104e285eb8
This mostly involved frobbing imports between realstd, realcore, and the core being test. Some of the imports are a little counterintuitive, but it mainly focuses around libcore's types not implementing Show while libstd's types implement Show.
228 lines
6.2 KiB
Rust
228 lines
6.2 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Operations and constants for 32-bits floats (`f32` type)
|
|
|
|
use default::Default;
|
|
use intrinsics;
|
|
use num::{Zero, One, Bounded, Signed, Num, Primitive};
|
|
|
|
#[cfg(not(test))] use cmp::{Eq, Ord};
|
|
#[cfg(not(test))] use ops::{Add, Sub, Mul, Div, Rem, Neg};
|
|
|
|
pub static RADIX: uint = 2u;
|
|
|
|
pub static MANTISSA_DIGITS: uint = 24u;
|
|
pub static DIGITS: uint = 6u;
|
|
|
|
pub static EPSILON: f32 = 1.19209290e-07_f32;
|
|
|
|
/// Smallest finite f32 value
|
|
pub static MIN_VALUE: f32 = -3.40282347e+38_f32;
|
|
/// Smallest positive, normalized f32 value
|
|
pub static MIN_POS_VALUE: f32 = 1.17549435e-38_f32;
|
|
/// Largest finite f32 value
|
|
pub static MAX_VALUE: f32 = 3.40282347e+38_f32;
|
|
|
|
pub static MIN_EXP: int = -125;
|
|
pub static MAX_EXP: int = 128;
|
|
|
|
pub static MIN_10_EXP: int = -37;
|
|
pub static MAX_10_EXP: int = 38;
|
|
|
|
pub static NAN: f32 = 0.0_f32/0.0_f32;
|
|
pub static INFINITY: f32 = 1.0_f32/0.0_f32;
|
|
pub static NEG_INFINITY: f32 = -1.0_f32/0.0_f32;
|
|
|
|
/// Various useful constants.
|
|
pub mod consts {
|
|
// FIXME: replace with mathematical constants from cmath.
|
|
|
|
// FIXME(#5527): These constants should be deprecated once associated
|
|
// constants are implemented in favour of referencing the respective members
|
|
// of `Float`.
|
|
|
|
/// Archimedes' constant
|
|
pub static PI: f32 = 3.14159265358979323846264338327950288_f32;
|
|
|
|
/// pi * 2.0
|
|
pub static PI_2: f32 = 6.28318530717958647692528676655900576_f32;
|
|
|
|
/// pi/2.0
|
|
pub static FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;
|
|
|
|
/// pi/3.0
|
|
pub static FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;
|
|
|
|
/// pi/4.0
|
|
pub static FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;
|
|
|
|
/// pi/6.0
|
|
pub static FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;
|
|
|
|
/// pi/8.0
|
|
pub static FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;
|
|
|
|
/// 1.0/pi
|
|
pub static FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;
|
|
|
|
/// 2.0/pi
|
|
pub static FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;
|
|
|
|
/// 2.0/sqrt(pi)
|
|
pub static FRAC_2_SQRTPI: f32 = 1.12837916709551257389615890312154517_f32;
|
|
|
|
/// sqrt(2.0)
|
|
pub static SQRT2: f32 = 1.41421356237309504880168872420969808_f32;
|
|
|
|
/// 1.0/sqrt(2.0)
|
|
pub static FRAC_1_SQRT2: f32 = 0.707106781186547524400844362104849039_f32;
|
|
|
|
/// Euler's number
|
|
pub static E: f32 = 2.71828182845904523536028747135266250_f32;
|
|
|
|
/// log2(e)
|
|
pub static LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;
|
|
|
|
/// log10(e)
|
|
pub static LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;
|
|
|
|
/// ln(2.0)
|
|
pub static LN_2: f32 = 0.693147180559945309417232121458176568_f32;
|
|
|
|
/// ln(10.0)
|
|
pub static LN_10: f32 = 2.30258509299404568401799145468436421_f32;
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Ord for f32 {
|
|
#[inline]
|
|
fn lt(&self, other: &f32) -> bool { (*self) < (*other) }
|
|
#[inline]
|
|
fn le(&self, other: &f32) -> bool { (*self) <= (*other) }
|
|
#[inline]
|
|
fn ge(&self, other: &f32) -> bool { (*self) >= (*other) }
|
|
#[inline]
|
|
fn gt(&self, other: &f32) -> bool { (*self) > (*other) }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Eq for f32 {
|
|
#[inline]
|
|
fn eq(&self, other: &f32) -> bool { (*self) == (*other) }
|
|
}
|
|
|
|
impl Num for f32 {}
|
|
|
|
impl Default for f32 {
|
|
#[inline]
|
|
fn default() -> f32 { 0.0 }
|
|
}
|
|
|
|
impl Primitive for f32 {}
|
|
|
|
impl Zero for f32 {
|
|
#[inline]
|
|
fn zero() -> f32 { 0.0 }
|
|
|
|
/// Returns true if the number is equal to either `0.0` or `-0.0`
|
|
#[inline]
|
|
fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
|
|
}
|
|
|
|
impl One for f32 {
|
|
#[inline]
|
|
fn one() -> f32 { 1.0 }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Add<f32,f32> for f32 {
|
|
#[inline]
|
|
fn add(&self, other: &f32) -> f32 { *self + *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Sub<f32,f32> for f32 {
|
|
#[inline]
|
|
fn sub(&self, other: &f32) -> f32 { *self - *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Mul<f32,f32> for f32 {
|
|
#[inline]
|
|
fn mul(&self, other: &f32) -> f32 { *self * *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Div<f32,f32> for f32 {
|
|
#[inline]
|
|
fn div(&self, other: &f32) -> f32 { *self / *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Rem<f32,f32> for f32 {
|
|
#[inline]
|
|
fn rem(&self, other: &f32) -> f32 {
|
|
extern { fn fmodf(a: f32, b: f32) -> f32; }
|
|
unsafe { fmodf(*self, *other) }
|
|
}
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Neg<f32> for f32 {
|
|
#[inline]
|
|
fn neg(&self) -> f32 { -*self }
|
|
}
|
|
|
|
impl Signed for f32 {
|
|
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
|
|
#[inline]
|
|
fn abs(&self) -> f32 {
|
|
unsafe { intrinsics::fabsf32(*self) }
|
|
}
|
|
|
|
/// The positive difference of two numbers. Returns `0.0` if the number is
|
|
/// less than or equal to `other`, otherwise the difference between`self`
|
|
/// and `other` is returned.
|
|
#[inline]
|
|
fn abs_sub(&self, other: &f32) -> f32 {
|
|
extern { fn fdimf(a: f32, b: f32) -> f32; }
|
|
unsafe { fdimf(*self, *other) }
|
|
}
|
|
|
|
/// # Returns
|
|
///
|
|
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
|
|
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
|
|
/// - `NAN` if the number is NaN
|
|
#[inline]
|
|
fn signum(&self) -> f32 {
|
|
if self != self { NAN } else {
|
|
unsafe { intrinsics::copysignf32(1.0, *self) }
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
|
|
#[inline]
|
|
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == INFINITY }
|
|
|
|
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
|
|
#[inline]
|
|
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == NEG_INFINITY }
|
|
}
|
|
|
|
impl Bounded for f32 {
|
|
// NOTE: this is the smallest non-infinite f32 value, *not* MIN_VALUE
|
|
#[inline]
|
|
fn min_value() -> f32 { -MAX_VALUE }
|
|
|
|
#[inline]
|
|
fn max_value() -> f32 { MAX_VALUE }
|
|
}
|