rust/src/comp/middle/kind.rs
2011-08-31 11:44:06 -07:00

204 lines
6.7 KiB
Rust

/*
* Kinds are types of type.
*
* Every type has a kind. Every type parameter has a set of kind-capabilities
* saying which kind of type may be passed as the parameter.
*
* The kinds are based on two capabilities: move and send. These may each be
* present or absent, though only three of the four combinations can actually
* occur:
*
*
*
* MOVE + SEND = "Unique": no shared substructures or pins, only
* interiors and ~ boxes.
*
* MOVE + NOSEND = "Shared": structures containing @, fixed to the local
* task heap/pool; or ~ structures pointing to
* pinned values.
*
* NOMOVE + NOSEND = "Pinned": structures directly containing resources, or
* by-alias closures as interior or
* uniquely-boxed members.
*
* NOMOVE + SEND = -- : no types are like this.
*
*
* Since this forms a lattice, we denote the capabilites in terms of a
* worst-case requirement. That is, if your function needs to move-and-send
* (or copy) your T, you write fn<~T>(...). If you need to move but not send,
* you write fn<@T>(...). And if you need neither -- can work with any sort of
* pinned data at all -- then you write fn<T>(...).
*
*
* Most types are unique or shared. Other possible name combinations for these
* two: (tree, graph; pruned, pooled; message, local; owned, common) are
* plausible but nothing stands out as completely pithy-and-obvious.
*
* Resources cannot be copied or sent; they're pinned. They can't be copied
* because it would interfere with destruction (multiple destruction?) They
* cannot be sent because we don't want to oblige the communication system to
* run destructors in some weird limbo context of messages-in-transit. It
* should always be ok to just free messages it's dropping.
*
* Note that obj~ and fn~ -- those that capture a unique environment -- can be
* sent, so satisfy ~T. So can plain obj and fn.
*
*
* Further notes on copying and moving; sending is accomplished by calling a
* move-in operator on something constrained to a unique type ~T.
*
*
* COPYING:
* --------
*
* A copy is made any time you pass-by-value or execute the = operator in a
* non-init expression.
*
* @ copies shallow, is always legal
* ~ copies deep, is only legal if pointee is unique.
* pinned values (pinned resources, alias-closures) can't be copied
* all other unique (eg. interior) values copy shallow
*
* Note this means that only type parameters constrained to ~T can be copied.
*
* MOVING:
* -------
*
* A move is made any time you pass-by-move (that is, with 'move' mode) or
* execute the <- operator.
*
*/
import syntax::ast;
import syntax::ast_util;
import syntax::visit;
import std::vec;
import std::option;
import std::istr;
import ast::kind;
import ast::kind_unique;
import ast::kind_shared;
import ast::kind_pinned;
fn kind_lteq(a: kind, b: kind) -> bool {
alt a {
kind_pinned. { true }
kind_shared. { b != kind_pinned }
kind_unique. { b == kind_unique }
}
}
fn lower_kind(a: kind, b: kind) -> kind {
if kind_lteq(a, b) { a } else { b }
}
fn kind_to_str(k: kind) -> istr {
alt k {
ast::kind_pinned. { ~"pinned" }
ast::kind_unique. { ~"unique" }
ast::kind_shared. { ~"shared" }
}
}
fn type_and_kind(tcx: &ty::ctxt, e: &@ast::expr) ->
{ty: ty::t, kind: ast::kind} {
let t = ty::expr_ty(tcx, e);
let k = ty::type_kind(tcx, t);
{ty: t, kind: k}
}
fn need_expr_kind(tcx: &ty::ctxt, e: &@ast::expr, k_need: ast::kind,
descr: &istr) {
let tk = type_and_kind(tcx, e);
log #ifmt["for %s: want %s type, got %s type %s", descr,
kind_to_str(k_need), kind_to_str(tk.kind),
util::ppaux::ty_to_str(tcx, tk.ty)];
if !kind_lteq(k_need, tk.kind) {
let s =
#ifmt["mismatched kinds for %s: needed %s type, got %s type %s",
descr, kind_to_str(k_need),
kind_to_str(tk.kind),
util::ppaux::ty_to_str(tcx, tk.ty)];
tcx.sess.span_err(e.span, s);
}
}
fn need_shared_lhs_rhs(tcx: &ty::ctxt, a: &@ast::expr, b: &@ast::expr,
op: &istr) {
need_expr_kind(tcx, a, ast::kind_shared, op + ~" lhs");
need_expr_kind(tcx, b, ast::kind_shared, op + ~" rhs");
}
fn check_expr(tcx: &ty::ctxt, e: &@ast::expr) {
alt e.node {
ast::expr_move(a, b) { need_shared_lhs_rhs(tcx, a, b, ~"<-"); }
ast::expr_assign(a, b) { need_shared_lhs_rhs(tcx, a, b, ~"="); }
ast::expr_assign_op(_, a, b) { need_shared_lhs_rhs(tcx, a, b, ~"op="); }
ast::expr_swap(a, b) { need_shared_lhs_rhs(tcx, a, b, ~"<->"); }
ast::expr_copy(a) {
need_expr_kind(tcx, a, ast::kind_shared, ~"'copy' operand");
}
ast::expr_ret(option::some(a)) {
need_expr_kind(tcx, a, ast::kind_shared, ~"'ret' operand");
}
ast::expr_be(a) {
need_expr_kind(tcx, a, ast::kind_shared, ~"'be' operand");
}
ast::expr_fail(option::some(a)) {
need_expr_kind(tcx, a, ast::kind_shared, ~"'fail' operand");
}
ast::expr_call(callee, _) {
let tpt = ty::expr_ty_params_and_ty(tcx, callee);
// If we have typarams, we're calling an item; we need to check
// that all the types we're supplying as typarams conform to the
// typaram kind constraints on that item.
if vec::len(tpt.params) != 0u {
let callee_def = ast_util::def_id_of_def(
tcx.def_map.get(callee.id));
let item_tk = ty::lookup_item_type(tcx, callee_def);
let i = 0;
assert (vec::len(item_tk.kinds) == vec::len(tpt.params));
for k_need: ast::kind in item_tk.kinds {
let t = tpt.params[i];
let k = ty::type_kind(tcx, t);
if !kind_lteq(k_need, k) {
let s =
#ifmt["mismatched kinds for typaram %d: \
needed %s type, got %s type %s",
i, kind_to_str(k_need), kind_to_str(k),
util::ppaux::ty_to_str(tcx, t)];
tcx.sess.span_err(e.span, s);
}
i += 1;
}
}
}
_ { }
}
}
fn check_crate(tcx: &ty::ctxt, crate: &@ast::crate) {
let visit =
visit::mk_simple_visitor(@{visit_expr: bind check_expr(tcx, _)
with *visit::default_simple_visitor()});
visit::visit_crate(*crate, (), visit);
tcx.sess.abort_if_errors();
}
//
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
// End:
//