rust/src/libstd/io/buffered.rs
2013-11-11 20:44:07 -08:00

474 lines
14 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Buffering wrappers for I/O traits
//!
//! It can be excessively inefficient to work directly with a `Reader` or
//! `Writer`. Every call to `read` or `write` on `TcpStream` results in a
//! system call, for example. This module provides structures that wrap
//! `Readers`, `Writers`, and `Streams` and buffer input and output to them.
//!
//! # Examples
//!
//! ```
//! let tcp_stream = TcpStream::connect(addr);
//! let reader = BufferedReader::new(tcp_stream);
//!
//! let mut buf: ~[u8] = vec::from_elem(100, 0u8);
//! match reader.read(buf.as_slice()) {
//! Some(nread) => println!("Read {} bytes", nread),
//! None => println!("At the end of the stream!")
//! }
//! ```
//!
//! ```
//! let tcp_stream = TcpStream::connect(addr);
//! let writer = BufferedWriter::new(tcp_stream);
//!
//! writer.write("hello, world".as_bytes());
//! writer.flush();
//! ```
//!
//! ```
//! let tcp_stream = TcpStream::connect(addr);
//! let stream = BufferedStream::new(tcp_stream);
//!
//! stream.write("hello, world".as_bytes());
//! stream.flush();
//!
//! let mut buf = vec::from_elem(100, 0u8);
//! match stream.read(buf.as_slice()) {
//! Some(nread) => println!("Read {} bytes", nread),
//! None => println!("At the end of the stream!")
//! }
//! ```
//!
use prelude::*;
use num;
use vec;
use str;
use super::{Reader, Writer, Stream, Decorator};
// libuv recommends 64k buffers to maximize throughput
// https://groups.google.com/forum/#!topic/libuv/oQO1HJAIDdA
static DEFAULT_CAPACITY: uint = 64 * 1024;
/// Wraps a Reader and buffers input from it
pub struct BufferedReader<R> {
priv inner: R,
priv buf: ~[u8],
priv pos: uint,
priv cap: uint
}
impl<R: Reader> BufferedReader<R> {
/// Creates a new `BufferedReader` with with the specified buffer capacity
pub fn with_capacity(cap: uint, inner: R) -> BufferedReader<R> {
// It's *much* faster to create an uninitialized buffer than it is to
// fill everything in with 0. This buffer is entirely an implementation
// detail and is never exposed, so we're safe to not initialize
// everything up-front. This allows creation of BufferedReader instances
// to be very cheap (large mallocs are not nearly as expensive as large
// callocs).
let mut buf = vec::with_capacity(cap);
unsafe { vec::raw::set_len(&mut buf, cap); }
BufferedReader {
inner: inner,
buf: buf,
pos: 0,
cap: 0
}
}
/// Creates a new `BufferedReader` with a default buffer capacity
pub fn new(inner: R) -> BufferedReader<R> {
BufferedReader::with_capacity(DEFAULT_CAPACITY, inner)
}
/// Reads the next line of input, interpreted as a sequence of utf-8
/// encoded unicode codepoints. If a newline is encountered, then the
/// newline is contained in the returned string.
pub fn read_line(&mut self) -> Option<~str> {
self.read_until('\n' as u8).map(str::from_utf8_owned)
}
/// Reads a sequence of bytes leading up to a specified delimeter. Once the
/// specified byte is encountered, reading ceases and the bytes up to and
/// including the delimiter are returned.
pub fn read_until(&mut self, byte: u8) -> Option<~[u8]> {
let mut res = ~[];
let mut used;
loop {
{
let available = self.fill_buffer();
match available.iter().position(|&b| b == byte) {
Some(i) => {
res.push_all(available.slice_to(i + 1));
used = i + 1;
break
}
None => {
res.push_all(available);
used = available.len();
}
}
}
if used == 0 {
break
}
self.pos += used;
}
self.pos += used;
return if res.len() == 0 {None} else {Some(res)};
}
fn fill_buffer<'a>(&'a mut self) -> &'a [u8] {
if self.pos == self.cap {
match self.inner.read(self.buf) {
Some(cap) => {
self.pos = 0;
self.cap = cap;
}
None => {}
}
}
return self.buf.slice(self.pos, self.cap);
}
}
impl<R: Reader> Reader for BufferedReader<R> {
fn read(&mut self, buf: &mut [u8]) -> Option<uint> {
let nread = {
let available = self.fill_buffer();
if available.len() == 0 {
return None;
}
let nread = num::min(available.len(), buf.len());
vec::bytes::copy_memory(buf, available, nread);
nread
};
self.pos += nread;
Some(nread)
}
fn eof(&mut self) -> bool {
self.pos == self.cap && self.inner.eof()
}
}
impl<R: Reader> Decorator<R> for BufferedReader<R> {
fn inner(self) -> R {
self.inner
}
fn inner_ref<'a>(&'a self) -> &'a R {
&self.inner
}
fn inner_mut_ref<'a>(&'a mut self) -> &'a mut R {
&mut self.inner
}
}
/// Wraps a Writer and buffers output to it
///
/// Note that `BufferedWriter` will NOT flush its buffer when dropped.
pub struct BufferedWriter<W> {
priv inner: W,
priv buf: ~[u8],
priv pos: uint
}
impl<W: Writer> BufferedWriter<W> {
/// Creates a new `BufferedWriter` with with the specified buffer capacity
pub fn with_capacity(cap: uint, inner: W) -> BufferedWriter<W> {
// See comments in BufferedReader for why this uses unsafe code.
let mut buf = vec::with_capacity(cap);
unsafe { vec::raw::set_len(&mut buf, cap); }
BufferedWriter {
inner: inner,
buf: buf,
pos: 0
}
}
/// Creates a new `BufferedWriter` with a default buffer capacity
pub fn new(inner: W) -> BufferedWriter<W> {
BufferedWriter::with_capacity(DEFAULT_CAPACITY, inner)
}
}
impl<W: Writer> Writer for BufferedWriter<W> {
fn write(&mut self, buf: &[u8]) {
if self.pos + buf.len() > self.buf.len() {
self.flush();
}
if buf.len() > self.buf.len() {
self.inner.write(buf);
} else {
let dst = self.buf.mut_slice_from(self.pos);
vec::bytes::copy_memory(dst, buf, buf.len());
self.pos += buf.len();
}
}
fn flush(&mut self) {
if self.pos != 0 {
self.inner.write(self.buf.slice_to(self.pos));
self.pos = 0;
}
self.inner.flush();
}
}
impl<W: Writer> Decorator<W> for BufferedWriter<W> {
fn inner(self) -> W { self.inner }
fn inner_ref<'a>(&'a self) -> &'a W { &self.inner }
fn inner_mut_ref<'a>(&'a mut self) -> &'a mut W { &mut self.inner }
}
/// Wraps a Writer and buffers output to it, flushing whenever a newline (0xa,
/// '\n') is detected.
///
/// Note that this structure does NOT flush the output when dropped.
pub struct LineBufferedWriter<W> {
priv inner: BufferedWriter<W>,
}
impl<W: Writer> LineBufferedWriter<W> {
/// Creates a new `LineBufferedWriter`
pub fn new(inner: W) -> LineBufferedWriter<W> {
// Lines typically aren't that long, don't use a giant buffer
LineBufferedWriter {
inner: BufferedWriter::with_capacity(1024, inner)
}
}
}
impl<W: Writer> Writer for LineBufferedWriter<W> {
fn write(&mut self, buf: &[u8]) {
match buf.iter().position(|&b| b == '\n' as u8) {
Some(i) => {
self.inner.write(buf.slice_to(i + 1));
self.inner.flush();
self.inner.write(buf.slice_from(i + 1));
}
None => self.inner.write(buf),
}
}
fn flush(&mut self) { self.inner.flush() }
}
impl<W: Writer> Decorator<W> for LineBufferedWriter<W> {
fn inner(self) -> W { self.inner.inner() }
fn inner_ref<'a>(&'a self) -> &'a W { self.inner.inner_ref() }
fn inner_mut_ref<'a>(&'a mut self) -> &'a mut W { self.inner.inner_mut_ref() }
}
struct InternalBufferedWriter<W>(BufferedWriter<W>);
impl<W: Reader> Reader for InternalBufferedWriter<W> {
fn read(&mut self, buf: &mut [u8]) -> Option<uint> {
self.inner.read(buf)
}
fn eof(&mut self) -> bool {
self.inner.eof()
}
}
/// Wraps a Stream and buffers input and output to and from it
///
/// Note that `BufferedStream` will NOT flush its output buffer when dropped.
pub struct BufferedStream<S> {
priv inner: BufferedReader<InternalBufferedWriter<S>>
}
impl<S: Stream> BufferedStream<S> {
pub fn with_capacities(reader_cap: uint, writer_cap: uint, inner: S)
-> BufferedStream<S> {
let writer = BufferedWriter::with_capacity(writer_cap, inner);
let internal_writer = InternalBufferedWriter(writer);
let reader = BufferedReader::with_capacity(reader_cap,
internal_writer);
BufferedStream { inner: reader }
}
pub fn new(inner: S) -> BufferedStream<S> {
BufferedStream::with_capacities(DEFAULT_CAPACITY, DEFAULT_CAPACITY,
inner)
}
}
impl<S: Stream> Reader for BufferedStream<S> {
fn read(&mut self, buf: &mut [u8]) -> Option<uint> {
self.inner.read(buf)
}
fn eof(&mut self) -> bool {
self.inner.eof()
}
}
impl<S: Stream> Writer for BufferedStream<S> {
fn write(&mut self, buf: &[u8]) {
self.inner.inner.write(buf)
}
fn flush(&mut self) {
self.inner.inner.flush()
}
}
impl<S: Stream> Decorator<S> for BufferedStream<S> {
fn inner(self) -> S {
self.inner.inner.inner()
}
fn inner_ref<'a>(&'a self) -> &'a S {
self.inner.inner.inner_ref()
}
fn inner_mut_ref<'a>(&'a mut self) -> &'a mut S {
self.inner.inner.inner_mut_ref()
}
}
#[cfg(test)]
mod test {
use prelude::*;
use super::*;
use io;
use super::super::mem::{MemReader, MemWriter};
#[test]
fn test_buffered_reader() {
let inner = MemReader::new(~[0, 1, 2, 3, 4]);
let mut reader = BufferedReader::with_capacity(2, inner);
let mut buf = [0, 0, 0];
let nread = reader.read(buf);
assert_eq!(Some(2), nread);
assert_eq!([0, 1, 0], buf);
assert!(!reader.eof());
let mut buf = [0];
let nread = reader.read(buf);
assert_eq!(Some(1), nread);
assert_eq!([2], buf);
assert!(!reader.eof());
let mut buf = [0, 0, 0];
let nread = reader.read(buf);
assert_eq!(Some(1), nread);
assert_eq!([3, 0, 0], buf);
assert!(!reader.eof());
let nread = reader.read(buf);
assert_eq!(Some(1), nread);
assert_eq!([4, 0, 0], buf);
assert!(reader.eof());
assert_eq!(None, reader.read(buf));
}
#[test]
fn test_buffered_writer() {
let inner = MemWriter::new();
let mut writer = BufferedWriter::with_capacity(2, inner);
writer.write([0, 1]);
assert_eq!([], writer.inner_ref().inner_ref().as_slice());
writer.write([2]);
assert_eq!([0, 1], writer.inner_ref().inner_ref().as_slice());
writer.write([3]);
assert_eq!([0, 1], writer.inner_ref().inner_ref().as_slice());
writer.flush();
assert_eq!([0, 1, 2, 3], writer.inner_ref().inner_ref().as_slice());
writer.write([4]);
writer.write([5]);
assert_eq!([0, 1, 2, 3], writer.inner_ref().inner_ref().as_slice());
writer.write([6]);
assert_eq!([0, 1, 2, 3, 4, 5],
writer.inner_ref().inner_ref().as_slice());
writer.write([7, 8]);
assert_eq!([0, 1, 2, 3, 4, 5, 6],
writer.inner_ref().inner_ref().as_slice());
writer.write([9, 10, 11]);
assert_eq!([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
writer.inner_ref().inner_ref().as_slice());
writer.flush();
assert_eq!([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
writer.inner_ref().inner_ref().as_slice());
}
// This is just here to make sure that we don't infinite loop in the
// newtype struct autoderef weirdness
#[test]
fn test_buffered_stream() {
use rt;
struct S;
impl io::Writer for S {
fn write(&mut self, _: &[u8]) {}
}
impl io::Reader for S {
fn read(&mut self, _: &mut [u8]) -> Option<uint> { None }
fn eof(&mut self) -> bool { true }
}
let mut stream = BufferedStream::new(S);
let mut buf = [];
stream.read(buf);
stream.eof();
stream.write(buf);
stream.flush();
}
#[test]
fn test_read_until() {
let inner = MemReader::new(~[0, 1, 2, 1, 0]);
let mut reader = BufferedReader::with_capacity(2, inner);
assert_eq!(reader.read_until(0), Some(~[0]));
assert_eq!(reader.read_until(2), Some(~[1, 2]));
assert_eq!(reader.read_until(1), Some(~[1]));
assert_eq!(reader.read_until(8), Some(~[0]));
assert_eq!(reader.read_until(9), None);
}
#[test]
fn test_line_buffer() {
let mut writer = LineBufferedWriter::new(MemWriter::new());
writer.write([0]);
assert_eq!(*writer.inner_ref().inner_ref(), ~[]);
writer.write([1]);
assert_eq!(*writer.inner_ref().inner_ref(), ~[]);
writer.flush();
assert_eq!(*writer.inner_ref().inner_ref(), ~[0, 1]);
writer.write([0, '\n' as u8, 1]);
assert_eq!(*writer.inner_ref().inner_ref(), ~[0, 1, 0, '\n' as u8]);
writer.flush();
assert_eq!(*writer.inner_ref().inner_ref(), ~[0, 1, 0, '\n' as u8, 1]);
}
}