rust/src/librustc/util/ppaux.rs
2014-12-21 23:31:42 -08:00

1413 lines
43 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::def;
use middle::subst::{VecPerParamSpace,Subst};
use middle::subst;
use middle::ty::{BoundRegion, BrAnon, BrNamed};
use middle::ty::{ReEarlyBound, BrFresh, ctxt};
use middle::ty::{ReFree, ReScope, ReInfer, ReStatic, Region, ReEmpty};
use middle::ty::{ReSkolemized, ReVar, BrEnv};
use middle::ty::{mt, Ty, ParamTy};
use middle::ty::{ty_bool, ty_char, ty_struct, ty_enum};
use middle::ty::{ty_err, ty_str, ty_vec, ty_float, ty_bare_fn, ty_closure};
use middle::ty::{ty_param, ty_ptr, ty_rptr, ty_tup, ty_open};
use middle::ty::{ty_unboxed_closure};
use middle::ty::{ty_uniq, ty_trait, ty_int, ty_uint, ty_infer};
use middle::ty;
use middle::ty_fold::TypeFoldable;
use std::collections::HashMap;
use std::hash::{Hash, Hasher};
use std::rc::Rc;
use syntax::abi;
use syntax::ast_map;
use syntax::codemap::{Span, Pos};
use syntax::parse::token;
use syntax::print::pprust;
use syntax::ptr::P;
use syntax::{ast, ast_util};
use syntax::owned_slice::OwnedSlice;
/// Produces a string suitable for debugging output.
pub trait Repr<'tcx> for Sized? {
fn repr(&self, tcx: &ctxt<'tcx>) -> String;
}
/// Produces a string suitable for showing to the user.
pub trait UserString<'tcx> : Repr<'tcx> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String;
}
pub fn note_and_explain_region(cx: &ctxt,
prefix: &str,
region: ty::Region,
suffix: &str) -> Option<Span> {
match explain_region_and_span(cx, region) {
(ref str, Some(span)) => {
cx.sess.span_note(
span,
format!("{}{}{}", prefix, *str, suffix)[]);
Some(span)
}
(ref str, None) => {
cx.sess.note(
format!("{}{}{}", prefix, *str, suffix)[]);
None
}
}
}
/// When a free region is associated with `item`, how should we describe the item in the error
/// message.
fn item_scope_tag(item: &ast::Item) -> &'static str {
match item.node {
ast::ItemImpl(..) => "impl",
ast::ItemStruct(..) => "struct",
ast::ItemEnum(..) => "enum",
ast::ItemTrait(..) => "trait",
ast::ItemFn(..) => "function body",
_ => "item"
}
}
pub fn explain_region_and_span(cx: &ctxt, region: ty::Region)
-> (String, Option<Span>) {
return match region {
ReScope(scope) => {
match cx.map.find(scope.node_id()) {
Some(ast_map::NodeBlock(ref blk)) => {
explain_span(cx, "block", blk.span)
}
Some(ast_map::NodeExpr(expr)) => {
match expr.node {
ast::ExprCall(..) => explain_span(cx, "call", expr.span),
ast::ExprMethodCall(..) => {
explain_span(cx, "method call", expr.span)
},
ast::ExprMatch(_, _, ast::MatchSource::IfLetDesugar { .. }) =>
explain_span(cx, "if let", expr.span),
ast::ExprMatch(_, _, ast::MatchSource::WhileLetDesugar) => {
explain_span(cx, "while let", expr.span)
},
ast::ExprMatch(..) => explain_span(cx, "match", expr.span),
_ => explain_span(cx, "expression", expr.span)
}
}
Some(ast_map::NodeStmt(stmt)) => {
explain_span(cx, "statement", stmt.span)
}
Some(ast_map::NodeItem(it)) => {
let tag = item_scope_tag(&*it);
explain_span(cx, tag, it.span)
}
Some(_) | None => {
// this really should not happen
(format!("unknown scope: {}. Please report a bug.", scope), None)
}
}
}
ReFree(ref fr) => {
let prefix = match fr.bound_region {
BrAnon(idx) => {
format!("the anonymous lifetime #{} defined on", idx + 1)
}
BrFresh(_) => "an anonymous lifetime defined on".to_string(),
_ => {
format!("the lifetime {} as defined on",
bound_region_ptr_to_string(cx, fr.bound_region))
}
};
match cx.map.find(fr.scope.node_id()) {
Some(ast_map::NodeBlock(ref blk)) => {
let (msg, opt_span) = explain_span(cx, "block", blk.span);
(format!("{} {}", prefix, msg), opt_span)
}
Some(ast_map::NodeItem(it)) => {
let tag = item_scope_tag(&*it);
let (msg, opt_span) = explain_span(cx, tag, it.span);
(format!("{} {}", prefix, msg), opt_span)
}
Some(_) | None => {
// this really should not happen
(format!("{} unknown free region bounded by scope {}", prefix, fr.scope), None)
}
}
}
ReStatic => { ("the static lifetime".to_string(), None) }
ReEmpty => { ("the empty lifetime".to_string(), None) }
ReEarlyBound(_, _, _, name) => {
(format!("{}", token::get_name(name)), None)
}
// I believe these cases should not occur (except when debugging,
// perhaps)
ty::ReInfer(_) | ty::ReLateBound(..) => {
(format!("lifetime {}", region), None)
}
};
fn explain_span(cx: &ctxt, heading: &str, span: Span)
-> (String, Option<Span>) {
let lo = cx.sess.codemap().lookup_char_pos_adj(span.lo);
(format!("the {} at {}:{}", heading, lo.line, lo.col.to_uint()),
Some(span))
}
}
pub fn bound_region_ptr_to_string(cx: &ctxt, br: BoundRegion) -> String {
bound_region_to_string(cx, "", false, br)
}
pub fn bound_region_to_string(cx: &ctxt,
prefix: &str, space: bool,
br: BoundRegion) -> String {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return format!("{}{}{}", prefix, br.repr(cx), space_str)
}
match br {
BrNamed(_, name) => {
format!("{}{}{}", prefix, token::get_name(name), space_str)
}
BrAnon(_) | BrFresh(_) | BrEnv => prefix.to_string()
}
}
// In general, if you are giving a region error message,
// you should use `explain_region()` or, better yet,
// `note_and_explain_region()`
pub fn region_ptr_to_string(cx: &ctxt, region: Region) -> String {
region_to_string(cx, "&", true, region)
}
pub fn region_to_string(cx: &ctxt, prefix: &str, space: bool, region: Region) -> String {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return format!("{}{}{}", prefix, region.repr(cx), space_str)
}
// These printouts are concise. They do not contain all the information
// the user might want to diagnose an error, but there is basically no way
// to fit that into a short string. Hence the recommendation to use
// `explain_region()` or `note_and_explain_region()`.
match region {
ty::ReScope(_) => prefix.to_string(),
ty::ReEarlyBound(_, _, _, name) => {
token::get_name(name).get().to_string()
}
ty::ReLateBound(_, br) => bound_region_to_string(cx, prefix, space, br),
ty::ReFree(ref fr) => bound_region_to_string(cx, prefix, space, fr.bound_region),
ty::ReInfer(ReSkolemized(_, br)) => {
bound_region_to_string(cx, prefix, space, br)
}
ty::ReInfer(ReVar(_)) => prefix.to_string(),
ty::ReStatic => format!("{}'static{}", prefix, space_str),
ty::ReEmpty => format!("{}'<empty>{}", prefix, space_str),
}
}
pub fn mutability_to_string(m: ast::Mutability) -> String {
match m {
ast::MutMutable => "mut ".to_string(),
ast::MutImmutable => "".to_string(),
}
}
pub fn mt_to_string<'tcx>(cx: &ctxt<'tcx>, m: &mt<'tcx>) -> String {
format!("{}{}",
mutability_to_string(m.mutbl),
ty_to_string(cx, m.ty))
}
pub fn trait_store_to_string(cx: &ctxt, s: ty::TraitStore) -> String {
match s {
ty::UniqTraitStore => "Box ".to_string(),
ty::RegionTraitStore(r, m) => {
format!("{}{}", region_ptr_to_string(cx, r), mutability_to_string(m))
}
}
}
pub fn vec_map_to_string<T, F>(ts: &[T], f: F) -> String where
F: FnMut(&T) -> String,
{
let tstrs = ts.iter().map(f).collect::<Vec<String>>();
format!("[{}]", tstrs.connect(", "))
}
pub fn ty_to_string<'tcx>(cx: &ctxt<'tcx>, typ: &ty::TyS<'tcx>) -> String {
fn bare_fn_to_string<'tcx>(cx: &ctxt<'tcx>,
unsafety: ast::Unsafety,
abi: abi::Abi,
ident: Option<ast::Ident>,
sig: &ty::PolyFnSig<'tcx>)
-> String {
let mut s = String::new();
match unsafety {
ast::Unsafety::Normal => {}
ast::Unsafety::Unsafe => {
s.push_str(unsafety.to_string().as_slice());
s.push(' ');
}
};
if abi != abi::Rust {
s.push_str(format!("extern {} ", abi.to_string())[]);
};
s.push_str("fn");
match ident {
Some(i) => {
s.push(' ');
s.push_str(token::get_ident(i).get());
}
_ => { }
}
push_sig_to_string(cx, &mut s, '(', ')', sig, "");
s
}
fn closure_to_string<'tcx>(cx: &ctxt<'tcx>, cty: &ty::ClosureTy<'tcx>) -> String {
let mut s = String::new();
match cty.store {
ty::UniqTraitStore => {}
ty::RegionTraitStore(region, _) => {
s.push_str(region_to_string(cx, "", true, region)[]);
}
}
match cty.unsafety {
ast::Unsafety::Normal => {}
ast::Unsafety::Unsafe => {
s.push_str(cty.unsafety.to_string().as_slice());
s.push(' ');
}
};
let bounds_str = cty.bounds.user_string(cx);
match cty.store {
ty::UniqTraitStore => {
assert_eq!(cty.onceness, ast::Once);
s.push_str("proc");
push_sig_to_string(cx, &mut s, '(', ')', &cty.sig,
bounds_str[]);
}
ty::RegionTraitStore(..) => {
match cty.onceness {
ast::Many => {}
ast::Once => s.push_str("once ")
}
push_sig_to_string(cx, &mut s, '|', '|', &cty.sig,
bounds_str[]);
}
}
s
}
fn push_sig_to_string<'tcx>(cx: &ctxt<'tcx>,
s: &mut String,
bra: char,
ket: char,
sig: &ty::PolyFnSig<'tcx>,
bounds: &str) {
s.push(bra);
let strs = sig.0.inputs
.iter()
.map(|a| ty_to_string(cx, *a))
.collect::<Vec<_>>();
s.push_str(strs.connect(", ").as_slice());
if sig.0.variadic {
s.push_str(", ...");
}
s.push(ket);
if !bounds.is_empty() {
s.push_str(":");
s.push_str(bounds);
}
match sig.0.output {
ty::FnConverging(t) => {
if !ty::type_is_nil(t) {
s.push_str(" -> ");
s.push_str(ty_to_string(cx, t)[]);
}
}
ty::FnDiverging => {
s.push_str(" -> !");
}
}
}
fn infer_ty_to_string(cx: &ctxt, ty: ty::InferTy) -> String {
let print_var_ids = cx.sess.verbose();
match ty {
ty::TyVar(ref vid) if print_var_ids => vid.repr(cx),
ty::IntVar(ref vid) if print_var_ids => vid.repr(cx),
ty::FloatVar(ref vid) if print_var_ids => vid.repr(cx),
ty::TyVar(_) | ty::IntVar(_) | ty::FloatVar(_) => format!("_"),
ty::FreshTy(v) => format!("FreshTy({})", v),
ty::FreshIntTy(v) => format!("FreshIntTy({})", v)
}
}
// pretty print the structural type representation:
match typ.sty {
ty_bool => "bool".to_string(),
ty_char => "char".to_string(),
ty_int(t) => ast_util::int_ty_to_string(t, None).to_string(),
ty_uint(t) => ast_util::uint_ty_to_string(t, None).to_string(),
ty_float(t) => ast_util::float_ty_to_string(t).to_string(),
ty_uniq(typ) => format!("Box<{}>", ty_to_string(cx, typ)),
ty_ptr(ref tm) => {
format!("*{} {}", match tm.mutbl {
ast::MutMutable => "mut",
ast::MutImmutable => "const",
}, ty_to_string(cx, tm.ty))
}
ty_rptr(r, ref tm) => {
let mut buf = region_ptr_to_string(cx, r);
buf.push_str(mt_to_string(cx, tm)[]);
buf
}
ty_open(typ) =>
format!("opened<{}>", ty_to_string(cx, typ)),
ty_tup(ref elems) => {
let strs = elems
.iter()
.map(|elem| ty_to_string(cx, *elem))
.collect::<Vec<_>>();
match strs[] {
[ref string] => format!("({},)", string),
strs => format!("({})", strs.connect(", "))
}
}
ty_closure(ref f) => {
closure_to_string(cx, &**f)
}
ty_bare_fn(ref f) => {
bare_fn_to_string(cx, f.unsafety, f.abi, None, &f.sig)
}
ty_infer(infer_ty) => infer_ty_to_string(cx, infer_ty),
ty_err => "[type error]".to_string(),
ty_param(ref param_ty) => {
if cx.sess.verbose() {
param_ty.repr(cx)
} else {
param_ty.user_string(cx)
}
}
ty_enum(did, ref substs) | ty_struct(did, ref substs) => {
let base = ty::item_path_str(cx, did);
let generics = ty::lookup_item_type(cx, did).generics;
parameterized(cx, base.as_slice(), substs, &generics, did)
}
ty_trait(box ty::TyTrait {
ref principal, ref bounds
}) => {
let principal = principal.user_string(cx);
let bound_str = bounds.user_string(cx);
let bound_sep = if bound_str.is_empty() { "" } else { " + " };
format!("{}{}{}",
principal,
bound_sep,
bound_str)
}
ty_str => "str".to_string(),
ty_unboxed_closure(ref did, _, ref substs) => {
let unboxed_closures = cx.unboxed_closures.borrow();
unboxed_closures.get(did).map(|cl| {
closure_to_string(cx, &cl.closure_type.subst(cx, substs))
}).unwrap_or_else(|| {
if did.krate == ast::LOCAL_CRATE {
let span = cx.map.span(did.node);
format!("closure[{}]", span.repr(cx))
} else {
format!("closure")
}
})
}
ty_vec(t, sz) => {
let inner_str = ty_to_string(cx, t);
match sz {
Some(n) => format!("[{}; {}]", inner_str, n),
None => format!("[{}]", inner_str),
}
}
}
}
pub fn explicit_self_category_to_str(category: &ty::ExplicitSelfCategory)
-> &'static str {
match *category {
ty::StaticExplicitSelfCategory => "static",
ty::ByValueExplicitSelfCategory => "self",
ty::ByReferenceExplicitSelfCategory(_, ast::MutMutable) => {
"&mut self"
}
ty::ByReferenceExplicitSelfCategory(_, ast::MutImmutable) => "&self",
ty::ByBoxExplicitSelfCategory => "Box<self>",
}
}
pub fn parameterized<'tcx>(cx: &ctxt<'tcx>,
base: &str,
substs: &subst::Substs<'tcx>,
generics: &ty::Generics<'tcx>,
did: ast::DefId)
-> String
{
if cx.sess.verbose() {
if substs.is_noop() {
return format!("{}", base);
} else {
return format!("{}<{},{}>",
base,
substs.regions.repr(cx),
substs.types.repr(cx));
}
}
let mut strs = Vec::new();
match substs.regions {
subst::ErasedRegions => { }
subst::NonerasedRegions(ref regions) => {
for &r in regions.iter() {
let s = region_to_string(cx, "", false, r);
if s.is_empty() {
// This happens when the value of the region
// parameter is not easily serialized. This may be
// because the user omitted it in the first place,
// or because it refers to some block in the code,
// etc. I'm not sure how best to serialize this.
strs.push(format!("'_"));
} else {
strs.push(s)
}
}
}
}
let tps = substs.types.get_slice(subst::TypeSpace);
let ty_params = generics.types.get_slice(subst::TypeSpace);
let has_defaults = ty_params.last().map_or(false, |def| def.default.is_some());
let num_defaults = if has_defaults {
ty_params.iter().zip(tps.iter()).rev().take_while(|&(def, &actual)| {
match def.default {
Some(default) => default.subst(cx, substs) == actual,
None => false
}
}).count()
} else {
0
};
for t in tps[..tps.len() - num_defaults].iter() {
strs.push(ty_to_string(cx, *t))
}
if cx.lang_items.fn_trait_kind(did).is_some() {
format!("{}({}){}",
base,
if strs[0].starts_with("(") && strs[0].ends_with(",)") {
strs[0][1 .. strs[0].len() - 2] // Remove '(' and ',)'
} else if strs[0].starts_with("(") && strs[0].ends_with(")") {
strs[0][1 .. strs[0].len() - 1] // Remove '(' and ')'
} else {
strs[0][]
},
if &*strs[1] == "()" { String::new() } else { format!(" -> {}", strs[1]) })
} else if strs.len() > 0 {
format!("{}<{}>", base, strs.connect(", "))
} else {
format!("{}", base)
}
}
pub fn ty_to_short_str<'tcx>(cx: &ctxt<'tcx>, typ: Ty<'tcx>) -> String {
let mut s = typ.repr(cx).to_string();
if s.len() >= 32u {
s = s[0u..32u].to_string();
}
return s;
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for Option<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match self {
&None => "None".to_string(),
&Some(ref t) => t.repr(tcx),
}
}
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for P<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
(*self).repr(tcx)
}
}
impl<'tcx,T:Repr<'tcx>,U:Repr<'tcx>> Repr<'tcx> for Result<T,U> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match self {
&Ok(ref t) => t.repr(tcx),
&Err(ref u) => format!("Err({})", u.repr(tcx))
}
}
}
impl<'tcx> Repr<'tcx> for () {
fn repr(&self, _tcx: &ctxt) -> String {
"()".to_string()
}
}
impl<'a, 'tcx, Sized? T:Repr<'tcx>> Repr<'tcx> for &'a T {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
Repr::repr(*self, tcx)
}
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for Rc<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
(&**self).repr(tcx)
}
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for Box<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
(&**self).repr(tcx)
}
}
fn repr_vec<'tcx, T:Repr<'tcx>>(tcx: &ctxt<'tcx>, v: &[T]) -> String {
vec_map_to_string(v, |t| t.repr(tcx))
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for [T] {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
repr_vec(tcx, self)
}
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for OwnedSlice<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
repr_vec(tcx, self[])
}
}
// This is necessary to handle types like Option<~[T]>, for which
// autoderef cannot convert the &[T] handler
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for Vec<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
repr_vec(tcx, self[])
}
}
impl<'tcx, T:UserString<'tcx>> UserString<'tcx> for Vec<T> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
let strs: Vec<String> =
self.iter().map(|t| t.user_string(tcx)).collect();
strs.connect(", ")
}
}
impl<'tcx> Repr<'tcx> for def::Def {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ty::TypeParameterDef<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("TypeParameterDef({}, {}, {}/{})",
self.def_id,
self.bounds.repr(tcx),
self.space,
self.index)
}
}
impl<'tcx> Repr<'tcx> for ty::RegionParameterDef {
fn repr(&self, tcx: &ctxt) -> String {
format!("RegionParameterDef(name={}, def_id={}, bounds={})",
token::get_name(self.name),
self.def_id.repr(tcx),
self.bounds.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::TyS<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
ty_to_string(tcx, self)
}
}
impl<'tcx> Repr<'tcx> for ty::mt<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
mt_to_string(tcx, self)
}
}
impl<'tcx> Repr<'tcx> for subst::Substs<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("Substs[types={}, regions={}]",
self.types.repr(tcx),
self.regions.repr(tcx))
}
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for subst::VecPerParamSpace<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("[{};{};{};{}]",
self.get_slice(subst::TypeSpace).repr(tcx),
self.get_slice(subst::SelfSpace).repr(tcx),
self.get_slice(subst::AssocSpace).repr(tcx),
self.get_slice(subst::FnSpace).repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::ItemSubsts<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("ItemSubsts({})", self.substs.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for subst::RegionSubsts {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
subst::ErasedRegions => "erased".to_string(),
subst::NonerasedRegions(ref regions) => regions.repr(tcx)
}
}
}
impl<'tcx> Repr<'tcx> for ty::BuiltinBounds {
fn repr(&self, _tcx: &ctxt) -> String {
let mut res = Vec::new();
for b in self.iter() {
res.push(match b {
ty::BoundSend => "Send".to_string(),
ty::BoundSized => "Sized".to_string(),
ty::BoundCopy => "Copy".to_string(),
ty::BoundSync => "Sync".to_string(),
});
}
res.connect("+")
}
}
impl<'tcx> Repr<'tcx> for ty::ExistentialBounds {
fn repr(&self, tcx: &ctxt) -> String {
self.user_string(tcx)
}
}
impl<'tcx> Repr<'tcx> for ty::ParamBounds<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
let mut res = Vec::new();
res.push(self.builtin_bounds.repr(tcx));
for t in self.trait_bounds.iter() {
res.push(t.repr(tcx));
}
res.connect("+")
}
}
impl<'tcx> Repr<'tcx> for ty::TraitRef<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
// when printing out the debug representation, we don't need
// to enumerate the `for<...>` etc because the debruijn index
// tells you everything you need to know.
let base = ty::item_path_str(tcx, self.def_id);
let trait_def = ty::lookup_trait_def(tcx, self.def_id);
format!("TraitRef({}, {})",
self.substs.self_ty().repr(tcx),
parameterized(tcx, base.as_slice(), &self.substs, &trait_def.generics, self.def_id))
}
}
impl<'tcx> Repr<'tcx> for ty::TraitDef<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("TraitDef(generics={}, bounds={}, trait_ref={})",
self.generics.repr(tcx),
self.bounds.repr(tcx),
self.trait_ref.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ast::TraitItem {
fn repr(&self, _tcx: &ctxt) -> String {
match *self {
ast::RequiredMethod(ref data) => format!("RequiredMethod({}, id={})",
data.ident, data.id),
ast::ProvidedMethod(ref data) => format!("ProvidedMethod(id={})",
data.id),
ast::TypeTraitItem(ref data) => format!("TypeTraitItem({}, id={})",
data.ty_param.ident, data.ty_param.id),
}
}
}
impl<'tcx> Repr<'tcx> for ast::Expr {
fn repr(&self, _tcx: &ctxt) -> String {
format!("expr({}: {})", self.id, pprust::expr_to_string(self))
}
}
impl<'tcx> Repr<'tcx> for ast::Path {
fn repr(&self, _tcx: &ctxt) -> String {
format!("path({})", pprust::path_to_string(self))
}
}
impl<'tcx> UserString<'tcx> for ast::Path {
fn user_string(&self, _tcx: &ctxt) -> String {
pprust::path_to_string(self)
}
}
impl<'tcx> Repr<'tcx> for ast::Ty {
fn repr(&self, _tcx: &ctxt) -> String {
format!("type({})", pprust::ty_to_string(self))
}
}
impl<'tcx> Repr<'tcx> for ast::Item {
fn repr(&self, tcx: &ctxt) -> String {
format!("item({})", tcx.map.node_to_string(self.id))
}
}
impl<'tcx> Repr<'tcx> for ast::Lifetime {
fn repr(&self, _tcx: &ctxt) -> String {
format!("lifetime({}: {})", self.id, pprust::lifetime_to_string(self))
}
}
impl<'tcx> Repr<'tcx> for ast::Stmt {
fn repr(&self, _tcx: &ctxt) -> String {
format!("stmt({}: {})",
ast_util::stmt_id(self),
pprust::stmt_to_string(self))
}
}
impl<'tcx> Repr<'tcx> for ast::Pat {
fn repr(&self, _tcx: &ctxt) -> String {
format!("pat({}: {})", self.id, pprust::pat_to_string(self))
}
}
impl<'tcx> Repr<'tcx> for ty::BoundRegion {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
ty::BrAnon(id) => format!("BrAnon({})", id),
ty::BrNamed(id, name) => {
format!("BrNamed({}, {})", id.repr(tcx), token::get_name(name))
}
ty::BrFresh(id) => format!("BrFresh({})", id),
ty::BrEnv => "BrEnv".to_string()
}
}
}
impl<'tcx> Repr<'tcx> for ty::Region {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
ty::ReEarlyBound(id, space, index, name) => {
format!("ReEarlyBound({}, {}, {}, {})",
id,
space,
index,
token::get_name(name))
}
ty::ReLateBound(binder_id, ref bound_region) => {
format!("ReLateBound({}, {})",
binder_id,
bound_region.repr(tcx))
}
ty::ReFree(ref fr) => fr.repr(tcx),
ty::ReScope(id) => {
format!("ReScope({})", id)
}
ty::ReStatic => {
"ReStatic".to_string()
}
ty::ReInfer(ReVar(ref vid)) => {
format!("{}", vid)
}
ty::ReInfer(ReSkolemized(id, ref bound_region)) => {
format!("re_skolemized({}, {})", id, bound_region.repr(tcx))
}
ty::ReEmpty => {
"ReEmpty".to_string()
}
}
}
}
impl<'tcx> UserString<'tcx> for ty::Region {
fn user_string(&self, tcx: &ctxt) -> String {
region_to_string(tcx, "", false, *self)
}
}
impl<'tcx> Repr<'tcx> for ty::FreeRegion {
fn repr(&self, tcx: &ctxt) -> String {
format!("ReFree({}, {})",
self.scope.node_id(),
self.bound_region.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ast::DefId {
fn repr(&self, tcx: &ctxt) -> String {
// Unfortunately, there seems to be no way to attempt to print
// a path for a def-id, so I'll just make a best effort for now
// and otherwise fallback to just printing the crate/node pair
if self.krate == ast::LOCAL_CRATE {
match tcx.map.find(self.node) {
Some(ast_map::NodeItem(..)) |
Some(ast_map::NodeForeignItem(..)) |
Some(ast_map::NodeImplItem(..)) |
Some(ast_map::NodeTraitItem(..)) |
Some(ast_map::NodeVariant(..)) |
Some(ast_map::NodeStructCtor(..)) => {
return format!(
"{}:{}",
*self,
ty::item_path_str(tcx, *self))
}
_ => {}
}
}
return format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ty::Polytype<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("Polytype {{generics: {}, ty: {}}}",
self.generics.repr(tcx),
self.ty.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::Generics<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("Generics(types: {}, regions: {}, predicates: {})",
self.types.repr(tcx),
self.regions.repr(tcx),
self.predicates.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::GenericBounds<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("GenericBounds({})",
self.predicates.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::ItemVariances {
fn repr(&self, tcx: &ctxt) -> String {
format!("ItemVariances(types={}, \
regions={})",
self.types.repr(tcx),
self.regions.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::Variance {
fn repr(&self, _: &ctxt) -> String {
// The first `.to_string()` returns a &'static str (it is not an implementation
// of the ToString trait). Because of that, we need to call `.to_string()` again
// if we want to have a `String`.
let result: &'static str = (*self).to_string();
result.to_string()
}
}
impl<'tcx> Repr<'tcx> for ty::Method<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("method(name: {}, generics: {}, fty: {}, \
explicit_self: {}, vis: {}, def_id: {})",
self.name.repr(tcx),
self.generics.repr(tcx),
self.fty.repr(tcx),
self.explicit_self.repr(tcx),
self.vis.repr(tcx),
self.def_id.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ast::Name {
fn repr(&self, _tcx: &ctxt) -> String {
token::get_name(*self).get().to_string()
}
}
impl<'tcx> UserString<'tcx> for ast::Name {
fn user_string(&self, _tcx: &ctxt) -> String {
token::get_name(*self).get().to_string()
}
}
impl<'tcx> Repr<'tcx> for ast::Ident {
fn repr(&self, _tcx: &ctxt) -> String {
token::get_ident(*self).get().to_string()
}
}
impl<'tcx> Repr<'tcx> for ast::ExplicitSelf_ {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ast::Visibility {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ty::BareFnTy<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("BareFnTy {{unsafety: {}, abi: {}, sig: {}}}",
self.unsafety,
self.abi.to_string(),
self.sig.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::FnSig<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("fn{} -> {}", self.inputs.repr(tcx), self.output.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::FnOutput<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match *self {
ty::FnConverging(ty) =>
format!("FnConverging({0})", ty.repr(tcx)),
ty::FnDiverging =>
"FnDiverging".to_string()
}
}
}
impl<'tcx> Repr<'tcx> for ty::MethodCallee<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("MethodCallee {{origin: {}, ty: {}, {}}}",
self.origin.repr(tcx),
self.ty.repr(tcx),
self.substs.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::MethodOrigin<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
match self {
&ty::MethodStatic(def_id) => {
format!("MethodStatic({})", def_id.repr(tcx))
}
&ty::MethodStaticUnboxedClosure(def_id) => {
format!("MethodStaticUnboxedClosure({})", def_id.repr(tcx))
}
&ty::MethodTypeParam(ref p) => {
p.repr(tcx)
}
&ty::MethodTraitObject(ref p) => {
p.repr(tcx)
}
}
}
}
impl<'tcx> Repr<'tcx> for ty::MethodParam<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("MethodParam({},{})",
self.trait_ref.repr(tcx),
self.method_num)
}
}
impl<'tcx> Repr<'tcx> for ty::MethodObject<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("MethodObject({},{},{})",
self.trait_ref.repr(tcx),
self.method_num,
self.real_index)
}
}
impl<'tcx> Repr<'tcx> for ty::TraitStore {
fn repr(&self, tcx: &ctxt) -> String {
trait_store_to_string(tcx, *self)
}
}
impl<'tcx> Repr<'tcx> for ty::BuiltinBound {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> UserString<'tcx> for ty::BuiltinBound {
fn user_string(&self, _tcx: &ctxt) -> String {
match *self {
ty::BoundSend => "Send".to_string(),
ty::BoundSized => "Sized".to_string(),
ty::BoundCopy => "Copy".to_string(),
ty::BoundSync => "Sync".to_string(),
}
}
}
impl<'tcx> Repr<'tcx> for Span {
fn repr(&self, tcx: &ctxt) -> String {
tcx.sess.codemap().span_to_string(*self).to_string()
}
}
impl<'tcx, A:UserString<'tcx>> UserString<'tcx> for Rc<A> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
let this: &A = &**self;
this.user_string(tcx)
}
}
impl<'tcx> UserString<'tcx> for ty::ParamBounds<'tcx> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
let mut result = Vec::new();
let s = self.builtin_bounds.user_string(tcx);
if !s.is_empty() {
result.push(s);
}
for n in self.trait_bounds.iter() {
result.push(n.user_string(tcx));
}
result.connect(" + ")
}
}
impl<'tcx> UserString<'tcx> for ty::ExistentialBounds {
fn user_string(&self, tcx: &ctxt) -> String {
if self.builtin_bounds.contains(&ty::BoundSend) &&
self.region_bound == ty::ReStatic
{ // Region bound is implied by builtin bounds:
return self.builtin_bounds.repr(tcx);
}
let mut res = Vec::new();
let region_str = self.region_bound.user_string(tcx);
if !region_str.is_empty() {
res.push(region_str);
}
for bound in self.builtin_bounds.iter() {
res.push(bound.user_string(tcx));
}
res.connect("+")
}
}
impl<'tcx> UserString<'tcx> for ty::BuiltinBounds {
fn user_string(&self, tcx: &ctxt) -> String {
self.iter()
.map(|bb| bb.user_string(tcx))
.collect::<Vec<String>>()
.connect("+")
.to_string()
}
}
impl<'tcx, T> UserString<'tcx> for ty::Binder<T>
where T : UserString<'tcx> + TypeFoldable<'tcx>
{
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
// Replace any anonymous late-bound regions with named
// variants, using gensym'd identifiers, so that we can
// clearly differentiate between named and unnamed regions in
// the output. We'll probably want to tweak this over time to
// decide just how much information to give.
let mut names = Vec::new();
let (unbound_value, _) = ty::replace_late_bound_regions(tcx, self, |br, debruijn| {
ty::ReLateBound(debruijn, match br {
ty::BrNamed(_, name) => {
names.push(token::get_name(name));
br
}
ty::BrAnon(_) |
ty::BrFresh(_) |
ty::BrEnv => {
let name = token::gensym("'r");
names.push(token::get_name(name));
ty::BrNamed(ast_util::local_def(ast::DUMMY_NODE_ID), name)
}
})
});
let names: Vec<_> = names.iter().map(|s| s.get()).collect();
let value_str = unbound_value.user_string(tcx);
if names.len() == 0 {
value_str
} else {
format!("for<{}> {}", names.connect(","), value_str)
}
}
}
impl<'tcx> UserString<'tcx> for ty::TraitRef<'tcx> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
let path_str = ty::item_path_str(tcx, self.def_id);
let trait_def = ty::lookup_trait_def(tcx, self.def_id);
parameterized(tcx, path_str.as_slice(), &self.substs,
&trait_def.generics, self.def_id)
}
}
impl<'tcx> UserString<'tcx> for Ty<'tcx> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
ty_to_string(tcx, *self)
}
}
impl<'tcx> UserString<'tcx> for ast::Ident {
fn user_string(&self, _tcx: &ctxt) -> String {
token::get_name(self.name).get().to_string()
}
}
impl<'tcx> Repr<'tcx> for abi::Abi {
fn repr(&self, _tcx: &ctxt) -> String {
self.to_string()
}
}
impl<'tcx> UserString<'tcx> for abi::Abi {
fn user_string(&self, _tcx: &ctxt) -> String {
self.to_string()
}
}
impl<'tcx> Repr<'tcx> for ty::UpvarId {
fn repr(&self, tcx: &ctxt) -> String {
format!("UpvarId({};`{}`;{})",
self.var_id,
ty::local_var_name_str(tcx, self.var_id),
self.closure_expr_id)
}
}
impl<'tcx> Repr<'tcx> for ast::Mutability {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ty::BorrowKind {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ty::UpvarBorrow {
fn repr(&self, tcx: &ctxt) -> String {
format!("UpvarBorrow({}, {})",
self.kind.repr(tcx),
self.region.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::IntVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl<'tcx> Repr<'tcx> for ty::FloatVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl<'tcx> Repr<'tcx> for ty::RegionVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl<'tcx> Repr<'tcx> for ty::TyVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl<'tcx> Repr<'tcx> for ty::IntVarValue {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ast::IntTy {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ast::UintTy {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ast::FloatTy {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", *self)
}
}
impl<'tcx> Repr<'tcx> for ty::ExplicitSelfCategory {
fn repr(&self, _: &ctxt) -> String {
explicit_self_category_to_str(self).to_string()
}
}
impl<'tcx> UserString<'tcx> for ParamTy {
fn user_string(&self, tcx: &ctxt) -> String {
let id = self.idx;
let did = self.def_id;
let ident = match tcx.ty_param_defs.borrow().get(&did.node) {
Some(def) => token::get_name(def.name).get().to_string(),
// This can only happen when a type mismatch error happens and
// the actual type has more type parameters than the expected one.
None => format!("<generic #{}>", id),
};
ident
}
}
impl<'tcx> Repr<'tcx> for ParamTy {
fn repr(&self, tcx: &ctxt) -> String {
let ident = self.user_string(tcx);
format!("{}/{}.{}", ident, self.space, self.idx)
}
}
impl<'tcx, A:Repr<'tcx>, B:Repr<'tcx>> Repr<'tcx> for (A,B) {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
let &(ref a, ref b) = self;
format!("({},{})", a.repr(tcx), b.repr(tcx))
}
}
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for ty::Binder<T> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("Binder({})", self.0.repr(tcx))
}
}
impl<'tcx, S, H, K, V> Repr<'tcx> for HashMap<K,V,H>
where K : Hash<S> + Eq + Repr<'tcx>,
V : Repr<'tcx>,
H : Hasher<S>
{
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("HashMap({})",
self.iter()
.map(|(k,v)| format!("{} => {}", k.repr(tcx), v.repr(tcx)))
.collect::<Vec<String>>()
.connect(", "))
}
}
impl<'tcx, T, U> Repr<'tcx> for ty::OutlivesPredicate<T,U>
where T : Repr<'tcx> + TypeFoldable<'tcx>,
U : Repr<'tcx> + TypeFoldable<'tcx>,
{
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("OutlivesPredicate({}, {})",
self.0.repr(tcx),
self.1.repr(tcx))
}
}
impl<'tcx, T, U> UserString<'tcx> for ty::OutlivesPredicate<T,U>
where T : UserString<'tcx> + TypeFoldable<'tcx>,
U : UserString<'tcx> + TypeFoldable<'tcx>,
{
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
format!("{} : {}",
self.0.user_string(tcx),
self.1.user_string(tcx))
}
}
impl<'tcx> Repr<'tcx> for ty::EquatePredicate<'tcx> {
fn repr(&self, tcx: &ctxt<'tcx>) -> String {
format!("EquatePredicate({}, {})",
self.0.repr(tcx),
self.1.repr(tcx))
}
}
impl<'tcx> UserString<'tcx> for ty::EquatePredicate<'tcx> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
format!("{} == {}",
self.0.user_string(tcx),
self.1.user_string(tcx))
}
}
impl<'tcx> UserString<'tcx> for ty::Predicate<'tcx> {
fn user_string(&self, tcx: &ctxt<'tcx>) -> String {
match *self {
ty::Predicate::Trait(ref trait_ref) => {
format!("{} : {}",
trait_ref.self_ty().user_string(tcx),
trait_ref.user_string(tcx))
}
ty::Predicate::Equate(ref predicate) => predicate.user_string(tcx),
ty::Predicate::RegionOutlives(ref predicate) => predicate.user_string(tcx),
ty::Predicate::TypeOutlives(ref predicate) => predicate.user_string(tcx),
}
}
}