rust/src/liballoc/linked_list.rs
2018-03-03 14:23:05 +01:00

1661 lines
46 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A doubly-linked list with owned nodes.
//!
//! The `LinkedList` allows pushing and popping elements at either end
//! in constant time.
//!
//! Almost always it is better to use `Vec` or [`VecDeque`] instead of
//! [`LinkedList`]. In general, array-based containers are faster,
//! more memory efficient and make better use of CPU cache.
//!
//! [`LinkedList`]: ../linked_list/struct.LinkedList.html
//! [`VecDeque`]: ../vec_deque/struct.VecDeque.html
#![stable(feature = "rust1", since = "1.0.0")]
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hasher, Hash};
use core::iter::{FromIterator, FusedIterator};
use core::marker::PhantomData;
use core::mem;
use core::ops::{BoxPlace, InPlace, Place, Placer};
use core::ptr::{self, NonNull};
use boxed::{Box, IntermediateBox};
use super::SpecExtend;
/// A doubly-linked list with owned nodes.
///
/// The `LinkedList` allows pushing and popping elements at either end
/// in constant time.
///
/// Almost always it is better to use `Vec` or `VecDeque` instead of
/// `LinkedList`. In general, array-based containers are faster,
/// more memory efficient and make better use of CPU cache.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct LinkedList<T> {
head: Option<NonNull<Node<T>>>,
tail: Option<NonNull<Node<T>>>,
len: usize,
marker: PhantomData<Box<Node<T>>>,
}
struct Node<T> {
next: Option<NonNull<Node<T>>>,
prev: Option<NonNull<Node<T>>>,
element: T,
}
/// An iterator over the elements of a `LinkedList`.
///
/// This `struct` is created by the [`iter`] method on [`LinkedList`]. See its
/// documentation for more.
///
/// [`iter`]: struct.LinkedList.html#method.iter
/// [`LinkedList`]: struct.LinkedList.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> {
head: Option<NonNull<Node<T>>>,
tail: Option<NonNull<Node<T>>>,
len: usize,
marker: PhantomData<&'a Node<T>>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, T: 'a + fmt::Debug> fmt::Debug for Iter<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Iter")
.field(&self.len)
.finish()
}
}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Self {
Iter { ..*self }
}
}
/// A mutable iterator over the elements of a `LinkedList`.
///
/// This `struct` is created by the [`iter_mut`] method on [`LinkedList`]. See its
/// documentation for more.
///
/// [`iter_mut`]: struct.LinkedList.html#method.iter_mut
/// [`LinkedList`]: struct.LinkedList.html
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T: 'a> {
list: &'a mut LinkedList<T>,
head: Option<NonNull<Node<T>>>,
tail: Option<NonNull<Node<T>>>,
len: usize,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<'a, T: 'a + fmt::Debug> fmt::Debug for IterMut<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("IterMut")
.field(&self.list)
.field(&self.len)
.finish()
}
}
/// An owning iterator over the elements of a `LinkedList`.
///
/// This `struct` is created by the [`into_iter`] method on [`LinkedList`][`LinkedList`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: struct.LinkedList.html#method.into_iter
/// [`LinkedList`]: struct.LinkedList.html
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
list: LinkedList<T>,
}
#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("IntoIter")
.field(&self.list)
.finish()
}
}
impl<T> Node<T> {
fn new(element: T) -> Self {
Node {
next: None,
prev: None,
element,
}
}
fn into_element(self: Box<Self>) -> T {
self.element
}
}
// private methods
impl<T> LinkedList<T> {
/// Adds the given node to the front of the list.
#[inline]
fn push_front_node(&mut self, mut node: Box<Node<T>>) {
unsafe {
node.next = self.head;
node.prev = None;
let node = Some(Box::into_raw_non_null(node));
match self.head {
None => self.tail = node,
Some(mut head) => head.as_mut().prev = node,
}
self.head = node;
self.len += 1;
}
}
/// Removes and returns the node at the front of the list.
#[inline]
fn pop_front_node(&mut self) -> Option<Box<Node<T>>> {
self.head.map(|node| unsafe {
let node = Box::from_raw(node.as_ptr());
self.head = node.next;
match self.head {
None => self.tail = None,
Some(mut head) => head.as_mut().prev = None,
}
self.len -= 1;
node
})
}
/// Adds the given node to the back of the list.
#[inline]
fn push_back_node(&mut self, mut node: Box<Node<T>>) {
unsafe {
node.next = None;
node.prev = self.tail;
let node = Some(Box::into_raw_non_null(node));
match self.tail {
None => self.head = node,
Some(mut tail) => tail.as_mut().next = node,
}
self.tail = node;
self.len += 1;
}
}
/// Removes and returns the node at the back of the list.
#[inline]
fn pop_back_node(&mut self) -> Option<Box<Node<T>>> {
self.tail.map(|node| unsafe {
let node = Box::from_raw(node.as_ptr());
self.tail = node.prev;
match self.tail {
None => self.head = None,
Some(mut tail) => tail.as_mut().next = None,
}
self.len -= 1;
node
})
}
/// Unlinks the specified node from the current list.
///
/// Warning: this will not check that the provided node belongs to the current list.
#[inline]
unsafe fn unlink_node(&mut self, mut node: NonNull<Node<T>>) {
let node = node.as_mut();
match node.prev {
Some(mut prev) => prev.as_mut().next = node.next.clone(),
// this node is the head node
None => self.head = node.next.clone(),
};
match node.next {
Some(mut next) => next.as_mut().prev = node.prev.clone(),
// this node is the tail node
None => self.tail = node.prev.clone(),
};
self.len -= 1;
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for LinkedList<T> {
/// Creates an empty `LinkedList<T>`.
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<T> LinkedList<T> {
/// Creates an empty `LinkedList`.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let list: LinkedList<u32> = LinkedList::new();
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> Self {
LinkedList {
head: None,
tail: None,
len: 0,
marker: PhantomData,
}
}
/// Moves all elements from `other` to the end of the list.
///
/// This reuses all the nodes from `other` and moves them into `self`. After
/// this operation, `other` becomes empty.
///
/// This operation should compute in O(1) time and O(1) memory.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut list1 = LinkedList::new();
/// list1.push_back('a');
///
/// let mut list2 = LinkedList::new();
/// list2.push_back('b');
/// list2.push_back('c');
///
/// list1.append(&mut list2);
///
/// let mut iter = list1.iter();
/// assert_eq!(iter.next(), Some(&'a'));
/// assert_eq!(iter.next(), Some(&'b'));
/// assert_eq!(iter.next(), Some(&'c'));
/// assert!(iter.next().is_none());
///
/// assert!(list2.is_empty());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn append(&mut self, other: &mut Self) {
match self.tail {
None => mem::swap(self, other),
Some(mut tail) => {
if let Some(mut other_head) = other.head.take() {
unsafe {
tail.as_mut().next = Some(other_head);
other_head.as_mut().prev = Some(tail);
}
self.tail = other.tail.take();
self.len += mem::replace(&mut other.len, 0);
}
}
}
}
/// Provides a forward iterator.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<u32> = LinkedList::new();
///
/// list.push_back(0);
/// list.push_back(1);
/// list.push_back(2);
///
/// let mut iter = list.iter();
/// assert_eq!(iter.next(), Some(&0));
/// assert_eq!(iter.next(), Some(&1));
/// assert_eq!(iter.next(), Some(&2));
/// assert_eq!(iter.next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter {
head: self.head,
tail: self.tail,
len: self.len,
marker: PhantomData,
}
}
/// Provides a forward iterator with mutable references.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<u32> = LinkedList::new();
///
/// list.push_back(0);
/// list.push_back(1);
/// list.push_back(2);
///
/// for element in list.iter_mut() {
/// *element += 10;
/// }
///
/// let mut iter = list.iter();
/// assert_eq!(iter.next(), Some(&10));
/// assert_eq!(iter.next(), Some(&11));
/// assert_eq!(iter.next(), Some(&12));
/// assert_eq!(iter.next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut {
head: self.head,
tail: self.tail,
len: self.len,
list: self,
}
}
/// Returns `true` if the `LinkedList` is empty.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert!(dl.is_empty());
///
/// dl.push_front("foo");
/// assert!(!dl.is_empty());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.head.is_none()
}
/// Returns the length of the `LinkedList`.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
///
/// dl.push_front(2);
/// assert_eq!(dl.len(), 1);
///
/// dl.push_front(1);
/// assert_eq!(dl.len(), 2);
///
/// dl.push_back(3);
/// assert_eq!(dl.len(), 3);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn len(&self) -> usize {
self.len
}
/// Removes all elements from the `LinkedList`.
///
/// This operation should compute in O(n) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
///
/// dl.push_front(2);
/// dl.push_front(1);
/// assert_eq!(dl.len(), 2);
/// assert_eq!(dl.front(), Some(&1));
///
/// dl.clear();
/// assert_eq!(dl.len(), 0);
/// assert_eq!(dl.front(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
*self = Self::new();
}
/// Returns `true` if the `LinkedList` contains an element equal to the
/// given value.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<u32> = LinkedList::new();
///
/// list.push_back(0);
/// list.push_back(1);
/// list.push_back(2);
///
/// assert_eq!(list.contains(&0), true);
/// assert_eq!(list.contains(&10), false);
/// ```
#[stable(feature = "linked_list_contains", since = "1.12.0")]
pub fn contains(&self, x: &T) -> bool
where T: PartialEq<T>
{
self.iter().any(|e| e == x)
}
/// Provides a reference to the front element, or `None` if the list is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.front(), None);
///
/// dl.push_front(1);
/// assert_eq!(dl.front(), Some(&1));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front(&self) -> Option<&T> {
unsafe {
self.head.as_ref().map(|node| &node.as_ref().element)
}
}
/// Provides a mutable reference to the front element, or `None` if the list
/// is empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.front(), None);
///
/// dl.push_front(1);
/// assert_eq!(dl.front(), Some(&1));
///
/// match dl.front_mut() {
/// None => {},
/// Some(x) => *x = 5,
/// }
/// assert_eq!(dl.front(), Some(&5));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front_mut(&mut self) -> Option<&mut T> {
unsafe {
self.head.as_mut().map(|node| &mut node.as_mut().element)
}
}
/// Provides a reference to the back element, or `None` if the list is
/// empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.back(), None);
///
/// dl.push_back(1);
/// assert_eq!(dl.back(), Some(&1));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back(&self) -> Option<&T> {
unsafe {
self.tail.as_ref().map(|node| &node.as_ref().element)
}
}
/// Provides a mutable reference to the back element, or `None` if the list
/// is empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
/// assert_eq!(dl.back(), None);
///
/// dl.push_back(1);
/// assert_eq!(dl.back(), Some(&1));
///
/// match dl.back_mut() {
/// None => {},
/// Some(x) => *x = 5,
/// }
/// assert_eq!(dl.back(), Some(&5));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back_mut(&mut self) -> Option<&mut T> {
unsafe {
self.tail.as_mut().map(|node| &mut node.as_mut().element)
}
}
/// Adds an element first in the list.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut dl = LinkedList::new();
///
/// dl.push_front(2);
/// assert_eq!(dl.front().unwrap(), &2);
///
/// dl.push_front(1);
/// assert_eq!(dl.front().unwrap(), &1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_front(&mut self, elt: T) {
self.push_front_node(box Node::new(elt));
}
/// Removes the first element and returns it, or `None` if the list is
/// empty.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// assert_eq!(d.pop_front(), None);
///
/// d.push_front(1);
/// d.push_front(3);
/// assert_eq!(d.pop_front(), Some(3));
/// assert_eq!(d.pop_front(), Some(1));
/// assert_eq!(d.pop_front(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_front(&mut self) -> Option<T> {
self.pop_front_node().map(Node::into_element)
}
/// Appends an element to the back of a list
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// d.push_back(1);
/// d.push_back(3);
/// assert_eq!(3, *d.back().unwrap());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_back(&mut self, elt: T) {
self.push_back_node(box Node::new(elt));
}
/// Removes the last element from a list and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// assert_eq!(d.pop_back(), None);
/// d.push_back(1);
/// d.push_back(3);
/// assert_eq!(d.pop_back(), Some(3));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_back(&mut self) -> Option<T> {
self.pop_back_node().map(Node::into_element)
}
/// Splits the list into two at the given index. Returns everything after the given index,
/// including the index.
///
/// This operation should compute in O(n) time.
///
/// # Panics
///
/// Panics if `at > len`.
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
///
/// d.push_front(1);
/// d.push_front(2);
/// d.push_front(3);
///
/// let mut splitted = d.split_off(2);
///
/// assert_eq!(splitted.pop_front(), Some(1));
/// assert_eq!(splitted.pop_front(), None);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn split_off(&mut self, at: usize) -> LinkedList<T> {
let len = self.len();
assert!(at <= len, "Cannot split off at a nonexistent index");
if at == 0 {
return mem::replace(self, Self::new());
} else if at == len {
return Self::new();
}
// Below, we iterate towards the `i-1`th node, either from the start or the end,
// depending on which would be faster.
let split_node = if at - 1 <= len - 1 - (at - 1) {
let mut iter = self.iter_mut();
// instead of skipping using .skip() (which creates a new struct),
// we skip manually so we can access the head field without
// depending on implementation details of Skip
for _ in 0..at - 1 {
iter.next();
}
iter.head
} else {
// better off starting from the end
let mut iter = self.iter_mut();
for _ in 0..len - 1 - (at - 1) {
iter.next_back();
}
iter.tail
};
// The split node is the new tail node of the first part and owns
// the head of the second part.
let second_part_head;
unsafe {
second_part_head = split_node.unwrap().as_mut().next.take();
if let Some(mut head) = second_part_head {
head.as_mut().prev = None;
}
}
let second_part = LinkedList {
head: second_part_head,
tail: self.tail,
len: len - at,
marker: PhantomData,
};
// Fix the tail ptr of the first part
self.tail = split_node;
self.len = at;
second_part
}
/// Creates an iterator which uses a closure to determine if an element should be removed.
///
/// If the closure returns true, then the element is removed and yielded.
/// If the closure returns false, the element will remain in the list and will not be yielded
/// by the iterator.
///
/// Note that `drain_filter` lets you mutate every element in the filter closure, regardless of
/// whether you choose to keep or remove it.
///
/// # Examples
///
/// Splitting a list into evens and odds, reusing the original list:
///
/// ```
/// #![feature(drain_filter)]
/// use std::collections::LinkedList;
///
/// let mut numbers: LinkedList<u32> = LinkedList::new();
/// numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
///
/// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<LinkedList<_>>();
/// let odds = numbers;
///
/// assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
/// assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);
/// ```
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<T, F>
where F: FnMut(&mut T) -> bool
{
// avoid borrow issues.
let it = self.head;
let old_len = self.len;
DrainFilter {
list: self,
it: it,
pred: filter,
idx: 0,
old_len: old_len,
}
}
/// Returns a place for insertion at the front of the list.
///
/// Using this method with placement syntax is equivalent to
/// [`push_front`](#method.push_front), but may be more efficient.
///
/// # Examples
///
/// ```
/// #![feature(collection_placement)]
/// #![feature(placement_in_syntax)]
///
/// use std::collections::LinkedList;
///
/// let mut list = LinkedList::new();
/// list.front_place() <- 2;
/// list.front_place() <- 4;
/// assert!(list.iter().eq(&[4, 2]));
/// ```
#[unstable(feature = "collection_placement",
reason = "method name and placement protocol are subject to change",
issue = "30172")]
pub fn front_place(&mut self) -> FrontPlace<T> {
FrontPlace {
list: self,
node: IntermediateBox::make_place(),
}
}
/// Returns a place for insertion at the back of the list.
///
/// Using this method with placement syntax is equivalent to [`push_back`](#method.push_back),
/// but may be more efficient.
///
/// # Examples
///
/// ```
/// #![feature(collection_placement)]
/// #![feature(placement_in_syntax)]
///
/// use std::collections::LinkedList;
///
/// let mut list = LinkedList::new();
/// list.back_place() <- 2;
/// list.back_place() <- 4;
/// assert!(list.iter().eq(&[2, 4]));
/// ```
#[unstable(feature = "collection_placement",
reason = "method name and placement protocol are subject to change",
issue = "30172")]
pub fn back_place(&mut self) -> BackPlace<T> {
BackPlace {
list: self,
node: IntermediateBox::make_place(),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T> Drop for LinkedList<T> {
fn drop(&mut self) {
while let Some(_) = self.pop_front_node() {}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> {
if self.len == 0 {
None
} else {
self.head.map(|node| unsafe {
// Need an unbound lifetime to get 'a
let node = &*node.as_ptr();
self.len -= 1;
self.head = node.next;
&node.element
})
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> {
if self.len == 0 {
None
} else {
self.tail.map(|node| unsafe {
// Need an unbound lifetime to get 'a
let node = &*node.as_ptr();
self.len -= 1;
self.tail = node.prev;
&node.element
})
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<'a, T> FusedIterator for Iter<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
#[inline]
fn next(&mut self) -> Option<&'a mut T> {
if self.len == 0 {
None
} else {
self.head.map(|node| unsafe {
// Need an unbound lifetime to get 'a
let node = &mut *node.as_ptr();
self.len -= 1;
self.head = node.next;
&mut node.element
})
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut T> {
if self.len == 0 {
None
} else {
self.tail.map(|node| unsafe {
// Need an unbound lifetime to get 'a
let node = &mut *node.as_ptr();
self.len -= 1;
self.tail = node.prev;
&mut node.element
})
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for IterMut<'a, T> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<'a, T> FusedIterator for IterMut<'a, T> {}
impl<'a, T> IterMut<'a, T> {
/// Inserts the given element just after the element most recently returned by `.next()`.
/// The inserted element does not appear in the iteration.
///
/// # Examples
///
/// ```
/// #![feature(linked_list_extras)]
///
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<_> = vec![1, 3, 4].into_iter().collect();
///
/// {
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// // insert `2` after `1`
/// it.insert_next(2);
/// }
/// {
/// let vec: Vec<_> = list.into_iter().collect();
/// assert_eq!(vec, [1, 2, 3, 4]);
/// }
/// ```
#[inline]
#[unstable(feature = "linked_list_extras",
reason = "this is probably better handled by a cursor type -- we'll see",
issue = "27794")]
pub fn insert_next(&mut self, element: T) {
match self.head {
None => self.list.push_back(element),
Some(mut head) => unsafe {
let mut prev = match head.as_ref().prev {
None => return self.list.push_front(element),
Some(prev) => prev,
};
let node = Some(Box::into_raw_non_null(box Node {
next: Some(head),
prev: Some(prev),
element,
}));
prev.as_mut().next = node;
head.as_mut().prev = node;
self.list.len += 1;
},
}
}
/// Provides a reference to the next element, without changing the iterator.
///
/// # Examples
///
/// ```
/// #![feature(linked_list_extras)]
///
/// use std::collections::LinkedList;
///
/// let mut list: LinkedList<_> = vec![1, 2, 3].into_iter().collect();
///
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// assert_eq!(it.peek_next().unwrap(), &2);
/// // We just peeked at 2, so it was not consumed from the iterator.
/// assert_eq!(it.next().unwrap(), &2);
/// ```
#[inline]
#[unstable(feature = "linked_list_extras",
reason = "this is probably better handled by a cursor type -- we'll see",
issue = "27794")]
pub fn peek_next(&mut self) -> Option<&mut T> {
if self.len == 0 {
None
} else {
unsafe {
self.head.as_mut().map(|node| &mut node.as_mut().element)
}
}
}
}
/// An iterator produced by calling `drain_filter` on LinkedList.
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
pub struct DrainFilter<'a, T: 'a, F: 'a>
where F: FnMut(&mut T) -> bool,
{
list: &'a mut LinkedList<T>,
it: Option<NonNull<Node<T>>>,
pred: F,
idx: usize,
old_len: usize,
}
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
impl<'a, T, F> Iterator for DrainFilter<'a, T, F>
where F: FnMut(&mut T) -> bool,
{
type Item = T;
fn next(&mut self) -> Option<T> {
while let Some(mut node) = self.it {
unsafe {
self.it = node.as_ref().next;
self.idx += 1;
if (self.pred)(&mut node.as_mut().element) {
self.list.unlink_node(node);
return Some(Box::from_raw(node.as_ptr()).element);
}
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(self.old_len - self.idx))
}
}
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
impl<'a, T, F> Drop for DrainFilter<'a, T, F>
where F: FnMut(&mut T) -> bool,
{
fn drop(&mut self) {
for _ in self { }
}
}
#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
impl<'a, T: 'a + fmt::Debug, F> fmt::Debug for DrainFilter<'a, T, F>
where F: FnMut(&mut T) -> bool
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("DrainFilter")
.field(&self.list)
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.list.pop_front()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.list.len, Some(self.list.len))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.list.pop_back()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {}
#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for IntoIter<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> FromIterator<T> for LinkedList<T> {
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut list = Self::new();
list.extend(iter);
list
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for LinkedList<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Consumes the list into an iterator yielding elements by value.
#[inline]
fn into_iter(self) -> IntoIter<T> {
IntoIter { list: self }
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a LinkedList<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a mut LinkedList<T> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Extend<T> for LinkedList<T> {
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
<Self as SpecExtend<I>>::spec_extend(self, iter);
}
}
impl<I: IntoIterator> SpecExtend<I> for LinkedList<I::Item> {
default fn spec_extend(&mut self, iter: I) {
for elt in iter {
self.push_back(elt);
}
}
}
impl<T> SpecExtend<LinkedList<T>> for LinkedList<T> {
fn spec_extend(&mut self, ref mut other: LinkedList<T>) {
self.append(other);
}
}
#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Copy> Extend<&'a T> for LinkedList<T> {
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned());
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq> PartialEq for LinkedList<T> {
fn eq(&self, other: &Self) -> bool {
self.len() == other.len() && self.iter().eq(other)
}
fn ne(&self, other: &Self) -> bool {
self.len() != other.len() || self.iter().ne(other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq> Eq for LinkedList<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd> PartialOrd for LinkedList<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Ord for LinkedList<T> {
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for LinkedList<T> {
fn clone(&self) -> Self {
self.iter().cloned().collect()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug> fmt::Debug for LinkedList<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self).finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash> Hash for LinkedList<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for elt in self {
elt.hash(state);
}
}
}
unsafe fn finalize<T>(node: IntermediateBox<Node<T>>) -> Box<Node<T>> {
let mut node = node.finalize();
ptr::write(&mut node.next, None);
ptr::write(&mut node.prev, None);
node
}
/// A place for insertion at the front of a `LinkedList`.
///
/// See [`LinkedList::front_place`](struct.LinkedList.html#method.front_place) for details.
#[must_use = "places do nothing unless written to with `<-` syntax"]
#[unstable(feature = "collection_placement",
reason = "struct name and placement protocol are subject to change",
issue = "30172")]
pub struct FrontPlace<'a, T: 'a> {
list: &'a mut LinkedList<T>,
node: IntermediateBox<Node<T>>,
}
#[unstable(feature = "collection_placement",
reason = "struct name and placement protocol are subject to change",
issue = "30172")]
impl<'a, T: 'a + fmt::Debug> fmt::Debug for FrontPlace<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("FrontPlace")
.field(&self.list)
.finish()
}
}
#[unstable(feature = "collection_placement",
reason = "placement protocol is subject to change",
issue = "30172")]
impl<'a, T> Placer<T> for FrontPlace<'a, T> {
type Place = Self;
fn make_place(self) -> Self {
self
}
}
#[unstable(feature = "collection_placement",
reason = "placement protocol is subject to change",
issue = "30172")]
unsafe impl<'a, T> Place<T> for FrontPlace<'a, T> {
fn pointer(&mut self) -> *mut T {
unsafe { &mut (*self.node.pointer()).element }
}
}
#[unstable(feature = "collection_placement",
reason = "placement protocol is subject to change",
issue = "30172")]
impl<'a, T> InPlace<T> for FrontPlace<'a, T> {
type Owner = ();
unsafe fn finalize(self) {
let FrontPlace { list, node } = self;
list.push_front_node(finalize(node));
}
}
/// A place for insertion at the back of a `LinkedList`.
///
/// See [`LinkedList::back_place`](struct.LinkedList.html#method.back_place) for details.
#[must_use = "places do nothing unless written to with `<-` syntax"]
#[unstable(feature = "collection_placement",
reason = "struct name and placement protocol are subject to change",
issue = "30172")]
pub struct BackPlace<'a, T: 'a> {
list: &'a mut LinkedList<T>,
node: IntermediateBox<Node<T>>,
}
#[unstable(feature = "collection_placement",
reason = "struct name and placement protocol are subject to change",
issue = "30172")]
impl<'a, T: 'a + fmt::Debug> fmt::Debug for BackPlace<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("BackPlace")
.field(&self.list)
.finish()
}
}
#[unstable(feature = "collection_placement",
reason = "placement protocol is subject to change",
issue = "30172")]
impl<'a, T> Placer<T> for BackPlace<'a, T> {
type Place = Self;
fn make_place(self) -> Self {
self
}
}
#[unstable(feature = "collection_placement",
reason = "placement protocol is subject to change",
issue = "30172")]
unsafe impl<'a, T> Place<T> for BackPlace<'a, T> {
fn pointer(&mut self) -> *mut T {
unsafe { &mut (*self.node.pointer()).element }
}
}
#[unstable(feature = "collection_placement",
reason = "placement protocol is subject to change",
issue = "30172")]
impl<'a, T> InPlace<T> for BackPlace<'a, T> {
type Owner = ();
unsafe fn finalize(self) {
let BackPlace { list, node } = self;
list.push_back_node(finalize(node));
}
}
// Ensure that `LinkedList` and its read-only iterators are covariant in their type parameters.
#[allow(dead_code)]
fn assert_covariance() {
fn a<'a>(x: LinkedList<&'static str>) -> LinkedList<&'a str> {
x
}
fn b<'i, 'a>(x: Iter<'i, &'static str>) -> Iter<'i, &'a str> {
x
}
fn c<'a>(x: IntoIter<&'static str>) -> IntoIter<&'a str> {
x
}
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Send> Send for LinkedList<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: Sync> Sync for LinkedList<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<'a, T: Sync> Send for Iter<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<'a, T: Sync> Sync for Iter<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<'a, T: Send> Send for IterMut<'a, T> {}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<'a, T: Sync> Sync for IterMut<'a, T> {}
#[cfg(test)]
mod tests {
use std::thread;
use std::vec::Vec;
use rand::{thread_rng, Rng};
use super::{LinkedList, Node};
#[cfg(test)]
fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> {
v.iter().cloned().collect()
}
pub fn check_links<T>(list: &LinkedList<T>) {
unsafe {
let mut len = 0;
let mut last_ptr: Option<&Node<T>> = None;
let mut node_ptr: &Node<T>;
match list.head {
None => {
// tail node should also be None.
assert!(list.tail.is_none());
assert_eq!(0, list.len);
return;
}
Some(node) => node_ptr = &*node.as_ptr(),
}
loop {
match (last_ptr, node_ptr.prev) {
(None, None) => {}
(None, _) => panic!("prev link for head"),
(Some(p), Some(pptr)) => {
assert_eq!(p as *const Node<T>, pptr.as_ptr() as *const Node<T>);
}
_ => panic!("prev link is none, not good"),
}
match node_ptr.next {
Some(next) => {
last_ptr = Some(node_ptr);
node_ptr = &*next.as_ptr();
len += 1;
}
None => {
len += 1;
break;
}
}
}
// verify that the tail node points to the last node.
let tail = list.tail.as_ref().expect("some tail node").as_ref();
assert_eq!(tail as *const Node<T>, node_ptr as *const Node<T>);
// check that len matches interior links.
assert_eq!(len, list.len);
}
}
#[test]
fn test_append() {
// Empty to empty
{
let mut m = LinkedList::<i32>::new();
let mut n = LinkedList::new();
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 0);
assert_eq!(n.len(), 0);
}
// Non-empty to empty
{
let mut m = LinkedList::new();
let mut n = LinkedList::new();
n.push_back(2);
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
assert_eq!(n.len(), 0);
check_links(&m);
}
// Empty to non-empty
{
let mut m = LinkedList::new();
let mut n = LinkedList::new();
m.push_back(2);
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
// Non-empty to non-empty
let v = vec![1, 2, 3, 4, 5];
let u = vec![9, 8, 1, 2, 3, 4, 5];
let mut m = list_from(&v);
let mut n = list_from(&u);
m.append(&mut n);
check_links(&m);
let mut sum = v;
sum.extend_from_slice(&u);
assert_eq!(sum.len(), m.len());
for elt in sum {
assert_eq!(m.pop_front(), Some(elt))
}
assert_eq!(n.len(), 0);
// let's make sure it's working properly, since we
// did some direct changes to private members
n.push_back(3);
assert_eq!(n.len(), 1);
assert_eq!(n.pop_front(), Some(3));
check_links(&n);
}
#[test]
fn test_insert_prev() {
let mut m = list_from(&[0, 2, 4, 6, 8]);
let len = m.len();
{
let mut it = m.iter_mut();
it.insert_next(-2);
loop {
match it.next() {
None => break,
Some(elt) => {
it.insert_next(*elt + 1);
match it.peek_next() {
Some(x) => assert_eq!(*x, *elt + 2),
None => assert_eq!(8, *elt),
}
}
}
}
it.insert_next(0);
it.insert_next(1);
}
check_links(&m);
assert_eq!(m.len(), 3 + len * 2);
assert_eq!(m.into_iter().collect::<Vec<_>>(),
[-2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1]);
}
#[test]
#[cfg_attr(target_os = "emscripten", ignore)]
fn test_send() {
let n = list_from(&[1, 2, 3]);
thread::spawn(move || {
check_links(&n);
let a: &[_] = &[&1, &2, &3];
assert_eq!(a, &*n.iter().collect::<Vec<_>>());
})
.join()
.ok()
.unwrap();
}
#[test]
fn test_fuzz() {
for _ in 0..25 {
fuzz_test(3);
fuzz_test(16);
fuzz_test(189);
}
}
#[test]
fn test_26021() {
// There was a bug in split_off that failed to null out the RHS's head's prev ptr.
// This caused the RHS's dtor to walk up into the LHS at drop and delete all of
// its nodes.
//
// https://github.com/rust-lang/rust/issues/26021
let mut v1 = LinkedList::new();
v1.push_front(1);
v1.push_front(1);
v1.push_front(1);
v1.push_front(1);
let _ = v1.split_off(3); // Dropping this now should not cause laundry consumption
assert_eq!(v1.len(), 3);
assert_eq!(v1.iter().len(), 3);
assert_eq!(v1.iter().collect::<Vec<_>>().len(), 3);
}
#[test]
fn test_split_off() {
let mut v1 = LinkedList::new();
v1.push_front(1);
v1.push_front(1);
v1.push_front(1);
v1.push_front(1);
// test all splits
for ix in 0..1 + v1.len() {
let mut a = v1.clone();
let b = a.split_off(ix);
check_links(&a);
check_links(&b);
a.extend(b);
assert_eq!(v1, a);
}
}
#[cfg(test)]
fn fuzz_test(sz: i32) {
let mut m: LinkedList<_> = LinkedList::new();
let mut v = vec![];
for i in 0..sz {
check_links(&m);
let r: u8 = thread_rng().next_u32() as u8;
match r % 6 {
0 => {
m.pop_back();
v.pop();
}
1 => {
if !v.is_empty() {
m.pop_front();
v.remove(0);
}
}
2 | 4 => {
m.push_front(-i);
v.insert(0, -i);
}
3 | 5 | _ => {
m.push_back(i);
v.push(i);
}
}
}
check_links(&m);
let mut i = 0;
for (a, &b) in m.into_iter().zip(&v) {
i += 1;
assert_eq!(a, b);
}
assert_eq!(i, v.len());
}
#[test]
fn drain_filter_test() {
let mut m: LinkedList<u32> = LinkedList::new();
m.extend(&[1, 2, 3, 4, 5, 6]);
let deleted = m.drain_filter(|v| *v < 4).collect::<Vec<_>>();
check_links(&m);
assert_eq!(deleted, &[1, 2, 3]);
assert_eq!(m.into_iter().collect::<Vec<_>>(), &[4, 5, 6]);
}
#[test]
fn drain_to_empty_test() {
let mut m: LinkedList<u32> = LinkedList::new();
m.extend(&[1, 2, 3, 4, 5, 6]);
let deleted = m.drain_filter(|_| true).collect::<Vec<_>>();
check_links(&m);
assert_eq!(deleted, &[1, 2, 3, 4, 5, 6]);
assert_eq!(m.into_iter().collect::<Vec<_>>(), &[]);
}
}