rust/src/libcore/num/f64.rs
Huon Wilson 49feb0c431 Unstabilise f32/f64 constants that are int/uint.
Pending integer conventions.
2015-01-06 23:21:27 +11:00

390 lines
11 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for 64-bits floats (`f64` type)
#![doc(primitive = "f64")]
// FIXME: MIN_VALUE and MAX_VALUE literals are parsed as -inf and inf #14353
#![allow(overflowing_literals)]
#![stable]
use intrinsics;
use mem;
use num::Float;
use num::FpCategory as Fp;
use option::Option;
// FIXME(#5527): These constants should be deprecated once associated
// constants are implemented in favour of referencing the respective
// members of `Bounded` and `Float`.
#[unstable = "pending integer conventions"]
pub const RADIX: uint = 2u;
pub const MANTISSA_DIGITS: uint = 53u;
#[unstable = "pending integer conventions"]
pub const DIGITS: uint = 15u;
#[stable]
pub const EPSILON: f64 = 2.2204460492503131e-16_f64;
/// Smallest finite f64 value
#[stable]
pub const MIN_VALUE: f64 = -1.7976931348623157e+308_f64;
/// Smallest positive, normalized f64 value
#[stable]
pub const MIN_POS_VALUE: f64 = 2.2250738585072014e-308_f64;
/// Largest finite f64 value
#[stable]
pub const MAX_VALUE: f64 = 1.7976931348623157e+308_f64;
#[unstable = "pending integer conventions"]
pub const MIN_EXP: int = -1021;
#[unstable = "pending integer conventions"]
pub const MAX_EXP: int = 1024;
#[unstable = "pending integer conventions"]
pub const MIN_10_EXP: int = -307;
#[unstable = "pending integer conventions"]
pub const MAX_10_EXP: int = 308;
#[stable]
pub const NAN: f64 = 0.0_f64/0.0_f64;
#[stable]
pub const INFINITY: f64 = 1.0_f64/0.0_f64;
#[stable]
pub const NEG_INFINITY: f64 = -1.0_f64/0.0_f64;
/// Various useful constants.
#[unstable = "naming scheme needs to be revisited"]
pub mod consts {
// FIXME: replace with mathematical constants from cmath.
// FIXME(#5527): These constants should be deprecated once associated
// constants are implemented in favour of referencing the respective members
// of `Float`.
/// Archimedes' constant
pub const PI: f64 = 3.14159265358979323846264338327950288_f64;
/// pi * 2.0
pub const PI_2: f64 = 6.28318530717958647692528676655900576_f64;
/// pi/2.0
pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
/// pi/3.0
pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
/// pi/4.0
pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
/// pi/6.0
pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
/// pi/8.0
pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
/// 1.0/pi
pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
/// 2.0/pi
pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
/// 2.0/sqrt(pi)
pub const FRAC_2_SQRTPI: f64 = 1.12837916709551257389615890312154517_f64;
/// sqrt(2.0)
pub const SQRT2: f64 = 1.41421356237309504880168872420969808_f64;
/// 1.0/sqrt(2.0)
pub const FRAC_1_SQRT2: f64 = 0.707106781186547524400844362104849039_f64;
/// Euler's number
pub const E: f64 = 2.71828182845904523536028747135266250_f64;
/// log2(e)
pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
/// log10(e)
pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
/// ln(2.0)
pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64;
/// ln(10.0)
pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64;
}
#[unstable = "trait is unstable"]
impl Float for f64 {
#[inline]
fn nan() -> f64 { NAN }
#[inline]
fn infinity() -> f64 { INFINITY }
#[inline]
fn neg_infinity() -> f64 { NEG_INFINITY }
#[inline]
fn zero() -> f64 { 0.0 }
#[inline]
fn neg_zero() -> f64 { -0.0 }
#[inline]
fn one() -> f64 { 1.0 }
/// Returns `true` if the number is NaN.
#[inline]
fn is_nan(self) -> bool { self != self }
/// Returns `true` if the number is infinite.
#[inline]
fn is_infinite(self) -> bool {
self == Float::infinity() || self == Float::neg_infinity()
}
/// Returns `true` if the number is neither infinite or NaN.
#[inline]
fn is_finite(self) -> bool {
!(self.is_nan() || self.is_infinite())
}
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
#[inline]
fn is_normal(self) -> bool {
self.classify() == Fp::Normal
}
/// Returns the floating point category of the number. If only one property
/// is going to be tested, it is generally faster to use the specific
/// predicate instead.
fn classify(self) -> Fp {
const EXP_MASK: u64 = 0x7ff0000000000000;
const MAN_MASK: u64 = 0x000fffffffffffff;
let bits: u64 = unsafe { mem::transmute(self) };
match (bits & MAN_MASK, bits & EXP_MASK) {
(0, 0) => Fp::Zero,
(_, 0) => Fp::Subnormal,
(0, EXP_MASK) => Fp::Infinite,
(_, EXP_MASK) => Fp::Nan,
_ => Fp::Normal,
}
}
#[inline]
#[deprecated]
fn mantissa_digits(_: Option<f64>) -> uint { MANTISSA_DIGITS }
#[inline]
#[deprecated]
fn digits(_: Option<f64>) -> uint { DIGITS }
#[inline]
#[deprecated]
fn epsilon() -> f64 { EPSILON }
#[inline]
#[deprecated]
fn min_exp(_: Option<f64>) -> int { MIN_EXP }
#[inline]
#[deprecated]
fn max_exp(_: Option<f64>) -> int { MAX_EXP }
#[inline]
#[deprecated]
fn min_10_exp(_: Option<f64>) -> int { MIN_10_EXP }
#[inline]
#[deprecated]
fn max_10_exp(_: Option<f64>) -> int { MAX_10_EXP }
#[inline]
#[deprecated]
fn min_value() -> f64 { MIN_VALUE }
#[inline]
#[deprecated]
fn min_pos_value(_: Option<f64>) -> f64 { MIN_POS_VALUE }
#[inline]
#[deprecated]
fn max_value() -> f64 { MAX_VALUE }
/// Returns the mantissa, exponent and sign as integers.
fn integer_decode(self) -> (u64, i16, i8) {
let bits: u64 = unsafe { mem::transmute(self) };
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0xfffffffffffff) << 1
} else {
(bits & 0xfffffffffffff) | 0x10000000000000
};
// Exponent bias + mantissa shift
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
/// Rounds towards minus infinity.
#[inline]
fn floor(self) -> f64 {
unsafe { intrinsics::floorf64(self) }
}
/// Rounds towards plus infinity.
#[inline]
fn ceil(self) -> f64 {
unsafe { intrinsics::ceilf64(self) }
}
/// Rounds to nearest integer. Rounds half-way cases away from zero.
#[inline]
fn round(self) -> f64 {
unsafe { intrinsics::roundf64(self) }
}
/// Returns the integer part of the number (rounds towards zero).
#[inline]
fn trunc(self) -> f64 {
unsafe { intrinsics::truncf64(self) }
}
/// The fractional part of the number, satisfying:
///
/// ```rust
/// use core::num::Float;
///
/// let x = 1.65f64;
/// assert!(x == x.trunc() + x.fract())
/// ```
#[inline]
fn fract(self) -> f64 { self - self.trunc() }
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
/// number is `Float::nan()`.
#[inline]
fn abs(self) -> f64 {
unsafe { intrinsics::fabsf64(self) }
}
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
/// - `Float::nan()` if the number is `Float::nan()`
#[inline]
fn signum(self) -> f64 {
if self.is_nan() {
Float::nan()
} else {
unsafe { intrinsics::copysignf64(1.0, self) }
}
}
/// Returns `true` if `self` is positive, including `+0.0` and
/// `Float::infinity()`.
#[inline]
fn is_positive(self) -> bool {
self > 0.0 || (1.0 / self) == Float::infinity()
}
/// Returns `true` if `self` is negative, including `-0.0` and
/// `Float::neg_infinity()`.
#[inline]
fn is_negative(self) -> bool {
self < 0.0 || (1.0 / self) == Float::neg_infinity()
}
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error. This produces a more accurate result with better performance than
/// a separate multiplication operation followed by an add.
#[inline]
fn mul_add(self, a: f64, b: f64) -> f64 {
unsafe { intrinsics::fmaf64(self, a, b) }
}
/// Returns the reciprocal (multiplicative inverse) of the number.
#[inline]
fn recip(self) -> f64 { 1.0 / self }
#[inline]
fn powf(self, n: f64) -> f64 {
unsafe { intrinsics::powf64(self, n) }
}
#[inline]
fn powi(self, n: i32) -> f64 {
unsafe { intrinsics::powif64(self, n) }
}
#[inline]
fn sqrt(self) -> f64 {
if self < 0.0 {
NAN
} else {
unsafe { intrinsics::sqrtf64(self) }
}
}
#[inline]
fn rsqrt(self) -> f64 { self.sqrt().recip() }
/// Returns the exponential of the number.
#[inline]
fn exp(self) -> f64 {
unsafe { intrinsics::expf64(self) }
}
/// Returns 2 raised to the power of the number.
#[inline]
fn exp2(self) -> f64 {
unsafe { intrinsics::exp2f64(self) }
}
/// Returns the natural logarithm of the number.
#[inline]
fn ln(self) -> f64 {
unsafe { intrinsics::logf64(self) }
}
/// Returns the logarithm of the number with respect to an arbitrary base.
#[inline]
fn log(self, base: f64) -> f64 { self.ln() / base.ln() }
/// Returns the base 2 logarithm of the number.
#[inline]
fn log2(self) -> f64 {
unsafe { intrinsics::log2f64(self) }
}
/// Returns the base 10 logarithm of the number.
#[inline]
fn log10(self) -> f64 {
unsafe { intrinsics::log10f64(self) }
}
/// Converts to degrees, assuming the number is in radians.
#[inline]
fn to_degrees(self) -> f64 { self * (180.0f64 / consts::PI) }
/// Converts to radians, assuming the number is in degrees.
#[inline]
fn to_radians(self) -> f64 {
let value: f64 = consts::PI;
self * (value / 180.0)
}
}