* Builds the reduced graph rooted at the 'use' directive for an external
|
|
* crate.
|
|
*/
|
|
fn build_reduced_graph_for_external_crate(root: @Module) {
|
|
let modules = new_def_hash();
|
|
|
|
// Create all the items reachable by paths.
|
|
for each_path(self.session.cstore, get(root.def_id).crate)
|
|
|path_entry| {
|
|
|
|
#debug("(building reduced graph for external crate) found path \
|
|
entry: %s (%?)",
|
|
path_entry.path_string,
|
|
path_entry.def_like);
|
|
|
|
let mut pieces = split_str(path_entry.path_string, ~"::");
|
|
let final_ident = pop(pieces);
|
|
|
|
// Find the module we need, creating modules along the way if we
|
|
// need to.
|
|
|
|
let mut current_module = root;
|
|
for pieces.each |ident| {
|
|
// Create or reuse a graph node for the child.
|
|
let atom = (*self.atom_table).intern(@copy ident);
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(atom,
|
|
ModuleReducedGraphParent(current_module));
|
|
|
|
// Define or reuse the module node.
|
|
alt child_name_bindings.module_def {
|
|
NoModuleDef {
|
|
#debug("(building reduced graph for external crate) \
|
|
autovivifying %s", ident);
|
|
let parent_link = self.get_parent_link(new_parent,
|
|
atom);
|
|
(*child_name_bindings).define_module(parent_link,
|
|
none);
|
|
}
|
|
ModuleDef(_) { /* Fall through. */ }
|
|
}
|
|
|
|
current_module = (*child_name_bindings).get_module();
|
|
}
|
|
|
|
// Add the new child item.
|
|
let atom = (*self.atom_table).intern(@copy final_ident);
|
|
let (child_name_bindings, new_parent) =
|
|
self.add_child(atom,
|
|
ModuleReducedGraphParent(current_module));
|
|
|
|
alt path_entry.def_like {
|
|
dl_def(def) {
|
|
alt def {
|
|
def_mod(def_id) | def_foreign_mod(def_id) {
|
|
alt copy child_name_bindings.module_def {
|
|
NoModuleDef {
|
|
#debug("(building reduced graph for \
|
|
external crate) building module \
|
|
%s", final_ident);
|
|
let parent_link =
|
|
self.get_parent_link(new_parent,
|
|
atom);
|
|
|
|
alt modules.find(def_id) {
|
|
none {
|
|
(*child_name_bindings).
|
|
define_module(parent_link,
|
|
some(def_id));
|
|
modules.insert(def_id,
|
|
(*child_name_bindings).
|
|
get_module());
|
|
}
|
|
some(existing_module) {
|
|
// Create an import resolution to
|
|
// avoid creating cycles in the
|
|
// module graph.
|
|
|
|
let resolution =
|
|
@ImportResolution(dummy_sp());
|
|
resolution.
|
|
outstanding_references = 0;
|
|
|
|
alt existing_module.parent_link {
|
|
NoParentLink |
|
|
BlockParentLink(*) {
|
|
fail ~"can't happen";
|
|
}
|
|
ModuleParentLink
|
|
(parent_module,
|
|
atom) {
|
|
|
|
let name_bindings =
|
|
parent_module.
|
|
children.get
|
|
(atom);
|
|
|
|
resolution.module_target =
|
|
some(Target
|
|
(parent_module,
|
|
name_bindings));
|
|
}
|
|
}
|
|
|
|
#debug("(building reduced graph \
|
|
for external crate) \
|
|
... creating import \
|
|
resolution");
|
|
|
|
new_parent.import_resolutions.
|
|
insert(atom, resolution);
|
|
}
|
|
}
|
|
}
|
|
ModuleDef(module) {
|
|
#debug("(building reduced graph for \
|
|
external crate) already created \
|
|
module");
|
|
module.def_id = some(def_id);
|
|
modules.insert(def_id, module);
|
|
}
|
|
}
|
|
}
|
|
def_fn(def_id, _) | def_const(def_id) |
|
|
def_variant(_, def_id) {
|
|
#debug("(building reduced graph for external \
|
|
crate) building value %s", final_ident);
|
|
(*child_name_bindings).define_value(def);
|
|
}
|
|
def_ty(def_id) {
|
|
#debug("(building reduced graph for external \
|
|
crate) building type %s", final_ident);
|
|
|
|
// If this is a trait, add all the method names
|
|
// to the trait info.
|
|
|
|
alt get_method_names_if_trait(self.session.cstore,
|
|
def_id) {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(method_names) {
|
|
let interned_method_names =
|
|
@atom_hashmap();
|
|
for method_names.each |method_name| {
|
|
#debug("(building reduced graph for \
|
|
external crate) ... adding \
|
|
trait method '%?'",
|
|
method_name);
|
|
let atom =
|
|
(*self.atom_table).intern
|
|
(method_name);
|
|
(*interned_method_names).insert(atom,
|
|
());
|
|
}
|
|
self.trait_info.insert
|
|
(def_id, interned_method_names);
|
|
}
|
|
}
|
|
|
|
(*child_name_bindings).define_type(def);
|
|
}
|
|
def_class(def_id) {
|
|
#debug("(building reduced graph for external \
|
|
crate) building value and type %s",
|
|
final_ident);
|
|
(*child_name_bindings).define_value(def);
|
|
(*child_name_bindings).define_type(def);
|
|
}
|
|
def_self(*) | def_arg(*) | def_local(*) |
|
|
def_prim_ty(*) | def_ty_param(*) | def_binding(*) |
|
|
def_use(*) | def_upvar(*) | def_region(*) {
|
|
fail #fmt("didn't expect `%?`", def);
|
|
}
|
|
}
|
|
}
|
|
dl_impl(_) {
|
|
// Because of the infelicitous way the metadata is
|
|
// written, we can't process this impl now. We'll get it
|
|
// later.
|
|
|
|
#debug("(building reduced graph for external crate) \
|
|
ignoring impl %s", final_ident);
|
|
}
|
|
dl_field {
|
|
#debug("(building reduced graph for external crate) \
|
|
ignoring field %s", final_ident);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create nodes for all the impls.
|
|
self.build_reduced_graph_for_impls_in_external_module_subtree(root);
|
|
}
|
|
|
|
fn build_reduced_graph_for_impls_in_external_module_subtree(module:
|
|
@Module) {
|
|
self.build_reduced_graph_for_impls_in_external_module(module);
|
|
|
|
for module.children.each |_name, child_node| {
|
|
alt (*child_node).get_module_if_available() {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(child_module) {
|
|
self.
|
|
build_reduced_graph_for_impls_in_external_module_subtree
|
|
(child_module);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn build_reduced_graph_for_impls_in_external_module(module: @Module) {
|
|
// XXX: This is really unfortunate. decoder::each_path can produce
|
|
// false positives, since, in the crate metadata, a trait named 'bar'
|
|
// in module 'foo' defining a method named 'baz' will result in the
|
|
// creation of a (bogus) path entry named 'foo::bar::baz', and we will
|
|
// create a module node for "bar". We can identify these fake modules
|
|
// by the fact that they have no def ID, which we do here in order to
|
|
// skip them.
|
|
|
|
#debug("(building reduced graph for impls in external crate) looking \
|
|
for impls in `%s` (%?)",
|
|
self.module_to_str(module),
|
|
copy module.def_id);
|
|
|
|
alt module.def_id {
|
|
none {
|
|
#debug("(building reduced graph for impls in external \
|
|
module) no def ID for `%s`, skipping",
|
|
self.module_to_str(module));
|
|
ret;
|
|
}
|
|
some(_) {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
let impls_in_module = get_impls_for_mod(self.session.cstore,
|
|
get(module.def_id),
|
|
none);
|
|
|
|
// Intern def IDs to prevent duplicates.
|
|
let def_ids = new_def_hash();
|
|
|
|
for (*impls_in_module).each |implementation| {
|
|
if def_ids.contains_key(implementation.did) {
|
|
again;
|
|
}
|
|
def_ids.insert(implementation.did, ());
|
|
|
|
#debug("(building reduced graph for impls in external module) \
|
|
added impl `%s` (%?) to `%s`",
|
|
*implementation.ident,
|
|
implementation.did,
|
|
self.module_to_str(module));
|
|
|
|
let name = (*self.atom_table).intern(implementation.ident);
|
|
|
|
let (name_bindings, _) =
|
|
self.add_child(name, ModuleReducedGraphParent(module));
|
|
|
|
name_bindings.impl_defs += ~[implementation];
|
|
}
|
|
}
|
|
|
|
/// Creates and adds an import directive to the given module.
|
|
fn build_import_directive(module: @Module,
|
|
module_path: @dvec<Atom>,
|
|
subclass: @ImportDirectiveSubclass,
|
|
span: span) {
|
|
|
|
let directive = @ImportDirective(module_path, subclass, span);
|
|
module.imports.push(directive);
|
|
|
|
// Bump the reference count on the name. Or, if this is a glob, set
|
|
// the appropriate flag.
|
|
|
|
alt *subclass {
|
|
SingleImport(target, _) {
|
|
alt module.import_resolutions.find(target) {
|
|
some(resolution) {
|
|
resolution.outstanding_references += 1u;
|
|
}
|
|
none {
|
|
let resolution = @ImportResolution(span);
|
|
resolution.outstanding_references = 1u;
|
|
module.import_resolutions.insert(target, resolution);
|
|
}
|
|
}
|
|
}
|
|
GlobImport {
|
|
// Set the glob flag. This tells us that we don't know the
|
|
// module's exports ahead of time.
|
|
|
|
module.glob_count += 1u;
|
|
}
|
|
}
|
|
|
|
self.unresolved_imports += 1u;
|
|
}
|
|
|
|
// Import resolution
|
|
//
|
|
// This is a fixed-point algorithm. We resolve imports until our efforts
|
|
// are stymied by an unresolved import; then we bail out of the current
|
|
// module and continue. We terminate successfully once no more imports
|
|
// remain or unsuccessfully when no forward progress in resolving imports
|
|
// is made.
|
|
|
|
/**
|
|
* Resolves all imports for the crate. This method performs the fixed-
|
|
* point iteration.
|
|
*/
|
|
fn resolve_imports() {
|
|
let mut i = 0u;
|
|
let mut prev_unresolved_imports = 0u;
|
|
loop {
|
|
#debug("(resolving imports) iteration %u, %u imports left",
|
|
i, self.unresolved_imports);
|
|
|
|
let module_root = (*self.graph_root).get_module();
|
|
self.resolve_imports_for_module_subtree(module_root);
|
|
|
|
if self.unresolved_imports == 0u {
|
|
#debug("(resolving imports) success");
|
|
break;
|
|
}
|
|
|
|
if self.unresolved_imports == prev_unresolved_imports {
|
|
self.session.err(~"failed to resolve imports");
|
|
self.report_unresolved_imports(module_root);
|
|
break;
|
|
}
|
|
|
|
i += 1u;
|
|
prev_unresolved_imports = self.unresolved_imports;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve imports for the given module and all of its
|
|
* submodules.
|
|
*/
|
|
fn resolve_imports_for_module_subtree(module: @Module) {
|
|
#debug("(resolving imports for module subtree) resolving %s",
|
|
self.module_to_str(module));
|
|
self.resolve_imports_for_module(module);
|
|
|
|
for module.children.each |_name, child_node| {
|
|
alt (*child_node).get_module_if_available() {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(child_module) {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module.anonymous_children.each |_block_id, child_module| {
|
|
self.resolve_imports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
/// Attempts to resolve imports for the given module only.
|
|
fn resolve_imports_for_module(module: @Module) {
|
|
if (*module).all_imports_resolved() {
|
|
#debug("(resolving imports for module) all imports resolved for \
|
|
%s",
|
|
self.module_to_str(module));
|
|
ret;
|
|
}
|
|
|
|
let import_count = module.imports.len();
|
|
while module.resolved_import_count < import_count {
|
|
let import_index = module.resolved_import_count;
|
|
let import_directive = module.imports.get_elt(import_index);
|
|
alt self.resolve_import_for_module(module, import_directive) {
|
|
Failed {
|
|
// We presumably emitted an error. Continue.
|
|
self.session.span_err(import_directive.span,
|
|
~"failed to resolve import");
|
|
}
|
|
Indeterminate {
|
|
// Bail out. We'll come around next time.
|
|
break;
|
|
}
|
|
Success(()) {
|
|
// Good. Continue.
|
|
}
|
|
}
|
|
|
|
module.resolved_import_count += 1u;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve the given import. The return value indicates
|
|
* failure if we're certain the name does not exist, indeterminate if we
|
|
* don't know whether the name exists at the moment due to other
|
|
* currently-unresolved imports, or success if we know the name exists.
|
|
* If successful, the resolved bindings are written into the module.
|
|
*/
|
|
fn resolve_import_for_module(module: @Module,
|
|
import_directive: @ImportDirective)
|
|
-> ResolveResult<()> {
|
|
|
|
let mut resolution_result;
|
|
let module_path = import_directive.module_path;
|
|
|
|
#debug("(resolving import for module) resolving import `%s::...` in \
|
|
`%s`",
|
|
*(*self.atom_table).atoms_to_str((*module_path).get()),
|
|
self.module_to_str(module));
|
|
|
|
// One-level renaming imports of the form `import foo = bar;` are
|
|
// handled specially.
|
|
|
|
if (*module_path).len() == 0u {
|
|
resolution_result =
|
|
self.resolve_one_level_renaming_import(module,
|
|
import_directive);
|
|
} else {
|
|
// First, resolve the module path for the directive, if necessary.
|
|
alt self.resolve_module_path_for_import(module,
|
|
module_path,
|
|
NoXray,
|
|
import_directive.span) {
|
|
|
|
Failed {
|
|
resolution_result = Failed;
|
|
}
|
|
Indeterminate {
|
|
resolution_result = Indeterminate;
|
|
}
|
|
Success(containing_module) {
|
|
// We found the module that the target is contained
|
|
// within. Attempt to resolve the import within it.
|
|
|
|
alt *import_directive.subclass {
|
|
SingleImport(target, source) {
|
|
resolution_result =
|
|
self.resolve_single_import(module,
|
|
containing_module,
|
|
target,
|
|
source);
|
|
}
|
|
GlobImport {
|
|
let span = import_directive.span;
|
|
resolution_result =
|
|
self.resolve_glob_import(module,
|
|
containing_module,
|
|
span);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved imports.
|
|
alt resolution_result {
|
|
Success(()) {
|
|
assert self.unresolved_imports >= 1u;
|
|
self.unresolved_imports -= 1u;
|
|
}
|
|
_ {
|
|
// Nothing to do here; just return the error.
|
|
}
|
|
}
|
|
|
|
// Decrement the count of unresolved globs if necessary. But only if
|
|
// the resolution result is indeterminate -- otherwise we'll stop
|
|
// processing imports here. (See the loop in
|
|
// resolve_imports_for_module.)
|
|
|
|
if resolution_result != Indeterminate {
|
|
alt *import_directive.subclass {
|
|
GlobImport {
|
|
assert module.glob_count >= 1u;
|
|
module.glob_count -= 1u;
|
|
}
|
|
SingleImport(*) {
|
|
// Ignore.
|
|
}
|
|
}
|
|
}
|
|
|
|
ret resolution_result;
|
|
}
|
|
|
|
fn resolve_single_import(module: @Module, containing_module: @Module,
|
|
target: Atom, source: Atom)
|
|
-> ResolveResult<()> {
|
|
|
|
#debug("(resolving single import) resolving `%s` = `%s::%s` from \
|
|
`%s`",
|
|
*(*self.atom_table).atom_to_str(target),
|
|
self.module_to_str(containing_module),
|
|
*(*self.atom_table).atom_to_str(source),
|
|
self.module_to_str(module));
|
|
|
|
if !self.name_is_exported(containing_module, source) {
|
|
#debug("(resolving single import) name `%s` is unexported",
|
|
*(*self.atom_table).atom_to_str(source));
|
|
ret Failed;
|
|
}
|
|
|
|
// We need to resolve all four namespaces for this to succeed.
|
|
//
|
|
// XXX: See if there's some way of handling namespaces in a more
|
|
// generic way. We have four of them; it seems worth doing...
|
|
|
|
let mut module_result = UnknownResult;
|
|
let mut value_result = UnknownResult;
|
|
let mut type_result = UnknownResult;
|
|
let mut impl_result = UnknownImplResult;
|
|
|
|
// Search for direct children of the containing module.
|
|
alt containing_module.children.find(source) {
|
|
none {
|
|
// Continue.
|
|
}
|
|
some(child_name_bindings) {
|
|
if (*child_name_bindings).defined_in_namespace(ModuleNS) {
|
|
module_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
if (*child_name_bindings).defined_in_namespace(ValueNS) {
|
|
value_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
if (*child_name_bindings).defined_in_namespace(TypeNS) {
|
|
type_result = BoundResult(containing_module,
|
|
child_name_bindings);
|
|
}
|
|
if (*child_name_bindings).defined_in_namespace(ImplNS) {
|
|
let targets = @dvec();
|
|
(*targets).push(@Target(containing_module,
|
|
child_name_bindings));
|
|
impl_result = BoundImplResult(targets);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unless we managed to find a result in all four namespaces
|
|
// (exceedingly unlikely), search imports as well.
|
|
|
|
alt (module_result, value_result, type_result, impl_result) {
|
|
(BoundResult(*), BoundResult(*), BoundResult(*),
|
|
BoundImplResult(*)) {
|
|
// Continue.
|
|
}
|
|
_ {
|
|
// If there is an unresolved glob at this point in the
|
|
// containing module, bail out. We don't know enough to be
|
|
// able to resolve this import.
|
|
|
|
if containing_module.glob_count > 0u {
|
|
#debug("(resolving single import) unresolved glob; \
|
|
bailing out");
|
|
ret Indeterminate;
|
|
}
|
|
|
|
// Now search the exported imports within the containing
|
|
// module.
|
|
|
|
alt containing_module.import_resolutions.find(source) {
|
|
none {
|
|
// The containing module definitely doesn't have an
|
|
// exported import with the name in question. We can
|
|
// therefore accurately report that the names are
|
|
// unbound.
|
|
|
|
if module_result == UnknownResult {
|
|
module_result = UnboundResult;
|
|
}
|
|
if value_result == UnknownResult {
|
|
value_result = UnboundResult;
|
|
}
|
|
if type_result == UnknownResult {
|
|
type_result = UnboundResult;
|
|
}
|
|
if impl_result == UnknownImplResult {
|
|
impl_result = UnboundImplResult;
|
|
}
|
|
}
|
|
some(import_resolution)
|
|
if import_resolution.outstanding_references
|
|
== 0u {
|
|
|
|
fn get_binding(import_resolution: @ImportResolution,
|
|
namespace: Namespace)
|
|
-> NamespaceResult {
|
|
|
|
alt (*import_resolution).
|
|
target_for_namespace(namespace) {
|
|
none {
|
|
ret UnboundResult;
|
|
}
|
|
some(target) {
|
|
import_resolution.used = true;
|
|
ret BoundResult(target.target_module,
|
|
target.bindings);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn get_import_binding(import_resolution:
|
|
@ImportResolution)
|
|
-> ImplNamespaceResult {
|
|
|
|
if (*import_resolution.impl_target).len() == 0u {
|
|
ret UnboundImplResult;
|
|
}
|
|
ret BoundImplResult(import_resolution.
|
|
impl_target);
|
|
}
|
|
|
|
|
|
// The name is an import which has been fully
|
|
// resolved. We can, therefore, just follow it.
|
|
|
|
if module_result == UnknownResult {
|
|
module_result = get_binding(import_resolution,
|
|
ModuleNS);
|
|
}
|
|
if value_result == UnknownResult {
|
|
value_result = get_binding(import_resolution,
|
|
ValueNS);
|
|
}
|
|
if type_result == UnknownResult {
|
|
type_result = get_binding(import_resolution,
|
|
TypeNS);
|
|
}
|
|
if impl_result == UnknownImplResult {
|
|
impl_result =
|
|
get_import_binding(import_resolution);
|
|
}
|
|
}
|
|
some(_) {
|
|
// The import is unresolved. Bail out.
|
|
#debug("(resolving single import) unresolved import; \
|
|
bailing out");
|
|
ret Indeterminate;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// We've successfully resolved the import. Write the results in.
|
|
assert module.import_resolutions.contains_key(target);
|
|
let import_resolution = module.import_resolutions.get(target);
|
|
|
|
alt module_result {
|
|
BoundResult(target_module, name_bindings) {
|
|
#debug("(resolving single import) found module binding");
|
|
import_resolution.module_target =
|
|
some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult {
|
|
#debug("(resolving single import) didn't find module \
|
|
binding");
|
|
}
|
|
UnknownResult {
|
|
fail ~"module result should be known at this point";
|
|
}
|
|
}
|
|
alt value_result {
|
|
BoundResult(target_module, name_bindings) {
|
|
import_resolution.value_target =
|
|
some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult { /* Continue. */ }
|
|
UnknownResult {
|
|
fail ~"value result should be known at this point";
|
|
}
|
|
}
|
|
alt type_result {
|
|
BoundResult(target_module, name_bindings) {
|
|
import_resolution.type_target =
|
|
some(Target(target_module, name_bindings));
|
|
}
|
|
UnboundResult { /* Continue. */ }
|
|
UnknownResult {
|
|
fail ~"type result should be known at this point";
|
|
}
|
|
}
|
|
alt impl_result {
|
|
BoundImplResult(targets) {
|
|
for (*targets).each |target| {
|
|
(*import_resolution.impl_target).push(target);
|
|
}
|
|
}
|
|
UnboundImplResult { /* Continue. */ }
|
|
UnknownImplResult {
|
|
fail ~"impl result should be known at this point";
|
|
}
|
|
}
|
|
|
|
let i = import_resolution;
|
|
alt (i.module_target, i.value_target, i.type_target, i.impl_target) {
|
|
/*
|
|
If this name wasn't found in any of the four namespaces, it's
|
|
definitely unresolved
|
|
*/
|
|
(none, none, none, v) if v.len() == 0 { ret Failed; }
|
|
_ {}
|
|
}
|
|
|
|
assert import_resolution.outstanding_references >= 1u;
|
|
import_resolution.outstanding_references -= 1u;
|
|
|
|
#debug("(resolving single import) successfully resolved import");
|
|
ret Success(());
|
|
}
|
|
|
|
/**
|
|
* Resolves a glob import. Note that this function cannot fail; it either
|
|
* succeeds or bails out (as importing * from an empty module or a module
|
|
* that exports nothing is valid).
|
|
*/
|
|
fn resolve_glob_import(module: @Module,
|
|
containing_module: @Module,
|
|
span: span)
|
|
-> ResolveResult<()> {
|
|
|
|
// This function works in a highly imperative manner; it eagerly adds
|
|
// everything it can to the list of import resolutions of the module
|
|
// node.
|
|
|
|
// We must bail out if the node has unresolved imports of any kind
|
|
// (including globs).
|
|
|
|
if !(*containing_module).all_imports_resolved() {
|
|
#debug("(resolving glob import) target module has unresolved \
|
|
imports; bailing out");
|
|
ret Indeterminate;
|
|
}
|
|
|
|
assert containing_module.glob_count == 0u;
|
|
|
|
// Add all resolved imports from the containing module.
|
|
for containing_module.import_resolutions.each
|
|
|atom, target_import_resolution| {
|
|
|
|
if !self.name_is_exported(containing_module, atom) {
|
|
#debug("(resolving glob import) name `%s` is unexported",
|
|
*(*self.atom_table).atom_to_str(atom));
|
|
again;
|
|
}
|
|
|
|
#debug("(resolving glob import) writing module resolution \
|
|
%? into `%s`",
|
|
is_none(target_import_resolution.module_target),
|
|
self.module_to_str(module));
|
|
|
|
// Here we merge two import resolutions.
|
|
alt module.import_resolutions.find(atom) {
|
|
none {
|
|
// Simple: just copy the old import resolution.
|
|
let new_import_resolution =
|
|
@ImportResolution(target_import_resolution.span);
|
|
new_import_resolution.module_target =
|
|
copy target_import_resolution.module_target;
|
|
new_import_resolution.value_target =
|
|
copy target_import_resolution.value_target;
|
|
new_import_resolution.type_target =
|
|
copy target_import_resolution.type_target;
|
|
new_import_resolution.impl_target =
|
|
copy target_import_resolution.impl_target;
|
|
|
|
module.import_resolutions.insert
|
|
(atom, new_import_resolution);
|
|
}
|
|
some(dest_import_resolution) {
|
|
// Merge the two import resolutions at a finer-grained
|
|
// level.
|
|
|
|
alt copy target_import_resolution.module_target {
|
|
none {
|
|
// Continue.
|
|
}
|
|
some(module_target) {
|
|
dest_import_resolution.module_target =
|
|
some(copy module_target);
|
|
}
|
|
}
|
|
alt copy target_import_resolution.value_target {
|
|
none {
|
|
// Continue.
|
|
}
|
|
some(value_target) {
|
|
dest_import_resolution.value_target =
|
|
some(copy value_target);
|
|
}
|
|
}
|
|
alt copy target_import_resolution.type_target {
|
|
none {
|
|
// Continue.
|
|
}
|
|
some(type_target) {
|
|
dest_import_resolution.type_target =
|
|
some(copy type_target);
|
|
}
|
|
}
|
|
if (*target_import_resolution.impl_target).len() > 0u &&
|
|
!ptr_eq(target_import_resolution.impl_target,
|
|
dest_import_resolution.impl_target) {
|
|
for (*target_import_resolution.impl_target).each
|
|
|impl_target| {
|
|
|
|
(*dest_import_resolution.impl_target).
|
|
push(impl_target);
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add all children from the containing module.
|
|
for containing_module.children.each |atom, name_bindings| {
|
|
if !self.name_is_exported(containing_module, atom) {
|
|
#debug("(resolving glob import) name `%s` is unexported",
|
|
*(*self.atom_table).atom_to_str(atom));
|
|
again;
|
|
}
|
|
|
|
let mut dest_import_resolution;
|
|
alt module.import_resolutions.find(atom) {
|
|
none {
|
|
// Create a new import resolution from this child.
|
|
dest_import_resolution = @ImportResolution(span);
|
|
module.import_resolutions.insert
|
|
(atom, dest_import_resolution);
|
|
}
|
|
some(existing_import_resolution) {
|
|
dest_import_resolution = existing_import_resolution;
|
|
}
|
|
}
|
|
|
|
|
|
#debug("(resolving glob import) writing resolution `%s` in `%s` \
|
|
to `%s`",
|
|
*(*self.atom_table).atom_to_str(atom),
|
|
self.module_to_str(containing_module),
|
|
self.module_to_str(module));
|
|
|
|
// Merge the child item into the import resolution.
|
|
if (*name_bindings).defined_in_namespace(ModuleNS) {
|
|
#debug("(resolving glob import) ... for module target");
|
|
dest_import_resolution.module_target =
|
|
some(Target(containing_module, name_bindings));
|
|
}
|
|
if (*name_bindings).defined_in_namespace(ValueNS) {
|
|
#debug("(resolving glob import) ... for value target");
|
|
dest_import_resolution.value_target =
|
|
some(Target(containing_module, name_bindings));
|
|
}
|
|
if (*name_bindings).defined_in_namespace(TypeNS) {
|
|
#debug("(resolving glob import) ... for type target");
|
|
dest_import_resolution.type_target =
|
|
some(Target(containing_module, name_bindings));
|
|
}
|
|
if (*name_bindings).defined_in_namespace(ImplNS) {
|
|
#debug("(resolving glob import) ... for impl target");
|
|
(*dest_import_resolution.impl_target).push
|
|
(@Target(containing_module, name_bindings));
|
|
}
|
|
}
|
|
|
|
#debug("(resolving glob import) successfully resolved import");
|
|
ret Success(());
|
|
}
|
|
|
|
fn resolve_module_path_from_root(module: @Module,
|
|
module_path: @dvec<Atom>,
|
|
index: uint,
|
|
xray: XrayFlag,
|
|
span: span)
|
|
-> ResolveResult<@Module> {
|
|
|
|
let mut search_module = module;
|
|
let mut index = index;
|
|
let module_path_len = (*module_path).len();
|
|
|
|
// Resolve the module part of the path. This does not involve looking
|
|
// upward though scope chains; we simply resolve names directly in
|
|
// modules as we go.
|
|
|
|
while index < module_path_len {
|
|
let name = (*module_path).get_elt(index);
|
|
alt self.resolve_name_in_module(search_module, name, ModuleNS,
|
|
xray) {
|
|
|
|
Failed {
|
|
self.session.span_err(span, ~"unresolved name");
|
|
ret Failed;
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving module path for import) module \
|
|
resolution is indeterminate: %s",
|
|
*(*self.atom_table).atom_to_str(name));
|
|
ret Indeterminate;
|
|
}
|
|
Success(target) {
|
|
alt target.bindings.module_def {
|
|
NoModuleDef {
|
|
// Not a module.
|
|
self.session.span_err(span,
|
|
#fmt("not a module: %s",
|
|
*(*self.atom_table).
|
|
atom_to_str(name)));
|
|
ret Failed;
|
|
}
|
|
ModuleDef(module) {
|
|
search_module = module;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
index += 1u;
|
|
}
|
|
|
|
ret Success(search_module);
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve the module part of an import directive rooted at
|
|
* the given module.
|
|
*/
|
|
fn resolve_module_path_for_import(module: @Module,
|
|
module_path: @dvec<Atom>,
|
|
xray: XrayFlag,
|
|
span: span)
|
|
-> ResolveResult<@Module> {
|
|
|
|
let module_path_len = (*module_path).len();
|
|
assert module_path_len > 0u;
|
|
|
|
#debug("(resolving module path for import) processing `%s` rooted at \
|
|
`%s`",
|
|
*(*self.atom_table).atoms_to_str((*module_path).get()),
|
|
self.module_to_str(module));
|
|
|
|
// The first element of the module path must be in the current scope
|
|
// chain.
|
|
|
|
let first_element = (*module_path).get_elt(0u);
|
|
let mut search_module;
|
|
alt self.resolve_module_in_lexical_scope(module, first_element) {
|
|
Failed {
|
|
self.session.span_err(span, ~"unresolved name");
|
|
ret Failed;
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving module path for import) indeterminate; \
|
|
bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Success(resulting_module) {
|
|
search_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
ret self.resolve_module_path_from_root(search_module,
|
|
module_path,
|
|
1u,
|
|
xray,
|
|
span);
|
|
}
|
|
|
|
fn resolve_item_in_lexical_scope(module: @Module,
|
|
name: Atom,
|
|
namespace: Namespace)
|
|
-> ResolveResult<Target> {
|
|
|
|
#debug("(resolving item in lexical scope) resolving `%s` in \
|
|
namespace %? in `%s`",
|
|
*(*self.atom_table).atom_to_str(name),
|
|
namespace,
|
|
self.module_to_str(module));
|
|
|
|
// The current module node is handled specially. First, check for
|
|
// its immediate children.
|
|
|
|
alt module.children.find(name) {
|
|
some(name_bindings)
|
|
if (*name_bindings).defined_in_namespace(namespace) {
|
|
|
|
ret Success(Target(module, name_bindings));
|
|
}
|
|
some(_) | none { /* Not found; continue. */ }
|
|
}
|
|
|
|
// Now check for its import directives. We don't have to have resolved
|
|
// all its imports in the usual way; this is because chains of
|
|
// adjacent import statements are processed as though they mutated the
|
|
// current scope.
|
|
|
|
alt module.import_resolutions.find(name) {
|
|
none {
|
|
// Not found; continue.
|
|
}
|
|
some(import_resolution) {
|
|
alt (*import_resolution).target_for_namespace(namespace) {
|
|
none {
|
|
// Not found; continue.
|
|
#debug("(resolving item in lexical scope) found \
|
|
import resolution, but not in namespace %?",
|
|
namespace);
|
|
}
|
|
some(target) {
|
|
import_resolution.used = true;
|
|
ret Success(copy target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, proceed up the scope chain looking for parent modules.
|
|
let mut search_module = module;
|
|
loop {
|
|
// Go to the next parent.
|
|
alt search_module.parent_link {
|
|
NoParentLink {
|
|
// No more parents. This module was unresolved.
|
|
#debug("(resolving item in lexical scope) unresolved \
|
|
module");
|
|
ret Failed;
|
|
}
|
|
ModuleParentLink(parent_module_node, _) |
|
|
BlockParentLink(parent_module_node, _) {
|
|
search_module = parent_module_node;
|
|
}
|
|
}
|
|
|
|
// Resolve the name in the parent module.
|
|
alt self.resolve_name_in_module(search_module, name, namespace,
|
|
Xray) {
|
|
Failed {
|
|
// Continue up the search chain.
|
|
}
|
|
Indeterminate {
|
|
// We couldn't see through the higher scope because of an
|
|
// unresolved import higher up. Bail.
|
|
|
|
#debug("(resolving item in lexical scope) indeterminate \
|
|
higher scope; bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Success(target) {
|
|
// We found the module.
|
|
ret Success(copy target);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_module_in_lexical_scope(module: @Module, name: Atom)
|
|
-> ResolveResult<@Module> {
|
|
|
|
alt self.resolve_item_in_lexical_scope(module, name, ModuleNS) {
|
|
Success(target) {
|
|
alt target.bindings.module_def {
|
|
NoModuleDef {
|
|
#error("!!! (resolving module in lexical scope) module
|
|
wasn't actually a module!");
|
|
ret Failed;
|
|
}
|
|
ModuleDef(module) {
|
|
ret Success(module);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving module in lexical scope) indeterminate; \
|
|
bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Failed {
|
|
#debug("(resolving module in lexical scope) failed to \
|
|
resolve");
|
|
ret Failed;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn name_is_exported(module: @Module, name: Atom) -> bool {
|
|
ret module.exported_names.size() == 0u ||
|
|
module.exported_names.contains_key(name);
|
|
}
|
|
|
|
/**
|
|
* Attempts to resolve the supplied name in the given module for the
|
|
* given namespace. If successful, returns the target corresponding to
|
|
* the name.
|
|
*/
|
|
fn resolve_name_in_module(module: @Module,
|
|
name: Atom,
|
|
namespace: Namespace,
|
|
xray: XrayFlag)
|
|
-> ResolveResult<Target> {
|
|
|
|
#debug("(resolving name in module) resolving `%s` in `%s`",
|
|
*(*self.atom_table).atom_to_str(name),
|
|
self.module_to_str(module));
|
|
|
|
if xray == NoXray && !self.name_is_exported(module, name) {
|
|
#debug("(resolving name in module) name `%s` is unexported",
|
|
*(*self.atom_table).atom_to_str(name));
|
|
ret Failed;
|
|
}
|
|
|
|
// First, check the direct children of the module.
|
|
alt module.children.find(name) {
|
|
some(name_bindings)
|
|
if (*name_bindings).defined_in_namespace(namespace) {
|
|
|
|
#debug("(resolving name in module) found node as child");
|
|
ret Success(Target(module, name_bindings));
|
|
}
|
|
some(_) | none {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, check the module's imports. If the module has a glob, then
|
|
// we bail out; we don't know its imports yet.
|
|
|
|
if module.glob_count > 0u {
|
|
#debug("(resolving name in module) module has glob; bailing out");
|
|
ret Indeterminate;
|
|
}
|
|
|
|
// Otherwise, we check the list of resolved imports.
|
|
alt module.import_resolutions.find(name) {
|
|
some(import_resolution) {
|
|
if import_resolution.outstanding_references != 0u {
|
|
#debug("(resolving name in module) import unresolved; \
|
|
bailing out");
|
|
ret Indeterminate;
|
|
}
|
|
|
|
alt (*import_resolution).target_for_namespace(namespace) {
|
|
none {
|
|
#debug("(resolving name in module) name found, but \
|
|
not in namespace %?",
|
|
namespace);
|
|
}
|
|
some(target) {
|
|
#debug("(resolving name in module) resolved to \
|
|
import");
|
|
import_resolution.used = true;
|
|
ret Success(copy target);
|
|
}
|
|
}
|
|
}
|
|
none {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// We're out of luck.
|
|
#debug("(resolving name in module) failed to resolve %s",
|
|
*(*self.atom_table).atom_to_str(name));
|
|
ret Failed;
|
|
}
|
|
|
|
/**
|
|
* Resolves a one-level renaming import of the kind `import foo = bar;`
|
|
* This needs special handling, as, unlike all of the other imports, it
|
|
* needs to look in the scope chain for modules and non-modules alike.
|
|
*/
|
|
fn resolve_one_level_renaming_import(module: @Module,
|
|
import_directive: @ImportDirective)
|
|
-> ResolveResult<()> {
|
|
|
|
let mut target_name;
|
|
let mut source_name;
|
|
alt *import_directive.subclass {
|
|
SingleImport(target, source) {
|
|
target_name = target;
|
|
source_name = source;
|
|
}
|
|
GlobImport {
|
|
fail ~"found `import *`, which is invalid";
|
|
}
|
|
}
|
|
|
|
#debug("(resolving one-level naming result) resolving import `%s` = \
|
|
`%s` in `%s`",
|
|
*(*self.atom_table).atom_to_str(target_name),
|
|
*(*self.atom_table).atom_to_str(source_name),
|
|
self.module_to_str(module));
|
|
|
|
// Find the matching items in the lexical scope chain for every
|
|
// namespace. If any of them come back indeterminate, this entire
|
|
// import is indeterminate.
|
|
|
|
let mut module_result;
|
|
#debug("(resolving one-level naming result) searching for module");
|
|
alt self.resolve_item_in_lexical_scope(module,
|
|
source_name,
|
|
ModuleNS) {
|
|
|
|
Failed {
|
|
#debug("(resolving one-level renaming import) didn't find \
|
|
module result");
|
|
module_result = none;
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving one-level renaming import) module result \
|
|
is indeterminate; bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Success(name_bindings) {
|
|
#debug("(resolving one-level renaming import) module result \
|
|
found");
|
|
module_result = some(copy name_bindings);
|
|
}
|
|
}
|
|
|
|
let mut value_result;
|
|
#debug("(resolving one-level naming result) searching for value");
|
|
alt self.resolve_item_in_lexical_scope(module,
|
|
source_name,
|
|
ValueNS) {
|
|
|
|
Failed {
|
|
#debug("(resolving one-level renaming import) didn't find \
|
|
value result");
|
|
value_result = none;
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving one-level renaming import) value result \
|
|
is indeterminate; bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Success(name_bindings) {
|
|
#debug("(resolving one-level renaming import) value result \
|
|
found");
|
|
value_result = some(copy name_bindings);
|
|
}
|
|
}
|
|
|
|
let mut type_result;
|
|
#debug("(resolving one-level naming result) searching for type");
|
|
alt self.resolve_item_in_lexical_scope(module,
|
|
source_name,
|
|
TypeNS) {
|
|
|
|
Failed {
|
|
#debug("(resolving one-level renaming import) didn't find \
|
|
type result");
|
|
type_result = none;
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving one-level renaming import) type result is \
|
|
indeterminate; bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Success(name_bindings) {
|
|
#debug("(resolving one-level renaming import) type result \
|
|
found");
|
|
type_result = some(copy name_bindings);
|
|
}
|
|
}
|
|
|
|
//
|
|
// NB: This one results in effects that may be somewhat surprising. It
|
|
// means that this:
|
|
//
|
|
// mod A {
|
|
// impl foo for ... { ... }
|
|
// mod B {
|
|
// impl foo for ... { ... }
|
|
// import bar = foo;
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// results in only A::B::foo being aliased to A::B::bar, not A::foo
|
|
// *and* A::B::foo being aliased to A::B::bar.
|
|
//
|
|
|
|
let mut impl_result;
|
|
#debug("(resolving one-level naming result) searching for impl");
|
|
alt self.resolve_item_in_lexical_scope(module,
|
|
source_name,
|
|
ImplNS) {
|
|
|
|
Failed {
|
|
#debug("(resolving one-level renaming import) didn't find \
|
|
impl result");
|
|
impl_result = none;
|
|
}
|
|
Indeterminate {
|
|
#debug("(resolving one-level renaming import) impl result is \
|
|
indeterminate; bailing");
|
|
ret Indeterminate;
|
|
}
|
|
Success(name_bindings) {
|
|
#debug("(resolving one-level renaming import) impl result \
|
|
found");
|
|
impl_result = some(@copy name_bindings);
|
|
}
|
|
}
|
|
|
|
// If nothing at all was found, that's an error.
|
|
if is_none(module_result) && is_none(value_result) &&
|
|
is_none(type_result) && is_none(impl_result) {
|
|
|
|
self.session.span_err(import_directive.span,
|
|
~"unresolved import");
|
|
ret Failed;
|
|
}
|
|
|
|
// Otherwise, proceed and write in the bindings.
|
|
alt module.import_resolutions.find(target_name) {
|
|
none {
|
|
fail ~"(resolving one-level renaming import) reduced graph \
|
|
construction or glob importing should have created the \
|
|
import resolution name by now";
|
|
}
|
|
some(import_resolution) {
|
|
#debug("(resolving one-level renaming import) writing module \
|
|
result %? for `%s` into `%s`",
|
|
is_none(module_result),
|
|
*(*self.atom_table).atom_to_str(target_name),
|
|
self.module_to_str(module));
|
|
|
|
import_resolution.module_target = module_result;
|
|
import_resolution.value_target = value_result;
|
|
import_resolution.type_target = type_result;
|
|
|
|
alt impl_result {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(impl_result) {
|
|
(*import_resolution.impl_target).push(impl_result);
|
|
}
|
|
}
|
|
|
|
assert import_resolution.outstanding_references >= 1u;
|
|
import_resolution.outstanding_references -= 1u;
|
|
}
|
|
}
|
|
|
|
#debug("(resolving one-level renaming import) successfully resolved");
|
|
ret Success(());
|
|
}
|
|
|
|
fn report_unresolved_imports(module: @Module) {
|
|
let index = module.resolved_import_count;
|
|
let import_count = module.imports.len();
|
|
if index != import_count {
|
|
self.session.span_err(module.imports.get_elt(index).span,
|
|
~"unresolved import");
|
|
}
|
|
|
|
// Descend into children and anonymous children.
|
|
for module.children.each |_name, child_node| {
|
|
alt (*child_node).get_module_if_available() {
|
|
none {
|
|
// Continue.
|
|
}
|
|
some(child_module) {
|
|
self.report_unresolved_imports(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module.anonymous_children.each |_name, module| {
|
|
self.report_unresolved_imports(module);
|
|
}
|
|
}
|
|
|
|
// Export recording
|
|
//
|
|
// This pass simply determines what all "export" keywords refer to and
|
|
// writes the results into the export map.
|
|
//
|
|
// XXX: This pass will be removed once exports change to per-item. Then
|
|
// this operation can simply be performed as part of item (or import)
|
|
// processing.
|
|
|
|
fn record_exports() {
|
|
let root_module = (*self.graph_root).get_module();
|
|
self.record_exports_for_module_subtree(root_module);
|
|
}
|
|
|
|
fn record_exports_for_module_subtree(module: @Module) {
|
|
// If this isn't a local crate, then bail out. We don't need to record
|
|
// exports for local crates.
|
|
|
|
alt module.def_id {
|
|
some(def_id) if def_id.crate == local_crate {
|
|
// OK. Continue.
|
|
}
|
|
none {
|
|
// Record exports for the root module.
|
|
}
|
|
some(_) {
|
|
// Bail out.
|
|
#debug("(recording exports for module subtree) not recording \
|
|
exports for `%s`",
|
|
self.module_to_str(module));
|
|
ret;
|
|
}
|
|
}
|
|
|
|
self.record_exports_for_module(module);
|
|
|
|
for module.children.each |_atom, child_name_bindings| {
|
|
alt (*child_name_bindings).get_module_if_available() {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(child_module) {
|
|
self.record_exports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module.anonymous_children.each |_node_id, child_module| {
|
|
self.record_exports_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
fn record_exports_for_module(module: @Module) {
|
|
for module.exported_names.each |name, node_id| {
|
|
let mut exports = ~[];
|
|
for self.namespaces.each |namespace| {
|
|
// Ignore impl namespaces; they cause the original resolve
|
|
// to fail.
|
|
|
|
if namespace == ImplNS {
|
|
again;
|
|
}
|
|
|
|
alt self.resolve_definition_of_name_in_module(module,
|
|
name,
|
|
namespace,
|
|
Xray) {
|
|
NoNameDefinition {
|
|
// Nothing to do.
|
|
}
|
|
ChildNameDefinition(target_def) {
|
|
vec::push(exports, {
|
|
reexp: false,
|
|
id: def_id_of_def(target_def)
|
|
});
|
|
}
|
|
ImportNameDefinition(target_def) {
|
|
vec::push(exports, {
|
|
reexp: true,
|
|
id: def_id_of_def(target_def)
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
self.export_map.insert(node_id, exports);
|
|
}
|
|
}
|
|
|
|
// Implementation scope creation
|
|
//
|
|
// This is a fairly simple pass that simply gathers up all the typeclass
|
|
// implementations in scope and threads a series of singly-linked series
|
|
// of impls through the tree.
|
|
|
|
fn build_impl_scopes() {
|
|
let root_module = (*self.graph_root).get_module();
|
|
self.build_impl_scopes_for_module_subtree(root_module);
|
|
}
|
|
|
|
fn build_impl_scopes_for_module_subtree(module: @Module) {
|
|
// If this isn't a local crate, then bail out. We don't need to
|
|
// resolve implementations for external crates.
|
|
|
|
alt module.def_id {
|
|
some(def_id) if def_id.crate == local_crate {
|
|
// OK. Continue.
|
|
}
|
|
none {
|
|
// Resolve implementation scopes for the root module.
|
|
}
|
|
some(_) {
|
|
// Bail out.
|
|
#debug("(building impl scopes for module subtree) not \
|
|
resolving implementations for `%s`",
|
|
self.module_to_str(module));
|
|
ret;
|
|
}
|
|
}
|
|
|
|
self.build_impl_scope_for_module(module);
|
|
|
|
for module.children.each |_atom, child_name_bindings| {
|
|
alt (*child_name_bindings).get_module_if_available() {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(child_module) {
|
|
self.build_impl_scopes_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module.anonymous_children.each |_node_id, child_module| {
|
|
self.build_impl_scopes_for_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
fn build_impl_scope_for_module(module: @Module) {
|
|
let mut impl_scope = ~[];
|
|
|
|
#debug("(building impl scope for module) processing module %s (%?)",
|
|
self.module_to_str(module),
|
|
copy module.def_id);
|
|
|
|
// Gather up all direct children implementations in the module.
|
|
for module.children.each |_impl_name, child_name_bindings| {
|
|
if child_name_bindings.impl_defs.len() >= 1u {
|
|
impl_scope += child_name_bindings.impl_defs;
|
|
}
|
|
}
|
|
|
|
#debug("(building impl scope for module) found %u impl(s) as direct \
|
|
children",
|
|
impl_scope.len());
|
|
|
|
// Gather up all imports.
|
|
for module.import_resolutions.each |_impl_name, import_resolution| {
|
|
for (*import_resolution.impl_target).each |impl_target| {
|
|
#debug("(building impl scope for module) found impl def");
|
|
impl_scope += impl_target.bindings.impl_defs;
|
|
}
|
|
}
|
|
|
|
#debug("(building impl scope for module) found %u impl(s) in total",
|
|
impl_scope.len());
|
|
|
|
// Determine the parent's implementation scope.
|
|
let mut parent_impl_scopes;
|
|
alt module.parent_link {
|
|
NoParentLink {
|
|
parent_impl_scopes = @nil;
|
|
}
|
|
ModuleParentLink(parent_module_node, _) |
|
|
BlockParentLink(parent_module_node, _) {
|
|
parent_impl_scopes = parent_module_node.impl_scopes;
|
|
}
|
|
}
|
|
|
|
// Create the new implementation scope, if it was nonempty, and chain
|
|
// it up to the parent.
|
|
|
|
if impl_scope.len() >= 1u {
|
|
module.impl_scopes = @cons(@impl_scope, parent_impl_scopes);
|
|
} else {
|
|
module.impl_scopes = parent_impl_scopes;
|
|
}
|
|
}
|
|
|
|
// AST resolution
|
|
//
|
|
// We maintain a list of value ribs and type ribs.
|
|
//
|
|
// Simultaneously, we keep track of the current position in the module
|
|
// graph in the `current_module` pointer. When we go to resolve a name in
|
|
// the value or type namespaces, we first look through all the ribs and
|
|
// then query the module graph. When we resolve a name in the module
|
|
// namespace, we can skip all the ribs (since nested modules are not
|
|
// allowed within blocks in Rust) and jump straight to the current module
|
|
// graph node.
|
|
//
|
|
// Named implementations are handled separately. When we find a method
|
|
// call, we consult the module node to find all of the implementations in
|
|
// scope. This information is lazily cached in the module node. We then
|
|
// generate a fake "implementation scope" containing all the
|
|
// implementations thus found, for compatibility with old resolve pass.
|
|
|
|
fn with_scope(name: option<Atom>, f: fn()) {
|
|
let orig_module = self.current_module;
|
|
|
|
// Move down in the graph.
|
|
alt name {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(name) {
|
|
alt orig_module.children.find(name) {
|
|
none {
|
|
#debug("!!! (with scope) didn't find `%s` in `%s`",
|
|
*(*self.atom_table).atom_to_str(name),
|
|
self.module_to_str(orig_module));
|
|
}
|
|
some(name_bindings) {
|
|
alt (*name_bindings).get_module_if_available() {
|
|
none {
|
|
#debug("!!! (with scope) didn't find module \
|
|
for `%s` in `%s`",
|
|
*(*self.atom_table).atom_to_str(name),
|
|
self.module_to_str(orig_module));
|
|
}
|
|
some(module) {
|
|
self.current_module = module;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
f();
|
|
|
|
self.current_module = orig_module;
|
|
}
|
|
|
|
// Wraps the given definition in the appropriate number of `def_upvar`
|
|
// wrappers.
|
|
|
|
fn upvarify(ribs: @dvec<@Rib>, rib_index: uint, def_like: def_like,
|
|
span: span, allow_capturing_self: AllowCapturingSelfFlag)
|
|
-> option<def_like> {
|
|
|
|
let mut def;
|
|
let mut is_ty_param;
|
|
|
|
alt def_like {
|
|
dl_def(d @ def_local(*)) | dl_def(d @ def_upvar(*)) |
|
|
dl_def(d @ def_arg(*)) | dl_def(d @ def_binding(*)) {
|
|
def = d;
|
|
is_ty_param = false;
|
|
}
|
|
dl_def(d @ def_ty_param(*)) {
|
|
def = d;
|
|
is_ty_param = true;
|
|
}
|
|
dl_def(d @ def_self(*))
|
|
if allow_capturing_self == DontAllowCapturingSelf {
|
|
def = d;
|
|
is_ty_param = false;
|
|
}
|
|
_ {
|
|
ret some(def_like);
|
|
}
|
|
}
|
|
|
|
let mut rib_index = rib_index + 1u;
|
|
while rib_index < (*ribs).len() {
|
|
let rib = (*ribs).get_elt(rib_index);
|
|
alt rib.kind {
|
|
NormalRibKind {
|
|
// Nothing to do. Continue.
|
|
}
|
|
FunctionRibKind(function_id) {
|
|
if !is_ty_param {
|
|
def = def_upvar(def_id_of_def(def).node,
|
|
@def,
|
|
function_id);
|
|
}
|
|
}
|
|
OpaqueFunctionRibKind {
|
|
if !is_ty_param {
|
|
// This was an attempt to access an upvar inside a
|
|
// named function item. This is not allowed, so we
|
|
// report an error.
|
|
|
|
self.session.span_err(
|
|
span,
|
|
~"attempted dynamic environment-capture");
|
|
} else {
|
|
// This was an attempt to use a type parameter outside
|
|
// its scope.
|
|
|
|
self.session.span_err(span,
|
|
~"attempt to use a type \
|
|
argument out of scope");
|
|
}
|
|
|
|
ret none;
|
|
}
|
|
}
|
|
|
|
rib_index += 1u;
|
|
}
|
|
|
|
ret some(dl_def(def));
|
|
}
|
|
|
|
fn search_ribs(ribs: @dvec<@Rib>, name: Atom, span: span,
|
|
allow_capturing_self: AllowCapturingSelfFlag)
|
|
-> option<def_like> {
|
|
|
|
// XXX: This should not use a while loop.
|
|
// XXX: Try caching?
|
|
|
|
let mut i = (*ribs).len();
|
|
while i != 0u {
|
|
i -= 1u;
|
|
let rib = (*ribs).get_elt(i);
|
|
alt rib.bindings.find(name) {
|
|
some(def_like) {
|
|
ret self.upvarify(ribs, i, def_like, span,
|
|
allow_capturing_self);
|
|
}
|
|
none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
ret none;
|
|
}
|
|
|
|
// XXX: This shouldn't be unsafe!
|
|
fn resolve_crate() unsafe {
|
|
#debug("(resolving crate) starting");
|
|
|
|
// To avoid a failure in metadata encoding later, we have to add the
|
|
// crate-level implementation scopes
|
|
|
|
self.impl_map.insert(0, (*self.graph_root).get_module().impl_scopes);
|
|
|
|
// XXX: This is awful!
|
|
let this = ptr::addr_of(self);
|
|
visit_crate(*self.crate, (), mk_vt(@{
|
|
visit_item: |item, _context, visitor|
|
|
(*this).resolve_item(item, visitor),
|
|
visit_arm: |arm, _context, visitor|
|
|
(*this).resolve_arm(arm, visitor),
|
|
visit_block: |block, _context, visitor|
|
|
(*this).resolve_block(block, visitor),
|
|
visit_expr: |expr, _context, visitor|
|
|
(*this).resolve_expr(expr, visitor),
|
|
visit_local: |local, _context, visitor|
|
|
(*this).resolve_local(local, visitor),
|
|
visit_ty: |ty, _context, visitor|
|
|
(*this).resolve_type(ty, visitor)
|
|
with *default_visitor()
|
|
}));
|
|
}
|
|
|
|
fn resolve_item(item: @item, visitor: ResolveVisitor) {
|
|
#debug("(resolving item) resolving %s", *item.ident);
|
|
|
|
// Items with the !resolve_unexported attribute are X-ray contexts.
|
|
// This is used to allow the test runner to run unexported tests.
|
|
let orig_xray_flag = self.xray_context;
|
|
if contains_name(attr_metas(item.attrs), ~"!resolve_unexported") {
|
|
self.xray_context = Xray;
|
|
}
|
|
|
|
alt item.node {
|
|
item_enum(_, type_parameters) |
|
|
item_ty(_, type_parameters) {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters, item.id, 0u,
|
|
NormalRibKind))
|
|
|| {
|
|
|
|
visit_item(item, (), visitor);
|
|
}
|
|
}
|
|
|
|
item_impl(type_parameters, implemented_traits, self_type,
|
|
methods) {
|
|
|
|
self.resolve_implementation(item.id, item.span,
|
|
type_parameters,
|
|
implemented_traits,
|
|
self_type, methods, visitor);
|
|
}
|
|
|
|
item_trait(type_parameters, methods) {
|
|
// Create a new rib for the self type.
|
|
let self_type_rib = @Rib(NormalRibKind);
|
|
(*self.type_ribs).push(self_type_rib);
|
|
self_type_rib.bindings.insert(self.self_atom,
|
|
dl_def(def_self(item.id)));
|
|
|
|
// Create a new rib for the interface-wide type parameters.
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters, item.id, 0u,
|
|
NormalRibKind)) {
|
|
|
|
self.resolve_type_parameters(type_parameters, visitor);
|
|
|
|
for methods.each |method| {
|
|
// Create a new rib for the method-specific type
|
|
// parameters.
|
|
//
|
|
// XXX: Do we need a node ID here?
|
|
|
|
alt method {
|
|
required(ty_m) {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&ty_m.tps,
|
|
item.id,
|
|
type_parameters.len(),
|
|
NormalRibKind)) {
|
|
|
|
// Resolve the method-specific type
|
|
// parameters.
|
|
self.resolve_type_parameters(ty_m.tps,
|
|
visitor);
|
|
|
|
for ty_m.decl.inputs.each |argument| {
|
|
self.resolve_type(argument.ty, visitor);
|
|
}
|
|
|
|
self.resolve_type(ty_m.decl.output, visitor);
|
|
}
|
|
}
|
|
provided(m) {
|
|
self.resolve_method(NormalRibKind,
|
|
m,
|
|
type_parameters.len(),
|
|
visitor)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
(*self.type_ribs).pop();
|
|
}
|
|
|
|
item_class(ty_params, interfaces, class_members,
|
|
optional_constructor, optional_destructor) {
|
|
|
|
self.resolve_class(item.id,
|
|
@copy ty_params,
|
|
interfaces,
|
|
class_members,
|
|
optional_constructor,
|
|
optional_destructor,
|
|
visitor);
|
|
}
|
|
|
|
item_mod(module) {
|
|
let atom = (*self.atom_table).intern(item.ident);
|
|
do self.with_scope(some(atom)) {
|
|
self.resolve_module(module, item.span, item.ident,
|
|
item.id, visitor);
|
|
}
|
|
}
|
|
|
|
item_foreign_mod(foreign_module) {
|
|
let atom = (*self.atom_table).intern(item.ident);
|
|
do self.with_scope(some(atom)) {
|
|
for foreign_module.items.each |foreign_item| {
|
|
alt foreign_item.node {
|
|
foreign_item_fn(_, type_parameters) {
|
|
do self.with_type_parameter_rib
|
|
(HasTypeParameters(&type_parameters,
|
|
foreign_item.id,
|
|
0u,
|
|
OpaqueFunctionRibKind))
|
|
|| {
|
|
|
|
visit_foreign_item(foreign_item, (),
|
|
visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
item_fn(fn_decl, ty_params, block) {
|
|
// If this is the main function, we must record it in the
|
|
// session.
|
|
//
|
|
// For speed, we put the string comparison last in this chain
|
|
// of conditionals.
|
|
|
|
if !self.session.building_library &&
|
|
is_none(self.session.main_fn) &&
|
|
str::eq(*item.ident, ~"main") {
|
|
|
|
self.session.main_fn = some((item.id, item.span));
|
|
}
|
|
|
|
self.resolve_function(OpaqueFunctionRibKind,
|
|
some(@fn_decl),
|
|
HasTypeParameters
|
|
(&ty_params,
|
|
item.id,
|
|
0u,
|
|
OpaqueFunctionRibKind),
|
|
block,
|
|
NoSelfBinding,
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
|
|
item_const(*) {
|
|
visit_item(item, (), visitor);
|
|
}
|
|
|
|
item_mac(*) {
|
|
fail ~"item macros unimplemented"
|
|
}
|
|
}
|
|
|
|
self.xray_context = orig_xray_flag;
|
|
}
|
|
|
|
fn with_type_parameter_rib(type_parameters: TypeParameters, f: fn()) {
|
|
alt type_parameters {
|
|
HasTypeParameters(type_parameters, node_id, initial_index,
|
|
rib_kind) {
|
|
|
|
let function_type_rib = @Rib(rib_kind);
|
|
(*self.type_ribs).push(function_type_rib);
|
|
|
|
for (*type_parameters).eachi |index, type_parameter| {
|
|
let name =
|
|
(*self.atom_table).intern(type_parameter.ident);
|
|
let def_like = dl_def(def_ty_param
|
|
(local_def(type_parameter.id),
|
|
index + initial_index));
|
|
(*function_type_rib).bindings.insert(name, def_like);
|
|
}
|
|
}
|
|
|
|
NoTypeParameters {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
f();
|
|
|
|
alt type_parameters {
|
|
HasTypeParameters(type_parameters, _, _, _) {
|
|
(*self.type_ribs).pop();
|
|
}
|
|
|
|
NoTypeParameters {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_function(rib_kind: RibKind,
|
|
optional_declaration: option<@fn_decl>,
|
|
type_parameters: TypeParameters,
|
|
block: blk,
|
|
self_binding: SelfBinding,
|
|
capture_clause: CaptureClause,
|
|
visitor: ResolveVisitor) {
|
|
|
|
// Check each element of the capture clause.
|
|
alt capture_clause {
|
|
NoCaptureClause {
|
|
// Nothing to do.
|
|
}
|
|
HasCaptureClause(capture_clause) {
|
|
// Resolve each captured item.
|
|
for (*capture_clause).each |capture_item| {
|
|
alt self.resolve_identifier(capture_item.name,
|
|
ValueNS,
|
|
true,
|
|
capture_item.span) {
|
|
none {
|
|
self.session.span_err(capture_item.span,
|
|
~"unresolved name in \
|
|
capture clause");
|
|
}
|
|
some(def) {
|
|
self.record_def(capture_item.id, def);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a value rib for the function.
|
|
let function_value_rib = @Rib(rib_kind);
|
|
(*self.value_ribs).push(function_value_rib);
|
|
|
|
// If this function has type parameters, add them now.
|
|
do self.with_type_parameter_rib(type_parameters) {
|
|
// Resolve the type parameters.
|
|
alt type_parameters {
|
|
NoTypeParameters {
|
|
// Continue.
|
|
}
|
|
HasTypeParameters(type_parameters, _, _, _) {
|
|
self.resolve_type_parameters(*type_parameters, visitor);
|
|
}
|
|
}
|
|
|
|
// Add self to the rib, if necessary.
|
|
alt self_binding {
|
|
NoSelfBinding {
|
|
// Nothing to do.
|
|
}
|
|
HasSelfBinding(self_node_id) {
|
|
let def_like = dl_def(def_self(self_node_id));
|
|
(*function_value_rib).bindings.insert(self.self_atom,
|
|
def_like);
|
|
}
|
|
}
|
|
|
|
// Add each argument to the rib.
|
|
alt optional_declaration {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(declaration) {
|
|
for declaration.inputs.each |argument| {
|
|
let name = (*self.atom_table).intern(argument.ident);
|
|
let def_like = dl_def(def_arg(argument.id,
|
|
argument.mode));
|
|
(*function_value_rib).bindings.insert(name, def_like);
|
|
|
|
self.resolve_type(argument.ty, visitor);
|
|
|
|
#debug("(resolving function) recorded argument `%s`",
|
|
*(*self.atom_table).atom_to_str(name));
|
|
}
|
|
|
|
self.resolve_type(declaration.output, visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the function body.
|
|
self.resolve_block(block, visitor);
|
|
|
|
#debug("(resolving function) leaving function");
|
|
}
|
|
|
|
(*self.value_ribs).pop();
|
|
}
|
|
|
|
fn resolve_type_parameters(type_parameters: ~[ty_param],
|
|
visitor: ResolveVisitor) {
|
|
|
|
for type_parameters.each |type_parameter| {
|
|
for (*type_parameter.bounds).each |bound| {
|
|
alt bound {
|
|
bound_copy | bound_send | bound_const | bound_owned {
|
|
// Nothing to do.
|
|
}
|
|
bound_trait(interface_type) {
|
|
self.resolve_type(interface_type, visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_class(id: node_id,
|
|
type_parameters: @~[ty_param],
|
|
interfaces: ~[@trait_ref],
|
|
class_members: ~[@class_member],
|
|
optional_constructor: option<class_ctor>,
|
|
optional_destructor: option<class_dtor>,
|
|
visitor: ResolveVisitor) {
|
|
|
|
// Add a type into the def map. This is needed to prevent an ICE in
|
|
// ty::impl_traits.
|
|
|
|
// If applicable, create a rib for the type parameters.
|
|
let outer_type_parameter_count = (*type_parameters).len();
|
|
let borrowed_type_parameters: &~[ty_param] = &*type_parameters;
|
|
do self.with_type_parameter_rib(HasTypeParameters
|
|
(borrowed_type_parameters, id, 0u,
|
|
NormalRibKind)) {
|
|
|
|
// Resolve the type parameters.
|
|
self.resolve_type_parameters(*type_parameters, visitor);
|
|
|
|
// Resolve implemented interfaces.
|
|
for interfaces.each |interface| {
|
|
alt self.resolve_path(interface.path, TypeNS, true, visitor) {
|
|
none {
|
|
self.session.span_err(interface.path.span,
|
|
~"attempt to implement a \
|
|
nonexistent interface");
|
|
}
|
|
some(def) {
|
|
// Write a mapping from the interface ID to the
|
|
// definition of the interface into the definition
|
|
// map.
|
|
|
|
#debug("(resolving class) found trait def: %?", def);
|
|
|
|
self.record_def(interface.ref_id, def);
|
|
|
|
// XXX: This is wrong but is needed for tests to
|
|
// pass.
|
|
|
|
self.record_def(id, def);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve methods.
|
|
for class_members.each |class_member| {
|
|
alt class_member.node {
|
|
class_method(method) {
|
|
self.resolve_method(NormalRibKind,
|
|
method,
|
|
outer_type_parameter_count,
|
|
visitor);
|
|
}
|
|
instance_var(_, field_type, _, _, _) {
|
|
self.resolve_type(field_type, visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Resolve the constructor, if applicable.
|
|
alt optional_constructor {
|
|
none => {
|
|
// Nothing to do.
|
|
}
|
|
some(constructor) => {
|
|
self.resolve_function(NormalRibKind,
|
|
some(@constructor.node.dec),
|
|
NoTypeParameters,
|
|
constructor.node.body,
|
|
HasSelfBinding(constructor.node.
|
|
self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the destructor, if applicable.
|
|
alt optional_destructor {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(destructor) {
|
|
self.resolve_function(NormalRibKind,
|
|
none,
|
|
NoTypeParameters,
|
|
destructor.node.body,
|
|
HasSelfBinding
|
|
(destructor.node.self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Does this really need to take a RibKind or is it always going
|
|
// to be NormalRibKind?
|
|
fn resolve_method(rib_kind: RibKind,
|
|
method: @method,
|
|
outer_type_parameter_count: uint,
|
|
visitor: ResolveVisitor) {
|
|
let borrowed_method_type_parameters = &method.tps;
|
|
let type_parameters =
|
|
HasTypeParameters(borrowed_method_type_parameters,
|
|
method.id,
|
|
outer_type_parameter_count,
|
|
rib_kind);
|
|
self.resolve_function(rib_kind,
|
|
some(@method.decl),
|
|
type_parameters,
|
|
method.body,
|
|
HasSelfBinding(method.self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
|
|
fn resolve_implementation(id: node_id,
|
|
span: span,
|
|
type_parameters: ~[ty_param],
|
|
trait_references: ~[@trait_ref],
|
|
self_type: @ty,
|
|
methods: ~[@method],
|
|
visitor: ResolveVisitor) {
|
|
|
|
// If applicable, create a rib for the type parameters.
|
|
let outer_type_parameter_count = type_parameters.len();
|
|
let borrowed_type_parameters: &~[ty_param] = &type_parameters;
|
|
do self.with_type_parameter_rib(HasTypeParameters
|
|
(borrowed_type_parameters, id, 0u,
|
|
NormalRibKind)) {
|
|
|
|
// Resolve the type parameters.
|
|
self.resolve_type_parameters(type_parameters, visitor);
|
|
|
|
// Resolve the interface reference, if necessary.
|
|
let original_trait_refs = self.current_trait_refs;
|
|
if trait_references.len() >= 1 {
|
|
let mut new_trait_refs = @dvec();
|
|
for trait_references.each |trait_reference| {
|
|
alt self.resolve_path(trait_reference.path, TypeNS, true,
|
|
visitor) {
|
|
none {
|
|
self.session.span_err(span,
|
|
~"attempt to implement an \
|
|
unknown trait");
|
|
}
|
|
some(def) {
|
|
self.record_def(trait_reference.ref_id, def);
|
|
|
|
// Record the current trait reference.
|
|
(*new_trait_refs).push(def_id_of_def(def));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Record the current set of trait references.
|
|
self.current_trait_refs = some(new_trait_refs);
|
|
}
|
|
|
|
// Resolve the self type.
|
|
self.resolve_type(self_type, visitor);
|
|
|
|
for methods.each |method| {
|
|
// We also need a new scope for the method-specific
|
|
// type parameters.
|
|
|
|
let borrowed_type_parameters = &method.tps;
|
|
self.resolve_function(NormalRibKind,
|
|
some(@method.decl),
|
|
HasTypeParameters
|
|
(borrowed_type_parameters,
|
|
method.id,
|
|
outer_type_parameter_count,
|
|
NormalRibKind),
|
|
method.body,
|
|
HasSelfBinding(method.self_id),
|
|
NoCaptureClause,
|
|
visitor);
|
|
}
|
|
|
|
// Restore the original trait references.
|
|
self.current_trait_refs = original_trait_refs;
|
|
}
|
|
}
|
|
|
|
fn resolve_module(module: _mod, span: span, _name: ident, id: node_id,
|
|
visitor: ResolveVisitor) {
|
|
|
|
// Write the implementations in scope into the module metadata.
|
|
#debug("(resolving module) resolving module ID %d", id);
|
|
self.impl_map.insert(id, self.current_module.impl_scopes);
|
|
|
|
visit_mod(module, span, id, (), visitor);
|
|
}
|
|
|
|
fn resolve_local(local: @local, visitor: ResolveVisitor) {
|
|
let mut mutability;
|
|
if local.node.is_mutbl {
|
|
mutability = Mutable;
|
|
} else {
|
|
mutability = Immutable;
|
|
}
|
|
|
|
// Resolve the type.
|
|
self.resolve_type(local.node.ty, visitor);
|
|
|
|
// Resolve the initializer, if necessary.
|
|
alt local.node.init {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(initializer) {
|
|
self.resolve_expr(initializer.expr, visitor);
|
|
}
|
|
}
|
|
|
|
// Resolve the pattern.
|
|
self.resolve_pattern(local.node.pat, IrrefutableMode, mutability,
|
|
none, visitor);
|
|
}
|
|
|
|
fn num_bindings(pat: @pat) -> uint {
|
|
pat_util::pat_binding_ids(self.def_map, pat).len()
|
|
}
|
|
|
|
fn warn_var_patterns(arm: arm) {
|
|
/*
|
|
The idea here is that an arm like:
|
|
alpha | beta
|
|
where alpha is a variant and beta is an identifier that
|
|
might refer to a variant that's not in scope will result
|
|
in a confusing error message. Showing that beta actually binds a
|
|
new variable might help.
|
|
*/
|
|
for arm.pats.each |p| {
|
|
do pat_util::pat_bindings(self.def_map, p) |_id, sp, pth| {
|
|
self.session.span_note(sp, #fmt("Treating %s as a variable \
|
|
binding, because it does not denote any variant in scope",
|
|
path_to_str(pth)));
|
|
}
|
|
};
|
|
}
|
|
fn check_consistent_bindings(arm: arm) {
|
|
if arm.pats.len() == 0 { ret; }
|
|
let good = self.num_bindings(arm.pats[0]);
|
|
for arm.pats.each() |p: @pat| {
|
|
if self.num_bindings(p) != good {
|
|
self.session.span_err(p.span,
|
|
~"inconsistent number of bindings");
|
|
self.warn_var_patterns(arm);
|
|
break;
|
|
};
|
|
};
|
|
}
|
|
|
|
fn resolve_arm(arm: arm, visitor: ResolveVisitor) {
|
|
(*self.value_ribs).push(@Rib(NormalRibKind));
|
|
|
|
let bindings_list = atom_hashmap();
|
|
for arm.pats.each |pattern| {
|
|
self.resolve_pattern(pattern, RefutableMode, Immutable,
|
|
some(bindings_list), visitor);
|
|
}
|
|
|
|
// This has to happen *after* we determine which
|
|
// pat_idents are variants
|
|
self.check_consistent_bindings(arm);
|
|
|
|
visit_expr_opt(arm.guard, (), visitor);
|
|
self.resolve_block(arm.body, visitor);
|
|
|
|
(*self.value_ribs).pop();
|
|
}
|
|
|
|
fn resolve_block(block: blk, visitor: ResolveVisitor) {
|
|
#debug("(resolving block) entering block");
|
|
(*self.value_ribs).push(@Rib(NormalRibKind));
|
|
|
|
// Move down in the graph, if there's an anonymous module rooted here.
|
|
let orig_module = self.current_module;
|
|
alt self.current_module.anonymous_children.find(block.node.id) {
|
|
none { /* Nothing to do. */ }
|
|
some(anonymous_module) {
|
|
#debug("(resolving block) found anonymous module, moving \
|
|
down");
|
|
self.current_module = anonymous_module;
|
|
}
|
|
}
|
|
|
|
// Descend into the block.
|
|
visit_block(block, (), visitor);
|
|
|
|
// Move back up.
|
|
self.current_module = orig_module;
|
|
|
|
(*self.value_ribs).pop();
|
|
#debug("(resolving block) leaving block");
|
|
}
|
|
|
|
fn resolve_type(ty: @ty, visitor: ResolveVisitor) {
|
|
alt ty.node {
|
|
// Like path expressions, the interpretation of path types depends
|
|
// on whether the path has multiple elements in it or not.
|
|
|
|
ty_path(path, path_id) {
|
|
// This is a path in the type namespace. Walk through scopes
|
|
// scopes looking for it.
|
|
|
|
let mut result_def;
|
|
alt self.resolve_path(path, TypeNS, true, visitor) {
|
|
some(def) {
|
|
#debug("(resolving type) resolved `%s` to type",
|
|
*path.idents.last());
|
|
result_def = some(def);
|
|
}
|
|
none {
|
|
result_def = none;
|
|
}
|
|
}
|
|
|
|
alt result_def {
|
|
some(_) {
|
|
// Continue.
|
|
}
|
|
none {
|
|
// Check to see whether the name is a primitive type.
|
|
if path.idents.len() == 1u {
|
|
let name =
|
|
(*self.atom_table).intern(path.idents.last());
|
|
|
|
alt self.primitive_type_table
|
|
.primitive_types
|
|
.find(name) {
|
|
|
|
some(primitive_type) {
|
|
result_def =
|
|
some(def_prim_ty(primitive_type));
|
|
}
|
|
none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
alt copy result_def {
|
|
some(def) {
|
|
// Write the result into the def map.
|
|
#debug("(resolving type) writing resolution for `%s` \
|
|
(id %d)",
|
|
connect(path.idents.map(|x| *x), ~"::"),
|
|
path_id);
|
|
self.record_def(path_id, def);
|
|
}
|
|
none {
|
|
self.session.span_err
|
|
(ty.span, #fmt("use of undeclared type name `%s`",
|
|
connect(path.idents.map(|x| *x),
|
|
~"::")));
|
|
}
|
|
}
|
|
}
|
|
|
|
_ {
|
|
// Just resolve embedded types.
|
|
visit_ty(ty, (), visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_pattern(pattern: @pat,
|
|
mode: PatternBindingMode,
|
|
mutability: Mutability,
|
|
bindings_list: option<hashmap<Atom,()>>,
|
|
visitor: ResolveVisitor) {
|
|
|
|
do walk_pat(pattern) |pattern| {
|
|
alt pattern.node {
|
|
pat_ident(path, _)
|
|
if !path.global && path.idents.len() == 1u {
|
|
|
|
// The meaning of pat_ident with no type parameters
|
|
// depends on whether an enum variant with that name is in
|
|
// scope. The probing lookup has to be careful not to emit
|
|
// spurious errors. Only matching patterns (alt) can match
|
|
// nullary variants. For binding patterns (let), matching
|
|
// such a variant is simply disallowed (since it's rarely
|
|
// what you want).
|
|
|
|
let atom = (*self.atom_table).intern(path.idents[0]);
|
|
|
|
alt self.resolve_enum_variant_or_const(atom) {
|
|
FoundEnumVariant(def) if mode == RefutableMode {
|
|
#debug("(resolving pattern) resolving `%s` to \
|
|
enum variant",
|
|
*path.idents[0]);
|
|
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
FoundEnumVariant(_) {
|
|
self.session.span_err(pattern.span,
|
|
#fmt("declaration of `%s` \
|
|
shadows an enum \
|
|
that's in scope",
|
|
*(*self.atom_table).
|
|
atom_to_str
|
|
(atom)));
|
|
}
|
|
FoundConst {
|
|
self.session.span_err(pattern.span,
|
|
~"pattern variable \
|
|
conflicts with a constant \
|
|
in scope");
|
|
}
|
|
EnumVariantOrConstNotFound {
|
|
#debug("(resolving pattern) binding `%s`",
|
|
*path.idents[0]);
|
|
|
|
let is_mutable = mutability == Mutable;
|
|
|
|
let mut def;
|
|
alt mode {
|
|
RefutableMode {
|
|
// For pattern arms, we must use
|
|
// `def_binding` definitions.
|
|
|
|
def = def_binding(pattern.id);
|
|
}
|
|
IrrefutableMode {
|
|
// But for locals, we use `def_local`.
|
|
def = def_local(pattern.id, is_mutable);
|
|
}
|
|
}
|
|
|
|
// Record the definition so that later passes
|
|
// will be able to distinguish variants from
|
|
// locals in patterns.
|
|
|
|
self.record_def(pattern.id, def);
|
|
|
|
// Add the binding to the local ribs, if it
|
|
// doesn't already exist in the bindings list. (We
|
|
// must not add it if it's in the bindings list
|
|
// because that breaks the assumptions later
|
|
// passes make about or-patterns.)
|
|
|
|
alt bindings_list {
|
|
some(bindings_list)
|
|
if !bindings_list.contains_key(atom) {
|
|
let last_rib = (*self.value_ribs).last();
|
|
last_rib.bindings.insert(atom,
|
|
dl_def(def));
|
|
bindings_list.insert(atom, ());
|
|
}
|
|
some(_) {
|
|
// Do nothing.
|
|
}
|
|
none {
|
|
let last_rib = (*self.value_ribs).last();
|
|
last_rib.bindings.insert(atom,
|
|
dl_def(def));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for path.types.each |ty| {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
}
|
|
|
|
pat_ident(path, _) | pat_enum(path, _) {
|
|
// These two must be enum variants.
|
|
alt self.resolve_path(path, ValueNS, false, visitor) {
|
|
some(def @ def_variant(*)) {
|
|
self.record_def(pattern.id, def);
|
|
}
|
|
some(_) {
|
|
self.session.span_err(path.span,
|
|
#fmt("not an enum \
|
|
variant: %s",
|
|
*path.idents.last()));
|
|
}
|
|
none {
|
|
self.session.span_err(path.span,
|
|
~"unresolved enum variant");
|
|
}
|
|
}
|
|
|
|
// Check the types in the path pattern.
|
|
for path.types.each |ty| {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
}
|
|
|
|
pat_lit(expr) {
|
|
self.resolve_expr(expr, visitor);
|
|
}
|
|
|
|
pat_range(first_expr, last_expr) {
|
|
self.resolve_expr(first_expr, visitor);
|
|
self.resolve_expr(last_expr, visitor);
|
|
}
|
|
|
|
_ {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_enum_variant_or_const(name: Atom)
|
|
-> EnumVariantOrConstResolution {
|
|
|
|
alt self.resolve_item_in_lexical_scope(self.current_module,
|
|
name,
|
|
ValueNS) {
|
|
|
|
Success(target) {
|
|
alt target.bindings.value_def {
|
|
none {
|
|
fail ~"resolved name in the value namespace to a set \
|
|
of name bindings with no def?!";
|
|
}
|
|
some(def @ def_variant(*)) {
|
|
ret FoundEnumVariant(def);
|
|
}
|
|
some(def_const(*)) {
|
|
ret FoundConst;
|
|
}
|
|
some(_) {
|
|
ret EnumVariantOrConstNotFound;
|
|
}
|
|
}
|
|
}
|
|
|
|
Indeterminate {
|
|
fail ~"unexpected indeterminate result";
|
|
}
|
|
|
|
Failed {
|
|
ret EnumVariantOrConstNotFound;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* If `check_ribs` is true, checks the local definitions first; i.e.
|
|
* doesn't skip straight to the containing module.
|
|
*/
|
|
fn resolve_path(path: @path, namespace: Namespace, check_ribs: bool,
|
|
visitor: ResolveVisitor)
|
|
-> option<def> {
|
|
|
|
// First, resolve the types.
|
|
for path.types.each |ty| {
|
|
self.resolve_type(ty, visitor);
|
|
}
|
|
|
|
if path.global {
|
|
ret self.resolve_crate_relative_path(path,
|
|
self.xray_context,
|
|
namespace);
|
|
}
|
|
|
|
if path.idents.len() > 1u {
|
|
ret self.resolve_module_relative_path(path,
|
|
self.xray_context,
|
|
namespace);
|
|
}
|
|
|
|
ret self.resolve_identifier(path.idents.last(),
|
|
namespace,
|
|
check_ribs,
|
|
path.span);
|
|
}
|
|
|
|
fn resolve_identifier(identifier: ident,
|
|
namespace: Namespace,
|
|
check_ribs: bool,
|
|
span: span)
|
|
-> option<def> {
|
|
|
|
if check_ribs {
|
|
alt self.resolve_identifier_in_local_ribs(identifier,
|
|
namespace,
|
|
span) {
|
|
some(def) {
|
|
ret some(def);
|
|
}
|
|
none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
ret self.resolve_item_by_identifier_in_lexical_scope(identifier,
|
|
namespace);
|
|
}
|
|
|
|
// XXX: Merge me with resolve_name_in_module?
|
|
fn resolve_definition_of_name_in_module(containing_module: @Module,
|
|
name: Atom,
|
|
namespace: Namespace,
|
|
xray: XrayFlag)
|
|
-> NameDefinition {
|
|
|
|
if xray == NoXray && !self.name_is_exported(containing_module, name) {
|
|
#debug("(resolving definition of name in module) name `%s` is \
|
|
unexported",
|
|
*(*self.atom_table).atom_to_str(name));
|
|
ret NoNameDefinition;
|
|
}
|
|
|
|
// First, search children.
|
|
alt containing_module.children.find(name) {
|
|
some(child_name_bindings) {
|
|
alt (*child_name_bindings).def_for_namespace(namespace) {
|
|
some(def) {
|
|
// Found it. Stop the search here.
|
|
ret ChildNameDefinition(def);
|
|
}
|
|
none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
none {
|
|
// Continue.
|
|
}
|
|
}
|
|
|
|
// Next, search import resolutions.
|
|
alt containing_module.import_resolutions.find(name) {
|
|
some(import_resolution) {
|
|
alt (*import_resolution).target_for_namespace(namespace) {
|
|
some(target) {
|
|
alt (*target.bindings).def_for_namespace(namespace) {
|
|
some(def) {
|
|
// Found it.
|
|
import_resolution.used = true;
|
|
ret ImportNameDefinition(def);
|
|
}
|
|
none {
|
|
// This can happen with external impls, due to
|
|
// the imperfect way we read the metadata.
|
|
|
|
ret NoNameDefinition;
|
|
}
|
|
}
|
|
}
|
|
none {
|
|
ret NoNameDefinition;
|
|
}
|
|
}
|
|
}
|
|
none {
|
|
ret NoNameDefinition;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn intern_module_part_of_path(path: @path) -> @dvec<Atom> {
|
|
let module_path_atoms = @dvec();
|
|
for path.idents.eachi |index, ident| {
|
|
if index == path.idents.len() - 1u {
|
|
break;
|
|
}
|
|
|
|
(*module_path_atoms).push((*self.atom_table).intern(ident));
|
|
}
|
|
|
|
ret module_path_atoms;
|
|
}
|
|
|
|
fn resolve_module_relative_path(path: @path,
|
|
+xray: XrayFlag,
|
|
namespace: Namespace)
|
|
-> option<def> {
|
|
|
|
let module_path_atoms = self.intern_module_part_of_path(path);
|
|
|
|
let mut containing_module;
|
|
alt self.resolve_module_path_for_import(self.current_module,
|
|
module_path_atoms,
|
|
xray,
|
|
path.span) {
|
|
|
|
Failed {
|
|
self.session.span_err(path.span,
|
|
#fmt("use of undeclared module `%s`",
|
|
*(*self.atom_table).atoms_to_str
|
|
((*module_path_atoms).get())));
|
|
ret none;
|
|
}
|
|
|
|
Indeterminate {
|
|
fail ~"indeterminate unexpected";
|
|
}
|
|
|
|
Success(resulting_module) {
|
|
containing_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
let name = (*self.atom_table).intern(path.idents.last());
|
|
alt self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace,
|
|
xray) {
|
|
NoNameDefinition {
|
|
// We failed to resolve the name. Report an error.
|
|
self.session.span_err(path.span,
|
|
#fmt("unresolved name: %s::%s",
|
|
*(*self.atom_table).atoms_to_str
|
|
((*module_path_atoms).get()),
|
|
*(*self.atom_table).atom_to_str
|
|
(name)));
|
|
ret none;
|
|
}
|
|
ChildNameDefinition(def) | ImportNameDefinition(def) {
|
|
ret some(def);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_crate_relative_path(path: @path,
|
|
+xray: XrayFlag,
|
|
namespace: Namespace)
|
|
-> option<def> {
|
|
|
|
let module_path_atoms = self.intern_module_part_of_path(path);
|
|
|
|
let root_module = (*self.graph_root).get_module();
|
|
|
|
let mut containing_module;
|
|
alt self.resolve_module_path_from_root(root_module,
|
|
module_path_atoms,
|
|
0u,
|
|
xray,
|
|
path.span) {
|
|
|
|
Failed {
|
|
self.session.span_err(path.span,
|
|
#fmt("use of undeclared module `::%s`",
|
|
*(*self.atom_table).atoms_to_str
|
|
((*module_path_atoms).get())));
|
|
ret none;
|
|
}
|
|
|
|
Indeterminate {
|
|
fail ~"indeterminate unexpected";
|
|
}
|
|
|
|
Success(resulting_module) {
|
|
containing_module = resulting_module;
|
|
}
|
|
}
|
|
|
|
let name = (*self.atom_table).intern(path.idents.last());
|
|
alt self.resolve_definition_of_name_in_module(containing_module,
|
|
name,
|
|
namespace,
|
|
xray) {
|
|
NoNameDefinition {
|
|
// We failed to resolve the name. Report an error.
|
|
self.session.span_err(path.span,
|
|
#fmt("unresolved name: %s::%s",
|
|
*(*self.atom_table).atoms_to_str
|
|
((*module_path_atoms).get()),
|
|
*(*self.atom_table).atom_to_str
|
|
(name)));
|
|
ret none;
|
|
}
|
|
ChildNameDefinition(def) | ImportNameDefinition(def) {
|
|
ret some(def);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_identifier_in_local_ribs(identifier: ident,
|
|
namespace: Namespace,
|
|
span: span)
|
|
-> option<def> {
|
|
|
|
let name = (*self.atom_table).intern(identifier);
|
|
|
|
// Check the local set of ribs.
|
|
let mut search_result;
|
|
alt namespace {
|
|
ValueNS {
|
|
search_result = self.search_ribs(self.value_ribs, name, span,
|
|
DontAllowCapturingSelf);
|
|
}
|
|
TypeNS {
|
|
search_result = self.search_ribs(self.type_ribs, name, span,
|
|
AllowCapturingSelf);
|
|
}
|
|
ModuleNS | ImplNS {
|
|
fail ~"module or impl namespaces do not have local ribs";
|
|
}
|
|
}
|
|
|
|
alt copy search_result {
|
|
some(dl_def(def)) {
|
|
#debug("(resolving path in local ribs) resolved `%s` to \
|
|
local: %?",
|
|
*(*self.atom_table).atom_to_str(name),
|
|
def);
|
|
ret some(def);
|
|
}
|
|
some(dl_field) | some(dl_impl(_)) | none {
|
|
ret none;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_item_by_identifier_in_lexical_scope(ident: ident,
|
|
namespace: Namespace)
|
|
-> option<def> {
|
|
|
|
let name = (*self.atom_table).intern(ident);
|
|
|
|
// Check the items.
|
|
alt self.resolve_item_in_lexical_scope(self.current_module,
|
|
name,
|
|
namespace) {
|
|
|
|
Success(target) {
|
|
alt (*target.bindings).def_for_namespace(namespace) {
|
|
none {
|
|
fail ~"resolved name in a namespace to a set of name \
|
|
bindings with no def for that namespace?!";
|
|
}
|
|
some(def) {
|
|
#debug("(resolving item path in lexical scope) \
|
|
resolved `%s` to item",
|
|
*(*self.atom_table).atom_to_str(name));
|
|
ret some(def);
|
|
}
|
|
}
|
|
}
|
|
Indeterminate {
|
|
fail ~"unexpected indeterminate result";
|
|
}
|
|
Failed {
|
|
ret none;
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_expr(expr: @expr, visitor: ResolveVisitor) {
|
|
// First, write the implementations in scope into a table if the
|
|
// expression might need them.
|
|
|
|
self.record_impls_for_expr_if_necessary(expr);
|
|
|
|
// Then record candidate traits for this expression if it could result
|
|
// in the invocation of a method call.
|
|
|
|
self.record_candidate_traits_for_expr_if_necessary(expr);
|
|
|
|
// Next, resolve the node.
|
|
alt expr.node {
|
|
// The interpretation of paths depends on whether the path has
|
|
// multiple elements in it or not.
|
|
|
|
expr_path(path) {
|
|
// This is a local path in the value namespace. Walk through
|
|
// scopes looking for it.
|
|
|
|
alt self.resolve_path(path, ValueNS, true, visitor) {
|
|
some(def) {
|
|
// Write the result into the def map.
|
|
#debug("(resolving expr) resolved `%s`",
|
|
connect(path.idents.map(|x| *x), ~"::"));
|
|
self.record_def(expr.id, def);
|
|
}
|
|
none {
|
|
self.session.span_err(expr.span,
|
|
#fmt("unresolved name: %s",
|
|
connect(path.idents.map(|x| *x),
|
|
~"::")));
|
|
}
|
|
}
|
|
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
|
|
expr_fn(_, fn_decl, block, capture_clause) |
|
|
expr_fn_block(fn_decl, block, capture_clause) {
|
|
self.resolve_function(FunctionRibKind(expr.id),
|
|
some(@fn_decl),
|
|
NoTypeParameters,
|
|
block,
|
|
NoSelfBinding,
|
|
HasCaptureClause(capture_clause),
|
|
visitor);
|
|
}
|
|
|
|
expr_struct(path, _) {
|
|
// Resolve the path to the structure it goes to.
|
|
//
|
|
// XXX: We might want to support explicit type parameters in
|
|
// the path, in which case this gets a little more
|
|
// complicated:
|
|
//
|
|
// 1. Should we go through the ast_path_to_ty() path, which
|
|
// handles typedefs and the like?
|
|
//
|
|
// 2. If so, should programmers be able to write this?
|
|
//
|
|
// class Foo<A> { ... }
|
|
// type Bar<A> = Foo<A>;
|
|
// let bar = Bar { ... } // no type parameters
|
|
|
|
alt self.resolve_path(path, TypeNS, false, visitor) {
|
|
some(definition @ def_ty(class_id))
|
|
if self.structs.contains_key(class_id) {
|
|
|
|
self.record_def(expr.id, def_class(class_id));
|
|
}
|
|
_ {
|
|
self.session.span_err(path.span,
|
|
#fmt("`%s` does not name a \
|
|
structure",
|
|
connect(path.idents.map
|
|
(|x| *x),
|
|
~"::")));
|
|
}
|
|
}
|
|
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
|
|
_ {
|
|
visit_expr(expr, (), visitor);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_impls_for_expr_if_necessary(expr: @expr) {
|
|
alt expr.node {
|
|
expr_field(*) | expr_path(*) | expr_cast(*) | expr_binary(*) |
|
|
expr_unary(*) | expr_assign_op(*) | expr_index(*) {
|
|
self.impl_map.insert(expr.id,
|
|
self.current_module.impl_scopes);
|
|
}
|
|
expr_new(container, _, _) {
|
|
self.impl_map.insert(container.id,
|
|
self.current_module.impl_scopes);
|
|
}
|
|
_ {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_candidate_traits_for_expr_if_necessary(expr: @expr) {
|
|
alt expr.node {
|
|
expr_field(_, ident, _) {
|
|
let atom = (*self.atom_table).intern(ident);
|
|
let traits = self.search_for_traits_containing_method(atom);
|
|
self.trait_map.insert(expr.id, traits);
|
|
}
|
|
_ {
|
|
// Nothing to do.
|
|
//
|
|
// XXX: Handle more here... operator overloading, placement
|
|
// new, etc.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn search_for_traits_containing_method(name: Atom) -> @dvec<def_id> {
|
|
let found_traits = @dvec();
|
|
let mut search_module = self.current_module;
|
|
loop {
|
|
// Look for the current trait.
|
|
alt copy self.current_trait_refs {
|
|
some(trait_def_ids) {
|
|
for trait_def_ids.each |trait_def_id| {
|
|
self.add_trait_info_if_containing_method
|
|
(found_traits, trait_def_id, name);
|
|
}
|
|
}
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
}
|
|
|
|
// Look for trait children.
|
|
for search_module.children.each |_name, child_name_bindings| {
|
|
alt child_name_bindings.def_for_namespace(TypeNS) {
|
|
some(def_ty(trait_def_id)) {
|
|
self.add_trait_info_if_containing_method(found_traits,
|
|
trait_def_id,
|
|
name);
|
|
}
|
|
some(_) | none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for imports.
|
|
for search_module.import_resolutions.each
|
|
|_atom, import_resolution| {
|
|
|
|
alt import_resolution.target_for_namespace(TypeNS) {
|
|
none {
|
|
// Continue.
|
|
}
|
|
some(target) {
|
|
alt target.bindings.def_for_namespace(TypeNS) {
|
|
some(def_ty(trait_def_id)) {
|
|
self.add_trait_info_if_containing_method
|
|
(found_traits, trait_def_id, name);
|
|
}
|
|
some(_) | none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move to the next parent.
|
|
alt search_module.parent_link {
|
|
NoParentLink {
|
|
// Done.
|
|
break;
|
|
}
|
|
ModuleParentLink(parent_module, _) |
|
|
BlockParentLink(parent_module, _) {
|
|
search_module = parent_module;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret found_traits;
|
|
}
|
|
|
|
fn add_trait_info_if_containing_method(found_traits: @dvec<def_id>,
|
|
trait_def_id: def_id,
|
|
name: Atom) {
|
|
|
|
alt self.trait_info.find(trait_def_id) {
|
|
some(trait_info) if trait_info.contains_key(name) {
|
|
#debug("(adding trait info if containing method) found trait \
|
|
%d:%d for method '%s'",
|
|
trait_def_id.crate,
|
|
trait_def_id.node,
|
|
*(*self.atom_table).atom_to_str(name));
|
|
(*found_traits).push(trait_def_id);
|
|
}
|
|
some(_) | none {
|
|
// Continue.
|
|
}
|
|
}
|
|
}
|
|
|
|
fn record_def(node_id: node_id, def: def) {
|
|
#debug("(recording def) recording %? for %?", def, node_id);
|
|
self.def_map.insert(node_id, def);
|
|
}
|
|
|
|
//
|
|
// Unused import checking
|
|
//
|
|
// Although this is a lint pass, it lives in here because it depends on
|
|
// resolve data structures.
|
|
//
|
|
|
|
fn check_for_unused_imports_if_necessary() {
|
|
if self.unused_import_lint_level == ignore {
|
|
ret;
|
|
}
|
|
|
|
let root_module = (*self.graph_root).get_module();
|
|
self.check_for_unused_imports_in_module_subtree(root_module);
|
|
}
|
|
|
|
fn check_for_unused_imports_in_module_subtree(module: @Module) {
|
|
// If this isn't a local crate, then bail out. We don't need to check
|
|
// for unused imports in external crates.
|
|
|
|
alt module.def_id {
|
|
some(def_id) if def_id.crate == local_crate {
|
|
// OK. Continue.
|
|
}
|
|
none {
|
|
// Check for unused imports in the root module.
|
|
}
|
|
some(_) {
|
|
// Bail out.
|
|
#debug("(checking for unused imports in module subtree) not \
|
|
checking for unused imports for `%s`",
|
|
self.module_to_str(module));
|
|
ret;
|
|
}
|
|
}
|
|
|
|
self.check_for_unused_imports_in_module(module);
|
|
|
|
for module.children.each |_atom, child_name_bindings| {
|
|
alt (*child_name_bindings).get_module_if_available() {
|
|
none {
|
|
// Nothing to do.
|
|
}
|
|
some(child_module) {
|
|
self.check_for_unused_imports_in_module_subtree
|
|
(child_module);
|
|
}
|
|
}
|
|
}
|
|
|
|
for module.anonymous_children.each |_node_id, child_module| {
|
|
self.check_for_unused_imports_in_module_subtree(child_module);
|
|
}
|
|
}
|
|
|
|
fn check_for_unused_imports_in_module(module: @Module) {
|
|
for module.import_resolutions.each |_impl_name, import_resolution| {
|
|
if !import_resolution.used {
|
|
alt self.unused_import_lint_level {
|
|
warn {
|
|
self.session.span_warn(import_resolution.span,
|
|
~"unused import");
|
|
}
|
|
error {
|
|
self.session.span_err(import_resolution.span,
|
|
~"unused import");
|
|
}
|
|
ignore {
|
|
self.session.span_bug(import_resolution.span,
|
|
~"shouldn't be here if lint \
|
|
pass is ignored");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Diagnostics
|
|
//
|
|
// Diagnostics are not particularly efficient, because they're rarely
|
|
// hit.
|
|
//
|
|
|
|
/// A somewhat inefficient routine to print out the name of a module.
|
|
fn module_to_str(module: @Module) -> ~str {
|
|
let atoms = dvec();
|
|
let mut current_module = module;
|
|
loop {
|
|
alt current_module.parent_link {
|
|
NoParentLink {
|
|
break;
|
|
}
|
|
ModuleParentLink(module, name) {
|
|
atoms.push(name);
|
|
current_module = module;
|
|
}
|
|
BlockParentLink(module, node_id) {
|
|
atoms.push((*self.atom_table).intern(@~"<opaque>"));
|
|
current_module = module;
|
|
}
|
|
}
|
|
}
|
|
|
|
if atoms.len() == 0u {
|
|
ret ~"???";
|
|
}
|
|
|
|
let mut string = ~"";
|
|
let mut i = atoms.len() - 1u;
|
|
loop {
|
|
if i < atoms.len() - 1u {
|
|
string += ~"::";
|
|
}
|
|
string += *(*self.atom_table).atom_to_str(atoms.get_elt(i));
|
|
|
|
if i == 0u {
|
|
break;
|
|
}
|
|
i -= 1u;
|
|
}
|
|
|
|
ret string;
|
|
}
|
|
|
|
fn dump_module(module: @Module) {
|
|
#debug("Dump of module `%s`:", self.module_to_str(module));
|
|
|
|
#debug("Children:");
|
|
for module.children.each |name, _child| {
|
|
#debug("* %s", *(*self.atom_table).atom_to_str(name));
|
|
}
|
|
|
|
#debug("Import resolutions:");
|
|
for module.import_resolutions.each |name, import_resolution| {
|
|
let mut module_repr;
|
|
alt (*import_resolution).target_for_namespace(ModuleNS) {
|
|
none { module_repr = ~""; }
|
|
some(target) {
|
|
module_repr = ~" module:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
let mut value_repr;
|
|
alt (*import_resolution).target_for_namespace(ValueNS) {
|
|
none { value_repr = ~""; }
|
|
some(target) {
|
|
value_repr = ~" value:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
let mut type_repr;
|
|
alt (*import_resolution).target_for_namespace(TypeNS) {
|
|
none { type_repr = ~""; }
|
|
some(target) {
|
|
type_repr = ~" type:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
let mut impl_repr;
|
|
alt (*import_resolution).target_for_namespace(ImplNS) {
|
|
none { impl_repr = ~""; }
|
|
some(target) {
|
|
impl_repr = ~" impl:?";
|
|
// XXX
|
|
}
|
|
}
|
|
|
|
#debug("* %s:%s%s%s%s",
|
|
*(*self.atom_table).atom_to_str(name),
|
|
module_repr, value_repr, type_repr, impl_repr);
|
|
}
|
|
}
|
|
|
|
fn dump_impl_scopes(impl_scopes: ImplScopes) {
|
|
#debug("Dump of impl scopes:");
|
|
|
|
let mut i = 0u;
|
|
let mut impl_scopes = impl_scopes;
|
|
loop {
|
|
alt *impl_scopes {
|
|
cons(impl_scope, rest_impl_scopes) {
|
|
#debug("Impl scope %u:", i);
|
|
|
|
for (*impl_scope).each |implementation| {
|
|
#debug("Impl: %s", *implementation.ident);
|
|
}
|
|
|
|
i += 1u;
|
|
impl_scopes = rest_impl_scopes;
|
|
}
|
|
nil {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Entry point to crate resolution.
|
|
fn resolve_crate(session: session, ast_map: ASTMap, crate: @crate)
|
|
-> { def_map: DefMap,
|
|
exp_map: ExportMap,
|
|
impl_map: ImplMap,
|
|
trait_map: TraitMap } {
|
|
|
|
let resolver = @Resolver(session, ast_map, crate);
|
|
(*resolver).resolve(resolver);
|
|
ret {
|
|
def_map: resolver.def_map,
|
|
exp_map: resolver.export_map,
|
|
impl_map: resolver.impl_map,
|
|
trait_map: resolver.trait_map
|
|
};
|
|
}
|
|
|