Niko Matsakis 389ef6601d Implement multidispatch and conditional dispatch. Because we do not
attempt to preserve crate concatenation, this is a backwards compatible
change.

Conflicts:
	src/librustc/middle/traits/select.rs
2014-10-09 17:19:50 -04:00

400 lines
12 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::subst;
use middle::subst::{ParamSpace, Subst, Substs, VecPerParamSpace};
use middle::typeck::infer::InferCtxt;
use middle::ty;
use std::collections::HashSet;
use std::fmt;
use std::rc::Rc;
use syntax::ast;
use syntax::codemap::Span;
use util::ppaux::Repr;
use super::{ErrorReported, Obligation, ObligationCause, VtableImpl,
VtableParam, VtableParamData, VtableImplData};
///////////////////////////////////////////////////////////////////////////
// Supertrait iterator
pub struct Supertraits<'cx, 'tcx:'cx> {
tcx: &'cx ty::ctxt<'tcx>,
stack: Vec<SupertraitEntry>,
visited: HashSet<Rc<ty::TraitRef>>,
}
struct SupertraitEntry {
position: uint,
supertraits: Vec<Rc<ty::TraitRef>>,
}
pub fn supertraits<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>,
trait_ref: Rc<ty::TraitRef>)
-> Supertraits<'cx, 'tcx>
{
/*!
* Returns an iterator over the trait reference `T` and all of its
* supertrait references. May contain duplicates. In general
* the ordering is not defined.
*
* Example:
*
* ```
* trait Foo { ... }
* trait Bar : Foo { ... }
* trait Baz : Bar+Foo { ... }
* ```
*
* `supertraits(Baz)` yields `[Baz, Bar, Foo, Foo]` in some order.
*/
transitive_bounds(tcx, [trait_ref])
}
pub fn transitive_bounds<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>,
bounds: &[Rc<ty::TraitRef>])
-> Supertraits<'cx, 'tcx>
{
let bounds = Vec::from_fn(bounds.len(), |i| bounds[i].clone());
let visited: HashSet<Rc<ty::TraitRef>> =
bounds.iter()
.map(|b| (*b).clone())
.collect();
let entry = SupertraitEntry { position: 0, supertraits: bounds };
Supertraits { tcx: tcx, stack: vec![entry], visited: visited }
}
impl<'cx, 'tcx> Supertraits<'cx, 'tcx> {
fn push(&mut self, trait_ref: &ty::TraitRef) {
let ty::ParamBounds { builtin_bounds, mut trait_bounds, .. } =
ty::bounds_for_trait_ref(self.tcx, trait_ref);
for builtin_bound in builtin_bounds.iter() {
let bound_trait_ref = trait_ref_for_builtin_bound(self.tcx,
builtin_bound,
trait_ref.self_ty());
bound_trait_ref.map(|trait_ref| trait_bounds.push(trait_ref));
}
// Only keep those bounds that we haven't already seen. This
// is necessary to prevent infinite recursion in some cases.
// One common case is when people define `trait Sized { }`
// rather than `trait Sized for Sized? { }`.
trait_bounds.retain(|r| self.visited.insert((*r).clone()));
let entry = SupertraitEntry { position: 0, supertraits: trait_bounds };
self.stack.push(entry);
}
pub fn indices(&self) -> Vec<uint> {
/*!
* Returns the path taken through the trait supertraits to
* reach the current point.
*/
self.stack.iter().map(|e| e.position).collect()
}
}
impl<'cx, 'tcx> Iterator<Rc<ty::TraitRef>> for Supertraits<'cx, 'tcx> {
fn next(&mut self) -> Option<Rc<ty::TraitRef>> {
loop {
// Extract next item from top-most stack frame, if any.
let next_trait = match self.stack.mut_last() {
None => {
// No more stack frames. Done.
return None;
}
Some(entry) => {
let p = entry.position;
if p < entry.supertraits.len() {
// Still more supertraits left in the top stack frame.
entry.position += 1;
let next_trait =
(*entry.supertraits.get(p)).clone();
Some(next_trait)
} else {
None
}
}
};
match next_trait {
Some(next_trait) => {
self.push(&*next_trait);
return Some(next_trait);
}
None => {
// Top stack frame is exhausted, pop it.
self.stack.pop();
}
}
}
}
}
// determine the `self` type, using fresh variables for all variables
// declared on the impl declaration e.g., `impl<A,B> for ~[(A,B)]`
// would return ($0, $1) where $0 and $1 are freshly instantiated type
// variables.
pub fn fresh_substs_for_impl(infcx: &InferCtxt,
span: Span,
impl_def_id: ast::DefId)
-> Substs
{
let tcx = infcx.tcx;
let impl_generics = ty::lookup_item_type(tcx, impl_def_id).generics;
infcx.fresh_substs_for_generics(span, &impl_generics)
}
impl<N> fmt::Show for VtableImplData<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableImpl({})", self.impl_def_id)
}
}
impl fmt::Show for VtableParamData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableParam(...)")
}
}
pub fn obligations_for_generics(tcx: &ty::ctxt,
cause: ObligationCause,
recursion_depth: uint,
generics: &ty::Generics,
substs: &Substs)
-> VecPerParamSpace<Obligation>
{
/*! See `super::obligations_for_generics` */
debug!("obligations_for_generics(generics={}, substs={})",
generics.repr(tcx), substs.repr(tcx));
let mut obligations = VecPerParamSpace::empty();
for def in generics.types.iter() {
push_obligations_for_param_bounds(tcx,
cause,
recursion_depth,
def.space,
def.index,
&def.bounds,
substs,
&mut obligations);
}
debug!("obligations() ==> {}", obligations.repr(tcx));
return obligations;
}
fn push_obligations_for_param_bounds(
tcx: &ty::ctxt,
cause: ObligationCause,
recursion_depth: uint,
space: subst::ParamSpace,
index: uint,
param_bounds: &ty::ParamBounds,
param_substs: &Substs,
obligations: &mut VecPerParamSpace<Obligation>)
{
let param_ty = *param_substs.types.get(space, index);
for builtin_bound in param_bounds.builtin_bounds.iter() {
let obligation = obligation_for_builtin_bound(tcx,
cause,
builtin_bound,
recursion_depth,
param_ty);
match obligation {
Ok(ob) => obligations.push(space, ob),
_ => {}
}
}
for bound_trait_ref in param_bounds.trait_bounds.iter() {
let bound_trait_ref = bound_trait_ref.subst(tcx, param_substs);
obligations.push(
space,
Obligation { cause: cause,
recursion_depth: recursion_depth,
trait_ref: bound_trait_ref });
}
}
pub fn trait_ref_for_builtin_bound(
tcx: &ty::ctxt,
builtin_bound: ty::BuiltinBound,
param_ty: ty::t)
-> Option<Rc<ty::TraitRef>>
{
match tcx.lang_items.from_builtin_kind(builtin_bound) {
Ok(def_id) => {
Some(Rc::new(ty::TraitRef {
def_id: def_id,
substs: Substs::empty().with_self_ty(param_ty)
}))
}
Err(e) => {
tcx.sess.err(e.as_slice());
None
}
}
}
pub fn obligation_for_builtin_bound(
tcx: &ty::ctxt,
cause: ObligationCause,
builtin_bound: ty::BuiltinBound,
recursion_depth: uint,
param_ty: ty::t)
-> Result<Obligation, ErrorReported>
{
let trait_ref = trait_ref_for_builtin_bound(tcx, builtin_bound, param_ty);
match trait_ref {
Some(trait_ref) => Ok(Obligation {
cause: cause,
recursion_depth: recursion_depth,
trait_ref: trait_ref
}),
None => Err(ErrorReported)
}
}
pub fn search_trait_and_supertraits_from_bound(tcx: &ty::ctxt,
caller_bound: Rc<ty::TraitRef>,
test: |ast::DefId| -> bool)
-> Option<VtableParamData>
{
/*!
* Starting from a caller obligation `caller_bound` (which has
* coordinates `space`/`i` in the list of caller obligations),
* search through the trait and supertraits to find one where
* `test(d)` is true, where `d` is the def-id of the
* trait/supertrait. If any is found, return `Some(p)` where `p`
* is the path to that trait/supertrait. Else `None`.
*/
for bound in transitive_bounds(tcx, &[caller_bound]) {
if test(bound.def_id) {
let vtable_param = VtableParamData { bound: bound };
return Some(vtable_param);
}
}
return None;
}
impl Repr for super::Obligation {
fn repr(&self, tcx: &ty::ctxt) -> String {
format!("Obligation(trait_ref={},depth={})",
self.trait_ref.repr(tcx),
self.recursion_depth)
}
}
impl<N:Repr> Repr for super::Vtable<N> {
fn repr(&self, tcx: &ty::ctxt) -> String {
match *self {
super::VtableImpl(ref v) =>
v.repr(tcx),
super::VtableUnboxedClosure(ref d) =>
format!("VtableUnboxedClosure({})",
d.repr(tcx)),
super::VtableParam(ref v) =>
format!("VtableParam({})", v.repr(tcx)),
super::VtableBuiltin(ref d) =>
d.repr(tcx)
}
}
}
impl<N:Repr> Repr for super::VtableImplData<N> {
fn repr(&self, tcx: &ty::ctxt) -> String {
format!("VtableImpl(impl_def_id={}, substs={}, nested={})",
self.impl_def_id.repr(tcx),
self.substs.repr(tcx),
self.nested.repr(tcx))
}
}
impl<N:Repr> Repr for super::VtableBuiltinData<N> {
fn repr(&self, tcx: &ty::ctxt) -> String {
format!("VtableBuiltin(nested={})",
self.nested.repr(tcx))
}
}
impl Repr for super::VtableParamData {
fn repr(&self, tcx: &ty::ctxt) -> String {
format!("VtableParam(bound={})",
self.bound.repr(tcx))
}
}
impl Repr for super::SelectionError {
fn repr(&self, tcx: &ty::ctxt) -> String {
match *self {
super::Overflow =>
format!("Overflow"),
super::Unimplemented =>
format!("Unimplemented"),
super::OutputTypeParameterMismatch(ref t, ref e) =>
format!("OutputTypeParameterMismatch({}, {})",
t.repr(tcx),
e.repr(tcx)),
}
}
}
impl Repr for super::FulfillmentError {
fn repr(&self, tcx: &ty::ctxt) -> String {
format!("FulfillmentError({},{})",
self.obligation.repr(tcx),
self.code.repr(tcx))
}
}
impl Repr for super::FulfillmentErrorCode {
fn repr(&self, tcx: &ty::ctxt) -> String {
match *self {
super::CodeSelectionError(ref o) => o.repr(tcx),
super::CodeAmbiguity => format!("Ambiguity")
}
}
}
impl fmt::Show for super::FulfillmentErrorCode {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
super::CodeSelectionError(ref e) => write!(f, "{}", e),
super::CodeAmbiguity => write!(f, "Ambiguity")
}
}
}
impl Repr for ty::type_err {
fn repr(&self, tcx: &ty::ctxt) -> String {
ty::type_err_to_str(tcx, self)
}
}