7ae802f57b
Conflicts: src/libcollections/lib.rs src/libcore/lib.rs src/librustdoc/lib.rs src/librustrt/lib.rs src/libserialize/lib.rs src/libstd/lib.rs src/test/run-pass/issue-8898.rs
643 lines
23 KiB
Rust
643 lines
23 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! This crate provides the `regex!` macro. Its use is documented in the
|
|
//! `regex` crate.
|
|
|
|
#![crate_name = "regex_macros"]
|
|
#![crate_type = "dylib"]
|
|
#![experimental]
|
|
#![license = "MIT/ASL2"]
|
|
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
|
|
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
|
|
html_root_url = "http://doc.rust-lang.org/master/")]
|
|
|
|
#![feature(plugin_registrar, quote)]
|
|
|
|
extern crate regex;
|
|
extern crate syntax;
|
|
extern crate rustc;
|
|
|
|
use std::rc::Rc;
|
|
|
|
use syntax::ast;
|
|
use syntax::codemap;
|
|
use syntax::ext::build::AstBuilder;
|
|
use syntax::ext::base::{ExtCtxt, MacResult, MacExpr, DummyResult};
|
|
use syntax::parse::token;
|
|
use syntax::print::pprust;
|
|
use syntax::fold::Folder;
|
|
use syntax::ptr::P;
|
|
|
|
use rustc::plugin::Registry;
|
|
|
|
use regex::Regex;
|
|
use regex::native::{
|
|
OneChar, CharClass, Any, Save, Jump, Split,
|
|
Match, EmptyBegin, EmptyEnd, EmptyWordBoundary,
|
|
Program, Dynamic, ExDynamic, Native,
|
|
FLAG_NOCASE, FLAG_MULTI, FLAG_DOTNL, FLAG_NEGATED,
|
|
};
|
|
|
|
/// For the `regex!` syntax extension. Do not use.
|
|
#[plugin_registrar]
|
|
#[doc(hidden)]
|
|
pub fn plugin_registrar(reg: &mut Registry) {
|
|
reg.register_macro("regex", native);
|
|
}
|
|
|
|
/// Generates specialized code for the Pike VM for a particular regular
|
|
/// expression.
|
|
///
|
|
/// There are two primary differences between the code generated here and the
|
|
/// general code in vm.rs.
|
|
///
|
|
/// 1. All heap allocation is removed. Sized vector types are used instead.
|
|
/// Care must be taken to make sure that these vectors are not copied
|
|
/// gratuitously. (If you're not sure, run the benchmarks. They will yell
|
|
/// at you if you do.)
|
|
/// 2. The main `match instruction { ... }` expressions are replaced with more
|
|
/// direct `match pc { ... }`. The generators can be found in
|
|
/// `step_insts` and `add_insts`.
|
|
///
|
|
/// Other more minor changes include eliding code when possible (although this
|
|
/// isn't completely thorough at the moment), and translating character class
|
|
/// matching from using a binary search to a simple `match` expression (see
|
|
/// `match_class`).
|
|
///
|
|
/// It is strongly recommended to read the dynamic implementation in vm.rs
|
|
/// first before trying to understand the code generator. The implementation
|
|
/// strategy is identical and vm.rs has comments and will be easier to follow.
|
|
#[allow(experimental)]
|
|
fn native(cx: &mut ExtCtxt, sp: codemap::Span, tts: &[ast::TokenTree])
|
|
-> Box<MacResult+'static> {
|
|
let regex = match parse(cx, tts) {
|
|
Some(r) => r,
|
|
// error is logged in 'parse' with cx.span_err
|
|
None => return DummyResult::any(sp),
|
|
};
|
|
let re = match Regex::new(regex.as_slice()) {
|
|
Ok(re) => re,
|
|
Err(err) => {
|
|
cx.span_err(sp, err.to_string().as_slice());
|
|
return DummyResult::any(sp)
|
|
}
|
|
};
|
|
let prog = match re {
|
|
Dynamic(ExDynamic { ref prog, .. }) => prog.clone(),
|
|
Native(_) => unreachable!(),
|
|
};
|
|
|
|
let mut gen = NfaGen {
|
|
cx: &*cx, sp: sp, prog: prog,
|
|
names: re.names_iter().collect(), original: re.as_str().to_string(),
|
|
};
|
|
MacExpr::new(gen.code())
|
|
}
|
|
|
|
struct NfaGen<'a> {
|
|
cx: &'a ExtCtxt<'a>,
|
|
sp: codemap::Span,
|
|
prog: Program,
|
|
names: Vec<Option<String>>,
|
|
original: String,
|
|
}
|
|
|
|
impl<'a> NfaGen<'a> {
|
|
fn code(&mut self) -> P<ast::Expr> {
|
|
// Most or all of the following things are used in the quasiquoted
|
|
// expression returned.
|
|
let num_cap_locs = 2 * self.prog.num_captures();
|
|
let num_insts = self.prog.insts.len();
|
|
let cap_names = self.vec_expr(self.names.as_slice().iter(),
|
|
|cx, name| match *name {
|
|
Some(ref name) => {
|
|
let name = name.as_slice();
|
|
quote_expr!(cx, Some($name))
|
|
}
|
|
None => cx.expr_none(self.sp),
|
|
}
|
|
);
|
|
let prefix_anchor =
|
|
match self.prog.insts.as_slice()[1] {
|
|
EmptyBegin(flags) if flags & FLAG_MULTI == 0 => true,
|
|
_ => false,
|
|
};
|
|
let init_groups = self.vec_expr(range(0, num_cap_locs),
|
|
|cx, _| cx.expr_none(self.sp));
|
|
|
|
let prefix_lit = Rc::new(self.prog.prefix.as_slice().as_bytes().to_vec());
|
|
let prefix_bytes = self.cx.expr_lit(self.sp, ast::LitBinary(prefix_lit));
|
|
|
|
let check_prefix = self.check_prefix();
|
|
let step_insts = self.step_insts();
|
|
let add_insts = self.add_insts();
|
|
let regex = self.original.as_slice();
|
|
|
|
quote_expr!(self.cx, {
|
|
// When `regex!` is bound to a name that is not used, we have to make sure
|
|
// that dead_code warnings don't bubble up to the user from the generated
|
|
// code. Therefore, we suppress them by allowing dead_code. The effect is that
|
|
// the user is only warned about *their* unused variable/code, and not the
|
|
// unused code generated by regex!. See #14185 for an example.
|
|
#[allow(dead_code)]
|
|
static CAP_NAMES: &'static [Option<&'static str>] = &$cap_names;
|
|
|
|
#[allow(dead_code)]
|
|
fn exec<'t>(which: ::regex::native::MatchKind, input: &'t str,
|
|
start: uint, end: uint) -> Vec<Option<uint>> {
|
|
#![allow(unused_imports)]
|
|
#![allow(unused_mut)]
|
|
|
|
use regex::native::{
|
|
MatchKind, Exists, Location, Submatches,
|
|
StepState, StepMatchEarlyReturn, StepMatch, StepContinue,
|
|
CharReader, find_prefix,
|
|
};
|
|
|
|
return Nfa {
|
|
which: which,
|
|
input: input,
|
|
ic: 0,
|
|
chars: CharReader::new(input),
|
|
}.run(start, end);
|
|
|
|
type Captures = [Option<uint>, ..$num_cap_locs];
|
|
|
|
struct Nfa<'t> {
|
|
which: MatchKind,
|
|
input: &'t str,
|
|
ic: uint,
|
|
chars: CharReader<'t>,
|
|
}
|
|
|
|
impl<'t> Nfa<'t> {
|
|
#[allow(unused_variable)]
|
|
fn run(&mut self, start: uint, end: uint) -> Vec<Option<uint>> {
|
|
let mut matched = false;
|
|
let prefix_bytes: &[u8] = $prefix_bytes;
|
|
let mut clist = &mut Threads::new(self.which);
|
|
let mut nlist = &mut Threads::new(self.which);
|
|
|
|
let mut groups = $init_groups;
|
|
|
|
self.ic = start;
|
|
let mut next_ic = self.chars.set(start);
|
|
while self.ic <= end {
|
|
if clist.size == 0 {
|
|
if matched {
|
|
break
|
|
}
|
|
$check_prefix
|
|
}
|
|
if clist.size == 0 || (!$prefix_anchor && !matched) {
|
|
self.add(clist, 0, &mut groups)
|
|
}
|
|
|
|
self.ic = next_ic;
|
|
next_ic = self.chars.advance();
|
|
|
|
for i in range(0, clist.size) {
|
|
let pc = clist.pc(i);
|
|
let step_state = self.step(&mut groups, nlist,
|
|
clist.groups(i), pc);
|
|
match step_state {
|
|
StepMatchEarlyReturn =>
|
|
return vec![Some(0u), Some(0u)],
|
|
StepMatch => { matched = true; break },
|
|
StepContinue => {},
|
|
}
|
|
}
|
|
::std::mem::swap(&mut clist, &mut nlist);
|
|
nlist.empty();
|
|
}
|
|
match self.which {
|
|
Exists if matched => vec![Some(0u), Some(0u)],
|
|
Exists => vec![None, None],
|
|
Location | Submatches => groups.iter().map(|x| *x).collect(),
|
|
}
|
|
}
|
|
|
|
// Sometimes `nlist` is never used (for empty regexes).
|
|
#[allow(unused_variable)]
|
|
#[inline]
|
|
fn step(&self, groups: &mut Captures, nlist: &mut Threads,
|
|
caps: &mut Captures, pc: uint) -> StepState {
|
|
$step_insts
|
|
StepContinue
|
|
}
|
|
|
|
fn add(&self, nlist: &mut Threads, pc: uint,
|
|
groups: &mut Captures) {
|
|
if nlist.contains(pc) {
|
|
return
|
|
}
|
|
$add_insts
|
|
}
|
|
}
|
|
|
|
struct Thread {
|
|
pc: uint,
|
|
groups: Captures,
|
|
}
|
|
|
|
struct Threads {
|
|
which: MatchKind,
|
|
queue: [Thread, ..$num_insts],
|
|
sparse: [uint, ..$num_insts],
|
|
size: uint,
|
|
}
|
|
|
|
impl Threads {
|
|
fn new(which: MatchKind) -> Threads {
|
|
Threads {
|
|
which: which,
|
|
// These unsafe blocks are used for performance reasons, as it
|
|
// gives us a zero-cost initialization of a sparse set. The
|
|
// trick is described in more detail here:
|
|
// http://research.swtch.com/sparse
|
|
// The idea here is to avoid initializing threads that never
|
|
// need to be initialized, particularly for larger regexs with
|
|
// a lot of instructions.
|
|
queue: unsafe { ::std::mem::uninitialized() },
|
|
sparse: unsafe { ::std::mem::uninitialized() },
|
|
size: 0,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn add(&mut self, pc: uint, groups: &Captures) {
|
|
let t = &mut self.queue[self.size];
|
|
t.pc = pc;
|
|
match self.which {
|
|
Exists => {},
|
|
Location => {
|
|
t.groups[0] = groups[0];
|
|
t.groups[1] = groups[1];
|
|
}
|
|
Submatches => {
|
|
for (slot, val) in t.groups.iter_mut().zip(groups.iter()) {
|
|
*slot = *val;
|
|
}
|
|
}
|
|
}
|
|
self.sparse[pc] = self.size;
|
|
self.size += 1;
|
|
}
|
|
|
|
#[inline]
|
|
fn add_empty(&mut self, pc: uint) {
|
|
self.queue[self.size].pc = pc;
|
|
self.sparse[pc] = self.size;
|
|
self.size += 1;
|
|
}
|
|
|
|
#[inline]
|
|
fn contains(&self, pc: uint) -> bool {
|
|
let s = self.sparse[pc];
|
|
s < self.size && self.queue[s].pc == pc
|
|
}
|
|
|
|
#[inline]
|
|
fn empty(&mut self) {
|
|
self.size = 0;
|
|
}
|
|
|
|
#[inline]
|
|
fn pc(&self, i: uint) -> uint {
|
|
self.queue[i].pc
|
|
}
|
|
|
|
#[inline]
|
|
fn groups<'r>(&'r mut self, i: uint) -> &'r mut Captures {
|
|
&mut self.queue[i].groups
|
|
}
|
|
}
|
|
}
|
|
|
|
::regex::native::Native(::regex::native::ExNative {
|
|
original: $regex,
|
|
names: CAP_NAMES,
|
|
prog: exec,
|
|
})
|
|
})
|
|
}
|
|
|
|
// Generates code for the `add` method, which is responsible for adding
|
|
// zero-width states to the next queue of states to visit.
|
|
fn add_insts(&self) -> P<ast::Expr> {
|
|
let arms = self.prog.insts.iter().enumerate().map(|(pc, inst)| {
|
|
let nextpc = pc + 1;
|
|
let body = match *inst {
|
|
EmptyBegin(flags) => {
|
|
let cond =
|
|
if flags & FLAG_MULTI > 0 {
|
|
quote_expr!(self.cx,
|
|
self.chars.is_begin()
|
|
|| self.chars.prev == Some('\n')
|
|
)
|
|
} else {
|
|
quote_expr!(self.cx, self.chars.is_begin())
|
|
};
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
if $cond { self.add(nlist, $nextpc, &mut *groups) }
|
|
})
|
|
}
|
|
EmptyEnd(flags) => {
|
|
let cond =
|
|
if flags & FLAG_MULTI > 0 {
|
|
quote_expr!(self.cx,
|
|
self.chars.is_end()
|
|
|| self.chars.cur == Some('\n')
|
|
)
|
|
} else {
|
|
quote_expr!(self.cx, self.chars.is_end())
|
|
};
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
if $cond { self.add(nlist, $nextpc, &mut *groups) }
|
|
})
|
|
}
|
|
EmptyWordBoundary(flags) => {
|
|
let cond =
|
|
if flags & FLAG_NEGATED > 0 {
|
|
quote_expr!(self.cx, !self.chars.is_word_boundary())
|
|
} else {
|
|
quote_expr!(self.cx, self.chars.is_word_boundary())
|
|
};
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
if $cond { self.add(nlist, $nextpc, &mut *groups) }
|
|
})
|
|
}
|
|
Save(slot) => {
|
|
let save = quote_expr!(self.cx, {
|
|
let old = groups[$slot];
|
|
groups[$slot] = Some(self.ic);
|
|
self.add(nlist, $nextpc, &mut *groups);
|
|
groups[$slot] = old;
|
|
});
|
|
let add = quote_expr!(self.cx, {
|
|
self.add(nlist, $nextpc, &mut *groups);
|
|
});
|
|
// If this is saving a submatch location but we request
|
|
// existence or only full match location, then we can skip
|
|
// right over it every time.
|
|
if slot > 1 {
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
match self.which {
|
|
Submatches => $save,
|
|
Exists | Location => $add,
|
|
}
|
|
})
|
|
} else {
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
match self.which {
|
|
Submatches | Location => $save,
|
|
Exists => $add,
|
|
}
|
|
})
|
|
}
|
|
}
|
|
Jump(to) => {
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
self.add(nlist, $to, &mut *groups);
|
|
})
|
|
}
|
|
Split(x, y) => {
|
|
quote_expr!(self.cx, {
|
|
nlist.add_empty($pc);
|
|
self.add(nlist, $x, &mut *groups);
|
|
self.add(nlist, $y, &mut *groups);
|
|
})
|
|
}
|
|
// For Match, OneChar, CharClass, Any
|
|
_ => quote_expr!(self.cx, nlist.add($pc, &*groups)),
|
|
};
|
|
self.arm_inst(pc, body)
|
|
}).collect::<Vec<ast::Arm>>();
|
|
|
|
self.match_insts(arms)
|
|
}
|
|
|
|
// Generates the code for the `step` method, which processes all states
|
|
// in the current queue that consume a single character.
|
|
fn step_insts(&self) -> P<ast::Expr> {
|
|
let arms = self.prog.insts.iter().enumerate().map(|(pc, inst)| {
|
|
let nextpc = pc + 1;
|
|
let body = match *inst {
|
|
Match => {
|
|
quote_expr!(self.cx, {
|
|
match self.which {
|
|
Exists => {
|
|
return StepMatchEarlyReturn
|
|
}
|
|
Location => {
|
|
groups[0] = caps[0];
|
|
groups[1] = caps[1];
|
|
return StepMatch
|
|
}
|
|
Submatches => {
|
|
for (slot, val) in groups.iter_mut().zip(caps.iter()) {
|
|
*slot = *val;
|
|
}
|
|
return StepMatch
|
|
}
|
|
}
|
|
})
|
|
}
|
|
OneChar(c, flags) => {
|
|
if flags & FLAG_NOCASE > 0 {
|
|
let upc = c.to_uppercase();
|
|
quote_expr!(self.cx, {
|
|
let upc = self.chars.prev.map(|c| c.to_uppercase());
|
|
if upc == Some($upc) {
|
|
self.add(nlist, $nextpc, caps);
|
|
}
|
|
})
|
|
} else {
|
|
quote_expr!(self.cx, {
|
|
if self.chars.prev == Some($c) {
|
|
self.add(nlist, $nextpc, caps);
|
|
}
|
|
})
|
|
}
|
|
}
|
|
CharClass(ref ranges, flags) => {
|
|
let negate = flags & FLAG_NEGATED > 0;
|
|
let casei = flags & FLAG_NOCASE > 0;
|
|
let get_char =
|
|
if casei {
|
|
quote_expr!(self.cx, self.chars.prev.unwrap().to_uppercase())
|
|
} else {
|
|
quote_expr!(self.cx, self.chars.prev.unwrap())
|
|
};
|
|
let negcond =
|
|
if negate {
|
|
quote_expr!(self.cx, !found)
|
|
} else {
|
|
quote_expr!(self.cx, found)
|
|
};
|
|
let mranges = self.match_class(casei, ranges.as_slice());
|
|
quote_expr!(self.cx, {
|
|
if self.chars.prev.is_some() {
|
|
let c = $get_char;
|
|
let found = $mranges;
|
|
if $negcond {
|
|
self.add(nlist, $nextpc, caps);
|
|
}
|
|
}
|
|
})
|
|
}
|
|
Any(flags) => {
|
|
if flags & FLAG_DOTNL > 0 {
|
|
quote_expr!(self.cx, self.add(nlist, $nextpc, caps))
|
|
} else {
|
|
quote_expr!(self.cx, {
|
|
if self.chars.prev != Some('\n') {
|
|
self.add(nlist, $nextpc, caps)
|
|
}
|
|
()
|
|
})
|
|
}
|
|
}
|
|
// EmptyBegin, EmptyEnd, EmptyWordBoundary, Save, Jump, Split
|
|
_ => self.empty_block(),
|
|
};
|
|
self.arm_inst(pc, body)
|
|
}).collect::<Vec<ast::Arm>>();
|
|
|
|
self.match_insts(arms)
|
|
}
|
|
|
|
// Translates a character class into a match expression.
|
|
// This avoids a binary search (and is hopefully replaced by a jump
|
|
// table).
|
|
fn match_class(&self, casei: bool, ranges: &[(char, char)]) -> P<ast::Expr> {
|
|
let mut arms = ranges.iter().map(|&(mut start, mut end)| {
|
|
if casei {
|
|
start = start.to_uppercase();
|
|
end = end.to_uppercase();
|
|
}
|
|
let pat = self.cx.pat(self.sp, ast::PatRange(quote_expr!(self.cx, $start),
|
|
quote_expr!(self.cx, $end)));
|
|
self.cx.arm(self.sp, vec!(pat), quote_expr!(self.cx, true))
|
|
}).collect::<Vec<ast::Arm>>();
|
|
|
|
arms.push(self.wild_arm_expr(quote_expr!(self.cx, false)));
|
|
|
|
let match_on = quote_expr!(self.cx, c);
|
|
self.cx.expr_match(self.sp, match_on, arms)
|
|
}
|
|
|
|
// Generates code for checking a literal prefix of the search string.
|
|
// The code is only generated if the regex *has* a literal prefix.
|
|
// Otherwise, a no-op is returned.
|
|
fn check_prefix(&self) -> P<ast::Expr> {
|
|
if self.prog.prefix.len() == 0 {
|
|
self.empty_block()
|
|
} else {
|
|
quote_expr!(self.cx,
|
|
if clist.size == 0 {
|
|
let haystack = self.input.as_bytes().slice_from(self.ic);
|
|
match find_prefix(prefix_bytes, haystack) {
|
|
None => break,
|
|
Some(i) => {
|
|
self.ic += i;
|
|
next_ic = self.chars.set(self.ic);
|
|
}
|
|
}
|
|
}
|
|
)
|
|
}
|
|
}
|
|
|
|
// Builds a `match pc { ... }` expression from a list of arms, specifically
|
|
// for matching the current program counter with an instruction.
|
|
// A wild-card arm is automatically added that executes a no-op. It will
|
|
// never be used, but is added to satisfy the compiler complaining about
|
|
// non-exhaustive patterns.
|
|
fn match_insts(&self, mut arms: Vec<ast::Arm>) -> P<ast::Expr> {
|
|
arms.push(self.wild_arm_expr(self.empty_block()));
|
|
self.cx.expr_match(self.sp, quote_expr!(self.cx, pc), arms)
|
|
}
|
|
|
|
fn empty_block(&self) -> P<ast::Expr> {
|
|
quote_expr!(self.cx, {})
|
|
}
|
|
|
|
// Creates a match arm for the instruction at `pc` with the expression
|
|
// `body`.
|
|
fn arm_inst(&self, pc: uint, body: P<ast::Expr>) -> ast::Arm {
|
|
let pc_pat = self.cx.pat_lit(self.sp, quote_expr!(self.cx, $pc));
|
|
|
|
self.cx.arm(self.sp, vec!(pc_pat), body)
|
|
}
|
|
|
|
// Creates a wild-card match arm with the expression `body`.
|
|
fn wild_arm_expr(&self, body: P<ast::Expr>) -> ast::Arm {
|
|
ast::Arm {
|
|
attrs: vec!(),
|
|
pats: vec!(P(ast::Pat{
|
|
id: ast::DUMMY_NODE_ID,
|
|
span: self.sp,
|
|
node: ast::PatWild(ast::PatWildSingle),
|
|
})),
|
|
guard: None,
|
|
body: body,
|
|
}
|
|
}
|
|
|
|
|
|
// Converts `xs` to a `[x1, x2, .., xN]` expression by calling `to_expr`
|
|
// on each element in `xs`.
|
|
fn vec_expr<T, It: Iterator<T>>(&self, xs: It,
|
|
to_expr: |&ExtCtxt, T| -> P<ast::Expr>)
|
|
-> P<ast::Expr> {
|
|
let exprs = xs.map(|x| to_expr(self.cx, x)).collect();
|
|
self.cx.expr_vec(self.sp, exprs)
|
|
}
|
|
}
|
|
|
|
/// Looks for a single string literal and returns it.
|
|
/// Otherwise, logs an error with cx.span_err and returns None.
|
|
fn parse(cx: &mut ExtCtxt, tts: &[ast::TokenTree]) -> Option<String> {
|
|
let mut parser = cx.new_parser_from_tts(tts);
|
|
let entry = cx.expander().fold_expr(parser.parse_expr());
|
|
let regex = match entry.node {
|
|
ast::ExprLit(ref lit) => {
|
|
match lit.node {
|
|
ast::LitStr(ref s, _) => s.to_string(),
|
|
_ => {
|
|
cx.span_err(entry.span, format!(
|
|
"expected string literal but got `{}`",
|
|
pprust::lit_to_string(&**lit)).as_slice());
|
|
return None
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.span_err(entry.span, format!(
|
|
"expected string literal but got `{}`",
|
|
pprust::expr_to_string(&*entry)).as_slice());
|
|
return None
|
|
}
|
|
};
|
|
if !parser.eat(&token::EOF) {
|
|
cx.span_err(parser.span, "only one string literal allowed");
|
|
return None;
|
|
}
|
|
Some(regex)
|
|
}
|