rust/src/librand/lib.rs
2017-08-25 16:18:21 -04:00

481 lines
15 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interface to random number generators in Rust.
//!
//! This is an experimental library which lives underneath the standard library
//! in its dependency chain. This library is intended to define the interface
//! for random number generation and also provide utilities around doing so. It
//! is not recommended to use this library directly, but rather the official
//! interface through `std::rand`.
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/",
html_playground_url = "https://play.rust-lang.org/",
test(attr(deny(warnings))))]
#![deny(warnings)]
#![deny(missing_debug_implementations)]
#![no_std]
#![unstable(feature = "rand",
reason = "use `rand` from crates.io",
issue = "27703")]
#![feature(core_intrinsics)]
#![feature(staged_api)]
#![feature(iterator_step_by)]
#![feature(custom_attribute)]
#![feature(specialization)]
#![allow(unused_attributes)]
#![cfg_attr(not(test), feature(core_float))] // only necessary for no_std
#![cfg_attr(test, feature(test, rand))]
#![allow(deprecated)]
#[cfg(test)]
#[macro_use]
extern crate std;
use core::fmt;
use core::f64;
use core::intrinsics;
use core::marker::PhantomData;
pub use isaac::{Isaac64Rng, IsaacRng};
pub use chacha::ChaChaRng;
use distributions::{IndependentSample, Range};
use distributions::range::SampleRange;
#[cfg(test)]
const RAND_BENCH_N: u64 = 100;
pub mod distributions;
pub mod isaac;
pub mod chacha;
pub mod reseeding;
mod rand_impls;
// Temporary trait to implement a few floating-point routines
// needed by librand; this is necessary because librand doesn't
// depend on libstd. This will go away when librand is integrated
// into libstd.
#[doc(hidden)]
trait FloatMath: Sized {
fn exp(self) -> Self;
fn ln(self) -> Self;
fn sqrt(self) -> Self;
fn powf(self, n: Self) -> Self;
}
impl FloatMath for f64 {
#[inline]
fn exp(self) -> f64 {
unsafe { intrinsics::expf64(self) }
}
#[inline]
fn ln(self) -> f64 {
unsafe { intrinsics::logf64(self) }
}
#[inline]
fn powf(self, n: f64) -> f64 {
unsafe { intrinsics::powf64(self, n) }
}
#[inline]
fn sqrt(self) -> f64 {
if self < 0.0 {
f64::NAN
} else {
unsafe { intrinsics::sqrtf64(self) }
}
}
}
/// A type that can be randomly generated using an `Rng`.
#[doc(hidden)]
pub trait Rand: Sized {
/// Generates a random instance of this type using the specified source of
/// randomness.
fn rand<R: Rng>(rng: &mut R) -> Self;
}
/// A random number generator.
pub trait Rng: Sized {
/// Return the next random u32.
///
/// This rarely needs to be called directly, prefer `r.gen()` to
/// `r.next_u32()`.
// FIXME #7771: Should be implemented in terms of next_u64
fn next_u32(&mut self) -> u32;
/// Return the next random u64.
///
/// By default this is implemented in terms of `next_u32`. An
/// implementation of this trait must provide at least one of
/// these two methods. Similarly to `next_u32`, this rarely needs
/// to be called directly, prefer `r.gen()` to `r.next_u64()`.
fn next_u64(&mut self) -> u64 {
((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
}
/// Return the next random f32 selected from the half-open
/// interval `[0, 1)`.
///
/// By default this is implemented in terms of `next_u32`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f32(&mut self) -> f32 {
const MANTISSA_BITS: usize = 24;
const IGNORED_BITS: usize = 8;
const SCALE: f32 = (1u64 << MANTISSA_BITS) as f32;
// using any more than `MANTISSA_BITS` bits will
// cause (e.g.) 0xffff_ffff to correspond to 1
// exactly, so we need to drop some (8 for f32, 11
// for f64) to guarantee the open end.
(self.next_u32() >> IGNORED_BITS) as f32 / SCALE
}
/// Return the next random f64 selected from the half-open
/// interval `[0, 1)`.
///
/// By default this is implemented in terms of `next_u64`, but a
/// random number generator which can generate numbers satisfying
/// the requirements directly can overload this for performance.
/// It is required that the return value lies in `[0, 1)`.
///
/// See `Closed01` for the closed interval `[0,1]`, and
/// `Open01` for the open interval `(0,1)`.
fn next_f64(&mut self) -> f64 {
const MANTISSA_BITS: usize = 53;
const IGNORED_BITS: usize = 11;
const SCALE: f64 = (1u64 << MANTISSA_BITS) as f64;
(self.next_u64() >> IGNORED_BITS) as f64 / SCALE
}
/// Fill `dest` with random data.
///
/// This has a default implementation in terms of `next_u64` and
/// `next_u32`, but should be overridden by implementations that
/// offer a more efficient solution than just calling those
/// methods repeatedly.
///
/// This method does *not* have a requirement to bear any fixed
/// relationship to the other methods, for example, it does *not*
/// have to result in the same output as progressively filling
/// `dest` with `self.gen::<u8>()`, and any such behavior should
/// not be relied upon.
///
/// This method should guarantee that `dest` is entirely filled
/// with new data, and may panic if this is impossible
/// (e.g. reading past the end of a file that is being used as the
/// source of randomness).
fn fill_bytes(&mut self, dest: &mut [u8]) {
// this could, in theory, be done by transmuting dest to a
// [u64], but this is (1) likely to be undefined behaviour for
// LLVM, (2) has to be very careful about alignment concerns,
// (3) adds more `unsafe` that needs to be checked, (4)
// probably doesn't give much performance gain if
// optimisations are on.
let mut count = 0;
let mut num = 0;
for byte in dest {
if count == 0 {
// we could micro-optimise here by generating a u32 if
// we only need a few more bytes to fill the vector
// (i.e. at most 4).
num = self.next_u64();
count = 8;
}
*byte = (num & 0xff) as u8;
num >>= 8;
count -= 1;
}
}
/// Return a random value of a `Rand` type.
#[inline(always)]
fn gen<T: Rand>(&mut self) -> T {
Rand::rand(self)
}
/// Return an iterator that will yield an infinite number of randomly
/// generated items.
fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> {
Generator {
rng: self,
_marker: PhantomData,
}
}
/// Generate a random value in the range [`low`, `high`).
///
/// This is a convenience wrapper around
/// `distributions::Range`. If this function will be called
/// repeatedly with the same arguments, one should use `Range`, as
/// that will amortize the computations that allow for perfect
/// uniformity, as they only happen on initialization.
///
/// # Panics
///
/// Panics if `low >= high`.
fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T {
assert!(low < high, "Rng.gen_range called with low >= high");
Range::new(low, high).ind_sample(self)
}
/// Return a bool with a 1 in n chance of true
fn gen_weighted_bool(&mut self, n: usize) -> bool {
n <= 1 || self.gen_range(0, n) == 0
}
/// Return an iterator of random characters from the set A-Z,a-z,0-9.
fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> {
AsciiGenerator { rng: self }
}
/// Return a random element from `values`.
///
/// Return `None` if `values` is empty.
fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> {
if values.is_empty() {
None
} else {
Some(&values[self.gen_range(0, values.len())])
}
}
/// Shuffle a mutable slice in place.
fn shuffle<T>(&mut self, values: &mut [T]) {
let mut i = values.len();
while i >= 2 {
// invariant: elements with index >= i have been locked in place.
i -= 1;
// lock element i in place.
values.swap(i, self.gen_range(0, i + 1));
}
}
}
/// Iterator which will generate a stream of random items.
///
/// This iterator is created via the `gen_iter` method on `Rng`.
pub struct Generator<'a, T, R: 'a> {
rng: &'a mut R,
_marker: PhantomData<T>,
}
impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> {
type Item = T;
fn next(&mut self) -> Option<T> {
Some(self.rng.gen())
}
}
impl<'a, T, R: fmt::Debug> fmt::Debug for Generator<'a, T, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("Generator")
.field("rng", &self.rng)
.finish()
}
}
/// Iterator which will continuously generate random ascii characters.
///
/// This iterator is created via the `gen_ascii_chars` method on `Rng`.
pub struct AsciiGenerator<'a, R: 'a> {
rng: &'a mut R,
}
impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> {
type Item = char;
fn next(&mut self) -> Option<char> {
const GEN_ASCII_STR_CHARSET: &'static [u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
}
}
impl<'a, R: fmt::Debug> fmt::Debug for AsciiGenerator<'a, R> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("AsciiGenerator")
.field("rng", &self.rng)
.finish()
}
}
/// A random number generator that can be explicitly seeded to produce
/// the same stream of randomness multiple times.
pub trait SeedableRng<Seed>: Rng {
/// Reseed an RNG with the given seed.
fn reseed(&mut self, _: Seed);
/// Create a new RNG with the given seed.
fn from_seed(seed: Seed) -> Self;
}
/// An Xorshift[1] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [1]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[derive(Clone, Debug)]
pub struct XorShiftRng {
x: u32,
y: u32,
z: u32,
w: u32,
}
impl XorShiftRng {
/// Creates a new XorShiftRng instance which is not seeded.
///
/// The initial values of this RNG are constants, so all generators created
/// by this function will yield the same stream of random numbers. It is
/// highly recommended that this is created through `SeedableRng` instead of
/// this function
pub fn new_unseeded() -> XorShiftRng {
XorShiftRng {
x: 0x193a6754,
y: 0xa8a7d469,
z: 0x97830e05,
w: 0x113ba7bb,
}
}
}
impl Rng for XorShiftRng {
#[inline]
fn next_u32(&mut self) -> u32 {
let x = self.x;
let t = x ^ (x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
let w = self.w;
self.w = w ^ (w >> 19) ^ (t ^ (t >> 8));
self.w
}
}
impl SeedableRng<[u32; 4]> for XorShiftRng {
/// Reseed an XorShiftRng. This will panic if `seed` is entirely 0.
fn reseed(&mut self, seed: [u32; 4]) {
assert!(!seed.iter().all(|&x| x == 0),
"XorShiftRng.reseed called with an all zero seed.");
self.x = seed[0];
self.y = seed[1];
self.z = seed[2];
self.w = seed[3];
}
/// Create a new XorShiftRng. This will panic if `seed` is entirely 0.
fn from_seed(seed: [u32; 4]) -> XorShiftRng {
assert!(!seed.iter().all(|&x| x == 0),
"XorShiftRng::from_seed called with an all zero seed.");
XorShiftRng {
x: seed[0],
y: seed[1],
z: seed[2],
w: seed[3],
}
}
}
impl Rand for XorShiftRng {
fn rand<R: Rng>(rng: &mut R) -> XorShiftRng {
let mut tuple: (u32, u32, u32, u32) = rng.gen();
while tuple == (0, 0, 0, 0) {
tuple = rng.gen();
}
let (x, y, z, w) = tuple;
XorShiftRng {
x,
y,
z,
w,
}
}
}
/// A wrapper for generating floating point numbers uniformly in the
/// open interval `(0,1)` (not including either endpoint).
///
/// Use `Closed01` for the closed interval `[0,1]`, and the default
/// `Rand` implementation for `f32` and `f64` for the half-open
/// `[0,1)`.
pub struct Open01<F>(pub F);
impl<F: fmt::Debug> fmt::Debug for Open01<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Open01")
.field(&self.0)
.finish()
}
}
/// A wrapper for generating floating point numbers uniformly in the
/// closed interval `[0,1]` (including both endpoints).
///
/// Use `Open01` for the closed interval `(0,1)`, and the default
/// `Rand` implementation of `f32` and `f64` for the half-open
/// `[0,1)`.
pub struct Closed01<F>(pub F);
impl<F: fmt::Debug> fmt::Debug for Closed01<F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Closed01")
.field(&self.0)
.finish()
}
}
#[cfg(test)]
mod test {
use std::__rand as rand;
pub struct MyRng<R> {
inner: R,
}
impl<R: rand::Rng> ::Rng for MyRng<R> {
fn next_u32(&mut self) -> u32 {
rand::Rng::next_u32(&mut self.inner)
}
}
pub fn rng() -> MyRng<rand::ThreadRng> {
MyRng { inner: rand::thread_rng() }
}
pub fn weak_rng() -> MyRng<rand::ThreadRng> {
MyRng { inner: rand::thread_rng() }
}
}