rust/src/libcore/str.rs
2012-08-30 11:02:13 -07:00

3155 lines
88 KiB
Rust

/*!
* String manipulation
*
* Strings are a packed UTF-8 representation of text, stored as null
* terminated buffers of u8 bytes. Strings should be indexed in bytes,
* for efficiency, but UTF-8 unsafe operations should be avoided. For
* some heavy-duty uses, try std::rope.
*/
import cmp::{Eq, Ord};
import libc::size_t;
import io::WriterUtil;
export
// Creating a string
from_bytes,
from_byte,
from_slice,
from_char,
from_chars,
append,
concat,
connect,
// Reinterpretation
as_bytes,
as_buf,
as_c_str,
// Adding things to and removing things from a string
push_str_no_overallocate,
push_str,
push_char,
pop_char,
shift_char,
view_shift_char,
unshift_char,
trim_left,
trim_right,
trim,
// Transforming strings
to_bytes,
byte_slice,
chars,
substr,
slice,
view,
split, splitn, split_nonempty,
split_char, splitn_char, split_char_nonempty,
split_str, split_str_nonempty,
lines,
lines_any,
words,
to_lower,
to_upper,
replace,
// Comparing strings
eq,
eq_slice,
le,
hash,
// Iterating through strings
all, any,
all_between, any_between,
map,
each, eachi,
each_char, each_chari,
bytes_iter,
chars_iter,
split_char_iter,
splitn_char_iter,
words_iter,
lines_iter,
// Searching
find, find_from, find_between,
rfind, rfind_from, rfind_between,
find_char, find_char_from, find_char_between,
rfind_char, rfind_char_from, rfind_char_between,
find_str, find_str_from, find_str_between,
contains, contains_char,
starts_with,
ends_with,
// String properties
is_ascii,
is_empty,
is_not_empty,
is_whitespace,
len,
char_len,
// Misc
is_utf8,
is_utf16,
to_utf16,
from_utf16,
utf16_chars,
count_chars, count_bytes,
utf8_char_width,
char_range_at,
is_char_boundary,
char_at,
reserve,
reserve_at_least,
capacity,
escape_default,
escape_unicode,
unsafe,
extensions,
StrSlice,
UniqueStr;
#[abi = "cdecl"]
extern mod rustrt {
fn rust_str_push(&s: ~str, ch: u8);
fn str_reserve_shared(&ss: ~str, nn: libc::size_t);
}
/*
Section: Creating a string
*/
/**
* Convert a vector of bytes to a UTF-8 string
*
* # Failure
*
* Fails if invalid UTF-8
*/
pure fn from_bytes(vv: &[const u8]) -> ~str {
assert is_utf8(vv);
return unsafe { unsafe::from_bytes(vv) };
}
/// Copy a slice into a new unique str
pure fn from_slice(s: &str) -> ~str {
unsafe { unsafe::slice_bytes(s, 0, len(s)) }
}
/**
* Convert a byte to a UTF-8 string
*
* # Failure
*
* Fails if invalid UTF-8
*/
pure fn from_byte(b: u8) -> ~str {
assert b < 128u8;
let mut v = ~[b, 0u8];
unsafe { ::unsafe::transmute(v) }
}
/// Appends a character at the end of a string
fn push_char(&s: ~str, ch: char) {
unsafe {
let code = ch as uint;
let nb = if code < max_one_b { 1u }
else if code < max_two_b { 2u }
else if code < max_three_b { 3u }
else if code < max_four_b { 4u }
else if code < max_five_b { 5u }
else { 6u };
let len = len(s);
let new_len = len + nb;
reserve_at_least(s, new_len);
let off = len;
do as_buf(s) |buf, _len| {
let buf: *mut u8 = ::unsafe::reinterpret_cast(buf);
if nb == 1u {
*ptr::mut_offset(buf, off) =
code as u8;
} else if nb == 2u {
*ptr::mut_offset(buf, off) =
(code >> 6u & 31u | tag_two_b) as u8;
*ptr::mut_offset(buf, off + 1u) =
(code & 63u | tag_cont) as u8;
} else if nb == 3u {
*ptr::mut_offset(buf, off) =
(code >> 12u & 15u | tag_three_b) as u8;
*ptr::mut_offset(buf, off + 1u) =
(code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) =
(code & 63u | tag_cont) as u8;
} else if nb == 4u {
*ptr::mut_offset(buf, off) =
(code >> 18u & 7u | tag_four_b) as u8;
*ptr::mut_offset(buf, off + 1u) =
(code >> 12u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) =
(code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 3u) =
(code & 63u | tag_cont) as u8;
} else if nb == 5u {
*ptr::mut_offset(buf, off) =
(code >> 24u & 3u | tag_five_b) as u8;
*ptr::mut_offset(buf, off + 1u) =
(code >> 18u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) =
(code >> 12u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 3u) =
(code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 4u) =
(code & 63u | tag_cont) as u8;
} else if nb == 6u {
*ptr::mut_offset(buf, off) =
(code >> 30u & 1u | tag_six_b) as u8;
*ptr::mut_offset(buf, off + 1u) =
(code >> 24u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 2u) =
(code >> 18u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 3u) =
(code >> 12u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 4u) =
(code >> 6u & 63u | tag_cont) as u8;
*ptr::mut_offset(buf, off + 5u) =
(code & 63u | tag_cont) as u8;
}
*ptr::mut_offset(buf, off + nb) = 0u8;
}
do as_bytes(s) |bytes| {
let mut mut_bytes: ~[u8] = ::unsafe::reinterpret_cast(bytes);
vec::unsafe::set_len(mut_bytes, new_len + 1u);
::unsafe::forget(mut_bytes);
}
}
}
/// Convert a char to a string
pure fn from_char(ch: char) -> ~str {
let mut buf = ~"";
unchecked { push_char(buf, ch); }
return buf;
}
/// Convert a vector of chars to a string
pure fn from_chars(chs: &[char]) -> ~str {
let mut buf = ~"";
unchecked {
reserve(buf, chs.len());
for vec::each(chs) |ch| { push_char(buf, ch); }
}
return buf;
}
/// Appends a string slice to the back of a string, without overallocating
#[inline(always)]
fn push_str_no_overallocate(&lhs: ~str, rhs: &str) {
unsafe {
let llen = lhs.len();
let rlen = rhs.len();
reserve(lhs, llen + rlen);
do as_buf(lhs) |lbuf, _llen| {
do as_buf(rhs) |rbuf, _rlen| {
let dst = ptr::offset(lbuf, llen);
ptr::memcpy(dst, rbuf, rlen);
}
}
unsafe::set_len(lhs, llen + rlen);
}
}
/// Appends a string slice to the back of a string
#[inline(always)]
fn push_str(&lhs: ~str, rhs: &str) {
unsafe {
let llen = lhs.len();
let rlen = rhs.len();
reserve_at_least(lhs, llen + rlen);
do as_buf(lhs) |lbuf, _llen| {
do as_buf(rhs) |rbuf, _rlen| {
let dst = ptr::offset(lbuf, llen);
ptr::memcpy(dst, rbuf, rlen);
}
}
unsafe::set_len(lhs, llen + rlen);
}
}
/// Concatenate two strings together
#[inline(always)]
pure fn append(+lhs: ~str, rhs: &str) -> ~str {
let mut v <- lhs;
unchecked {
push_str_no_overallocate(v, rhs);
}
return v;
}
/// Concatenate a vector of strings
pure fn concat(v: &[~str]) -> ~str {
let mut s: ~str = ~"";
for vec::each(v) |ss| { unchecked { push_str(s, ss) }; }
return s;
}
/// Concatenate a vector of strings, placing a given separator between each
pure fn connect(v: &[~str], sep: &str) -> ~str {
let mut s = ~"", first = true;
for vec::each(v) |ss| {
if first { first = false; } else { unchecked { push_str(s, sep); } }
unchecked { push_str(s, ss) };
}
return s;
}
/*
Section: Adding to and removing from a string
*/
/**
* Remove the final character from a string and return it
*
* # Failure
*
* If the string does not contain any characters
*/
fn pop_char(&s: ~str) -> char {
let end = len(s);
assert end > 0u;
let {ch, prev} = char_range_at_reverse(s, end);
unsafe { unsafe::set_len(s, prev); }
return ch;
}
/**
* Remove the first character from a string and return it
*
* # Failure
*
* If the string does not contain any characters
*/
fn shift_char(&s: ~str) -> char {
let {ch, next} = char_range_at(s, 0u);
s = unsafe { unsafe::slice_bytes(s, next, len(s)) };
return ch;
}
/**
* Removes the first character from a string slice and returns it. This does
* not allocate a new string; instead, it mutates a slice to point one
* character beyond the character that was shifted.
*
* # Failure
*
* If the string does not contain any characters
*/
#[inline]
fn view_shift_char(s: &a/str) -> (char, &a/str) {
let {ch, next} = char_range_at(s, 0u);
let next_s = unsafe { unsafe::view_bytes(s, next, len(s)) };
return (ch, next_s);
}
/// Prepend a char to a string
fn unshift_char(&s: ~str, ch: char) { s = from_char(ch) + s; }
/// Returns a string with leading whitespace removed
pure fn trim_left(s: &str) -> ~str {
match find(s, |c| !char::is_whitespace(c)) {
None => ~"",
Some(first) => unsafe { unsafe::slice_bytes(s, first, len(s)) }
}
}
/// Returns a string with trailing whitespace removed
pure fn trim_right(s: &str) -> ~str {
match rfind(s, |c| !char::is_whitespace(c)) {
None => ~"",
Some(last) => {
let {next, _} = char_range_at(s, last);
unsafe { unsafe::slice_bytes(s, 0u, next) }
}
}
}
/// Returns a string with leading and trailing whitespace removed
pure fn trim(s: &str) -> ~str { trim_left(trim_right(s)) }
/*
Section: Transforming strings
*/
/**
* Converts a string to a vector of bytes
*
* The result vector is not null-terminated.
*/
pure fn to_bytes(s: &str) -> ~[u8] {
unsafe {
let mut s_copy = from_slice(s);
let mut v: ~[u8] = ::unsafe::transmute(s_copy);
vec::unsafe::set_len(v, len(s));
return v;
}
}
/// Work with the string as a byte slice, not including trailing null.
#[inline(always)]
pure fn byte_slice<T>(s: &str, f: fn(v: &[u8]) -> T) -> T {
do as_buf(s) |p,n| {
unsafe { vec::unsafe::form_slice(p, n-1u, f) }
}
}
/// Convert a string to a vector of characters
pure fn chars(s: &str) -> ~[char] {
let mut buf = ~[], i = 0u;
let len = len(s);
while i < len {
let {ch, next} = char_range_at(s, i);
unchecked { vec::push(buf, ch); }
i = next;
}
return buf;
}
/**
* Take a substring of another.
*
* Returns a string containing `n` characters starting at byte offset
* `begin`.
*/
pure fn substr(s: &str, begin: uint, n: uint) -> ~str {
slice(s, begin, begin + count_bytes(s, begin, n))
}
/**
* Returns a slice of the given string from the byte range [`begin`..`end`)
*
* Fails when `begin` and `end` do not point to valid characters or
* beyond the last character of the string
*/
pure fn slice(s: &str, begin: uint, end: uint) -> ~str {
assert is_char_boundary(s, begin);
assert is_char_boundary(s, end);
unsafe { unsafe::slice_bytes(s, begin, end) }
}
/**
* Returns a view of the given string from the byte range [`begin`..`end`)
*
* Fails when `begin` and `end` do not point to valid characters or beyond
* the last character of the string
*/
pure fn view(s: &a/str, begin: uint, end: uint) -> &a/str {
assert is_char_boundary(s, begin);
assert is_char_boundary(s, end);
unsafe { unsafe::view_bytes(s, begin, end) }
}
/// Splits a string into substrings at each occurrence of a given character
pure fn split_char(s: &str, sep: char) -> ~[~str] {
split_char_inner(s, sep, len(s), true)
}
/**
* Splits a string into substrings at each occurrence of a given
* character up to 'count' times
*
* The byte must be a valid UTF-8/ASCII byte
*/
pure fn splitn_char(s: &str, sep: char, count: uint) -> ~[~str] {
split_char_inner(s, sep, count, true)
}
/// Like `split_char`, but omits empty strings from the returned vector
pure fn split_char_nonempty(s: &str, sep: char) -> ~[~str] {
split_char_inner(s, sep, len(s), false)
}
pure fn split_char_inner(s: &str, sep: char, count: uint, allow_empty: bool)
-> ~[~str] {
if sep < 128u as char {
let b = sep as u8, l = len(s);
let mut result = ~[], done = 0u;
let mut i = 0u, start = 0u;
while i < l && done < count {
if s[i] == b {
if allow_empty || start < i unchecked {
vec::push(result,
unsafe { unsafe::slice_bytes(s, start, i) });
}
start = i + 1u;
done += 1u;
}
i += 1u;
}
if allow_empty || start < l {
unsafe { vec::push(result, unsafe::slice_bytes(s, start, l) ) };
}
result
} else {
splitn(s, |cur| cur == sep, count)
}
}
/// Splits a string into substrings using a character function
pure fn split(s: &str, sepfn: fn(char) -> bool) -> ~[~str] {
split_inner(s, sepfn, len(s), true)
}
/**
* Splits a string into substrings using a character function, cutting at
* most `count` times.
*/
pure fn splitn(s: &str, sepfn: fn(char) -> bool, count: uint) -> ~[~str] {
split_inner(s, sepfn, count, true)
}
/// Like `split`, but omits empty strings from the returned vector
pure fn split_nonempty(s: &str, sepfn: fn(char) -> bool) -> ~[~str] {
split_inner(s, sepfn, len(s), false)
}
pure fn split_inner(s: &str, sepfn: fn(cc: char) -> bool, count: uint,
allow_empty: bool) -> ~[~str] {
let l = len(s);
let mut result = ~[], i = 0u, start = 0u, done = 0u;
while i < l && done < count {
let {ch, next} = char_range_at(s, i);
if sepfn(ch) {
if allow_empty || start < i unchecked {
vec::push(result, unsafe { unsafe::slice_bytes(s, start, i)});
}
start = next;
done += 1u;
}
i = next;
}
if allow_empty || start < l unchecked {
vec::push(result, unsafe { unsafe::slice_bytes(s, start, l) });
}
result
}
// See Issue #1932 for why this is a naive search
pure fn iter_matches(s: &a/str, sep: &b/str, f: fn(uint, uint)) {
let sep_len = len(sep), l = len(s);
assert sep_len > 0u;
let mut i = 0u, match_start = 0u, match_i = 0u;
while i < l {
if s[i] == sep[match_i] {
if match_i == 0u { match_start = i; }
match_i += 1u;
// Found a match
if match_i == sep_len {
f(match_start, i + 1u);
match_i = 0u;
}
i += 1u;
} else {
// Failed match, backtrack
if match_i > 0u {
match_i = 0u;
i = match_start + 1u;
} else {
i += 1u;
}
}
}
}
pure fn iter_between_matches(s: &a/str, sep: &b/str, f: fn(uint, uint)) {
let mut last_end = 0u;
do iter_matches(s, sep) |from, to| {
f(last_end, from);
last_end = to;
}
f(last_end, len(s));
}
/**
* Splits a string into a vector of the substrings separated by a given string
*
* # Example
*
* ~~~
* assert ["", "XXX", "YYY", ""] == split_str(".XXX.YYY.", ".")
* ~~~
*/
pure fn split_str(s: &a/str, sep: &b/str) -> ~[~str] {
let mut result = ~[];
do iter_between_matches(s, sep) |from, to| {
unsafe { vec::push(result, unsafe::slice_bytes(s, from, to)); }
}
result
}
pure fn split_str_nonempty(s: &a/str, sep: &b/str) -> ~[~str] {
let mut result = ~[];
do iter_between_matches(s, sep) |from, to| {
if to > from {
unsafe { vec::push(result, unsafe::slice_bytes(s, from, to)); }
}
}
result
}
/**
* Splits a string into a vector of the substrings separated by LF ('\n')
*/
pure fn lines(s: &str) -> ~[~str] { split_char(s, '\n') }
/**
* Splits a string into a vector of the substrings separated by LF ('\n')
* and/or CR LF ("\r\n")
*/
pure fn lines_any(s: &str) -> ~[~str] {
vec::map(lines(s), |s| {
let l = len(s);
let mut cp = s;
if l > 0u && s[l - 1u] == '\r' as u8 {
unsafe { unsafe::set_len(cp, l - 1u); }
}
cp
})
}
/// Splits a string into a vector of the substrings separated by whitespace
pure fn words(s: &str) -> ~[~str] {
split_nonempty(s, |c| char::is_whitespace(c))
}
/// Convert a string to lowercase. ASCII only
pure fn to_lower(s: &str) -> ~str {
map(s,
|c| unchecked{(libc::tolower(c as libc::c_char)) as char}
)
}
/// Convert a string to uppercase. ASCII only
pure fn to_upper(s: &str) -> ~str {
map(s,
|c| unchecked{(libc::toupper(c as libc::c_char)) as char}
)
}
/**
* Replace all occurrences of one string with another
*
* # Arguments
*
* * s - The string containing substrings to replace
* * from - The string to replace
* * to - The replacement string
*
* # Return value
*
* The original string with all occurances of `from` replaced with `to`
*/
pure fn replace(s: &str, from: &str, to: &str) -> ~str {
let mut result = ~"", first = true;
do iter_between_matches(s, from) |start, end| {
if first { first = false; } else { unchecked {push_str(result, to); }}
unsafe { push_str(result, unsafe::slice_bytes(s, start, end)); }
}
result
}
/*
Section: Comparing strings
*/
/// Bytewise slice equality
pure fn eq_slice(a: &str, b: &str) -> bool {
let a_len = a.len();
let b_len = b.len();
if a_len != b_len { return false; }
let mut end = uint::min(&a_len, &b_len);
let mut i = 0u;
while i < end {
if a[i] != b[i] { return false; }
i += 1u;
}
return true;
}
/// Bytewise string equality
pure fn eq(a: &~str, b: &~str) -> bool {
eq_slice(*a, *b)
}
/// Bytewise slice less than
pure fn lt(a: &str, b: &str) -> bool {
let (a_len, b_len) = (a.len(), b.len());
let mut end = uint::min(&a_len, &b_len);
let mut i = 0;
while i < end {
let (c_a, c_b) = (a[i], b[i]);
if c_a < c_b { return true; }
if c_a > c_b { return false; }
i += 1;
}
return a_len < b_len;
}
/// Bytewise less than or equal
pure fn le(a: &str, b: &str) -> bool {
let (a_len, b_len) = (a.len(), b.len());
let mut end = uint::min(&a_len, &b_len);
let mut i = 0;
while i < end {
let (c_a, c_b) = (a[i], b[i]);
if c_a < c_b { return true; }
if c_a > c_b { return false; }
i += 1;
}
return a_len <= b_len;
}
/// Bytewise greater than or equal
pure fn ge(a: &str, b: &str) -> bool {
!lt(b, a)
}
/// Bytewise greater than
pure fn gt(a: &str, b: &str) -> bool {
!le(b, a)
}
impl &str: Eq {
#[inline(always)]
pure fn eq(&&other: &str) -> bool {
eq_slice(self, other)
}
}
impl ~str: Eq {
#[inline(always)]
pure fn eq(&&other: ~str) -> bool {
eq_slice(self, other)
}
}
impl @str: Eq {
#[inline(always)]
pure fn eq(&&other: @str) -> bool {
eq_slice(self, other)
}
}
impl ~str : Ord {
#[inline(always)]
pure fn lt(&&other: ~str) -> bool { lt(self, other) }
#[inline(always)]
pure fn le(&&other: ~str) -> bool { le(self, other) }
#[inline(always)]
pure fn ge(&&other: ~str) -> bool { ge(self, other) }
#[inline(always)]
pure fn gt(&&other: ~str) -> bool { gt(self, other) }
}
impl &str : Ord {
#[inline(always)]
pure fn lt(&&other: &str) -> bool { lt(self, other) }
#[inline(always)]
pure fn le(&&other: &str) -> bool { le(self, other) }
#[inline(always)]
pure fn ge(&&other: &str) -> bool { ge(self, other) }
#[inline(always)]
pure fn gt(&&other: &str) -> bool { gt(self, other) }
}
impl @str : Ord {
#[inline(always)]
pure fn lt(&&other: @str) -> bool { lt(self, other) }
#[inline(always)]
pure fn le(&&other: @str) -> bool { le(self, other) }
#[inline(always)]
pure fn ge(&&other: @str) -> bool { ge(self, other) }
#[inline(always)]
pure fn gt(&&other: @str) -> bool { gt(self, other) }
}
/// String hash function
pure fn hash(s: &~str) -> uint {
hash::hash_str(*s) as uint
}
/*
Section: Iterating through strings
*/
/**
* Return true if a predicate matches all characters or if the string
* contains no characters
*/
pure fn all(s: &str, it: fn(char) -> bool) -> bool {
all_between(s, 0u, len(s), it)
}
/**
* Return true if a predicate matches any character (and false if it
* matches none or there are no characters)
*/
pure fn any(ss: &str, pred: fn(char) -> bool) -> bool {
!all(ss, |cc| !pred(cc))
}
/// Apply a function to each character
pure fn map(ss: &str, ff: fn(char) -> char) -> ~str {
let mut result = ~"";
unchecked {
reserve(result, len(ss));
do chars_iter(ss) |cc| {
str::push_char(result, ff(cc));
}
}
result
}
/// Iterate over the bytes in a string
pure fn bytes_iter(ss: &str, it: fn(u8)) {
let mut pos = 0u;
let len = len(ss);
while (pos < len) {
it(ss[pos]);
pos += 1u;
}
}
/// Iterate over the bytes in a string
#[inline(always)]
pure fn each(s: &str, it: fn(u8) -> bool) {
eachi(s, |_i, b| it(b) )
}
/// Iterate over the bytes in a string, with indices
#[inline(always)]
pure fn eachi(s: &str, it: fn(uint, u8) -> bool) {
let mut i = 0u, l = len(s);
while (i < l) {
if !it(i, s[i]) { break; }
i += 1u;
}
}
/// Iterates over the chars in a string
#[inline(always)]
pure fn each_char(s: &str, it: fn(char) -> bool) {
each_chari(s, |_i, c| it(c))
}
/// Iterates over the chars in a string, with indices
#[inline(always)]
pure fn each_chari(s: &str, it: fn(uint, char) -> bool) {
let mut pos = 0u, ch_pos = 0u;
let len = len(s);
while pos < len {
let {ch, next} = char_range_at(s, pos);
pos = next;
if !it(ch_pos, ch) { break; }
ch_pos += 1u;
}
}
/// Iterate over the characters in a string
pure fn chars_iter(s: &str, it: fn(char)) {
let mut pos = 0u;
let len = len(s);
while (pos < len) {
let {ch, next} = char_range_at(s, pos);
pos = next;
it(ch);
}
}
/// Apply a function to each substring after splitting by character
pure fn split_char_iter(ss: &str, cc: char, ff: fn(&&~str)) {
vec::iter(split_char(ss, cc), ff)
}
/**
* Apply a function to each substring after splitting by character, up to
* `count` times
*/
pure fn splitn_char_iter(ss: &str, sep: char, count: uint,
ff: fn(&&~str)) {
vec::iter(splitn_char(ss, sep, count), ff)
}
/// Apply a function to each word
pure fn words_iter(ss: &str, ff: fn(&&~str)) {
vec::iter(words(ss), ff)
}
/**
* Apply a function to each line (by '\n')
*/
pure fn lines_iter(ss: &str, ff: fn(&&~str)) {
vec::iter(lines(ss), ff)
}
/*
Section: Searching
*/
/**
* Returns the byte index of the first matching character
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*/
pure fn find_char(s: &str, c: char) -> Option<uint> {
find_char_between(s, c, 0u, len(s))
}
/**
* Returns the byte index of the first matching character beginning
* from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, inclusive
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`. `start` must be the
* index of a character boundary, as defined by `is_char_boundary`.
*/
pure fn find_char_from(s: &str, c: char, start: uint) -> Option<uint> {
find_char_between(s, c, start, len(s))
}
/**
* Returns the byte index of the first matching character within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, inclusive
* * `end` - The byte index to end searching at, exclusive
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `end` and `end` must be less than
* or equal to `len(s)`. `start` must be the index of a character boundary,
* as defined by `is_char_boundary`.
*/
pure fn find_char_between(s: &str, c: char, start: uint, end: uint)
-> Option<uint> {
if c < 128u as char {
assert start <= end;
assert end <= len(s);
let mut i = start;
let b = c as u8;
while i < end {
if s[i] == b { return Some(i); }
i += 1u;
}
return None;
} else {
find_between(s, start, end, |x| x == c)
}
}
/**
* Returns the byte index of the last matching character
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*/
pure fn rfind_char(s: &str, c: char) -> Option<uint> {
rfind_char_between(s, c, len(s), 0u)
}
/**
* Returns the byte index of the last matching character beginning
* from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, exclusive
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`. `start` must be
* the index of a character boundary, as defined by `is_char_boundary`.
*/
pure fn rfind_char_from(s: &str, c: char, start: uint) -> Option<uint> {
rfind_char_between(s, c, start, 0u)
}
/**
* Returns the byte index of the last matching character within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `c` - The character to search for
* * `start` - The byte index to begin searching at, exclusive
* * `end` - The byte index to end searching at, inclusive
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `end` must be less than or equal to `start` and `start` must be less than
* or equal to `len(s)`. `start` must be the index of a character boundary,
* as defined by `is_char_boundary`.
*/
pure fn rfind_char_between(s: &str, c: char, start: uint, end: uint)
-> Option<uint> {
if c < 128u as char {
assert start >= end;
assert start <= len(s);
let mut i = start;
let b = c as u8;
while i > end {
i -= 1u;
if s[i] == b { return Some(i); }
}
return None;
} else {
rfind_between(s, start, end, |x| x == c)
}
}
/**
* Returns the byte index of the first character that satisfies
* the given predicate
*
* # Arguments
*
* * `s` - The string to search
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*/
pure fn find(s: &str, f: fn(char) -> bool) -> Option<uint> {
find_between(s, 0u, len(s), f)
}
/**
* Returns the byte index of the first character that satisfies
* the given predicate, beginning from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, inclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the first matching charactor
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`. `start` must be the
* index of a character boundary, as defined by `is_char_boundary`.
*/
pure fn find_from(s: &str, start: uint, f: fn(char)
-> bool) -> Option<uint> {
find_between(s, start, len(s), f)
}
/**
* Returns the byte index of the first character that satisfies
* the given predicate, within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, inclusive
* * `end` - The byte index to end searching at, exclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `end` and `end` must be less than
* or equal to `len(s)`. `start` must be the index of a character
* boundary, as defined by `is_char_boundary`.
*/
pure fn find_between(s: &str, start: uint, end: uint, f: fn(char) -> bool)
-> Option<uint> {
assert start <= end;
assert end <= len(s);
assert is_char_boundary(s, start);
let mut i = start;
while i < end {
let {ch, next} = char_range_at(s, i);
if f(ch) { return Some(i); }
i = next;
}
return None;
}
/**
* Returns the byte index of the last character that satisfies
* the given predicate
*
* # Arguments
*
* * `s` - The string to search
* * `f` - The predicate to satisfy
*
* # Return value
*
* An option containing the byte index of the last matching character
* or `none` if there is no match
*/
pure fn rfind(s: &str, f: fn(char) -> bool) -> Option<uint> {
rfind_between(s, len(s), 0u, f)
}
/**
* Returns the byte index of the last character that satisfies
* the given predicate, beginning from a given byte offset
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, exclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)', `start` must be the
* index of a character boundary, as defined by `is_char_boundary`
*/
pure fn rfind_from(s: &str, start: uint, f: fn(char) -> bool)
-> Option<uint> {
rfind_between(s, start, 0u, f)
}
/**
* Returns the byte index of the last character that satisfies
* the given predicate, within a given range
*
* # Arguments
*
* * `s` - The string to search
* * `start` - The byte index to begin searching at, exclusive
* * `end` - The byte index to end searching at, inclusive
* * `f` - The predicate to satisfy
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `end` must be less than or equal to `start` and `start` must be less
* than or equal to `len(s)`. `start` must be the index of a character
* boundary, as defined by `is_char_boundary`
*/
pure fn rfind_between(s: &str, start: uint, end: uint, f: fn(char) -> bool)
-> Option<uint> {
assert start >= end;
assert start <= len(s);
assert is_char_boundary(s, start);
let mut i = start;
while i > end {
let {ch, prev} = char_range_at_reverse(s, i);
if f(ch) { return Some(prev); }
i = prev;
}
return None;
}
// Utility used by various searching functions
pure fn match_at(haystack: &a/str, needle: &b/str, at: uint) -> bool {
let mut i = at;
for each(needle) |c| { if haystack[i] != c { return false; } i += 1u; }
return true;
}
/**
* Returns the byte index of the first matching substring
*
* # Arguments
*
* * `haystack` - The string to search
* * `needle` - The string to search for
*
* # Return value
*
* An `option` containing the byte index of the first matching substring
* or `none` if there is no match
*/
pure fn find_str(haystack: &a/str, needle: &b/str) -> Option<uint> {
find_str_between(haystack, needle, 0u, len(haystack))
}
/**
* Returns the byte index of the first matching substring beginning
* from a given byte offset
*
* # Arguments
*
* * `haystack` - The string to search
* * `needle` - The string to search for
* * `start` - The byte index to begin searching at, inclusive
*
* # Return value
*
* An `option` containing the byte index of the last matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `len(s)`
*/
pure fn find_str_from(haystack: &a/str, needle: &b/str, start: uint)
-> Option<uint> {
find_str_between(haystack, needle, start, len(haystack))
}
/**
* Returns the byte index of the first matching substring within a given range
*
* # Arguments
*
* * `haystack` - The string to search
* * `needle` - The string to search for
* * `start` - The byte index to begin searching at, inclusive
* * `end` - The byte index to end searching at, exclusive
*
* # Return value
*
* An `option` containing the byte index of the first matching character
* or `none` if there is no match
*
* # Failure
*
* `start` must be less than or equal to `end` and `end` must be less than
* or equal to `len(s)`.
*/
pure fn find_str_between(haystack: &a/str, needle: &b/str, start: uint,
end:uint)
-> Option<uint> {
// See Issue #1932 for why this is a naive search
assert end <= len(haystack);
let needle_len = len(needle);
if needle_len == 0u { return Some(start); }
if needle_len > end { return None; }
let mut i = start;
let e = end - needle_len;
while i <= e {
if match_at(haystack, needle, i) { return Some(i); }
i += 1u;
}
return None;
}
/**
* Returns true if one string contains another
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The string to look for
*/
pure fn contains(haystack: &a/str, needle: &b/str) -> bool {
option::is_some(find_str(haystack, needle))
}
/**
* Returns true if a string contains a char.
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The char to look for
*/
pure fn contains_char(haystack: &str, needle: char) -> bool {
option::is_some(find_char(haystack, needle))
}
/**
* Returns true if one string starts with another
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The string to look for
*/
pure fn starts_with(haystack: &a/str, needle: &b/str) -> bool {
let haystack_len = len(haystack), needle_len = len(needle);
if needle_len == 0u { true }
else if needle_len > haystack_len { false }
else { match_at(haystack, needle, 0u) }
}
/**
* Returns true if one string ends with another
*
* # Arguments
*
* * haystack - The string to look in
* * needle - The string to look for
*/
pure fn ends_with(haystack: &a/str, needle: &b/str) -> bool {
let haystack_len = len(haystack), needle_len = len(needle);
if needle_len == 0u { true }
else if needle_len > haystack_len { false }
else { match_at(haystack, needle, haystack_len - needle_len) }
}
/*
Section: String properties
*/
/// Determines if a string contains only ASCII characters
pure fn is_ascii(s: &str) -> bool {
let mut i: uint = len(s);
while i > 0u { i -= 1u; if !u8::is_ascii(s[i]) { return false; } }
return true;
}
/// Returns true if the string has length 0
pure fn is_empty(s: &str) -> bool { len(s) == 0u }
/// Returns true if the string has length greater than 0
pure fn is_not_empty(s: &str) -> bool { !is_empty(s) }
/**
* Returns true if the string contains only whitespace
*
* Whitespace characters are determined by `char::is_whitespace`
*/
pure fn is_whitespace(s: &str) -> bool {
return all(s, char::is_whitespace);
}
/**
* Returns true if the string contains only alphanumerics
*
* Alphanumeric characters are determined by `char::is_alphanumeric`
*/
fn is_alphanumeric(s: &str) -> bool {
return all(s, char::is_alphanumeric);
}
/// Returns the string length/size in bytes not counting the null terminator
pure fn len(s: &str) -> uint {
do as_buf(s) |_p, n| { n - 1u }
}
/// Returns the number of characters that a string holds
pure fn char_len(s: &str) -> uint { count_chars(s, 0u, len(s)) }
/*
Section: Misc
*/
/// Determines if a vector of bytes contains valid UTF-8
pure fn is_utf8(v: &[const u8]) -> bool {
let mut i = 0u;
let total = vec::len::<u8>(v);
while i < total {
let mut chsize = utf8_char_width(v[i]);
if chsize == 0u { return false; }
if i + chsize > total { return false; }
i += 1u;
while chsize > 1u {
if v[i] & 192u8 != tag_cont_u8 { return false; }
i += 1u;
chsize -= 1u;
}
}
return true;
}
/// Determines if a vector of `u16` contains valid UTF-16
pure fn is_utf16(v: &[u16]) -> bool {
let len = vec::len(v);
let mut i = 0u;
while (i < len) {
let u = v[i];
if u <= 0xD7FF_u16 || u >= 0xE000_u16 {
i += 1u;
} else {
if i+1u < len { return false; }
let u2 = v[i+1u];
if u < 0xD7FF_u16 || u > 0xDBFF_u16 { return false; }
if u2 < 0xDC00_u16 || u2 > 0xDFFF_u16 { return false; }
i += 2u;
}
}
return true;
}
/// Converts to a vector of `u16` encoded as UTF-16
pure fn to_utf16(s: &str) -> ~[u16] {
let mut u = ~[];
do chars_iter(s) |cch| {
// Arithmetic with u32 literals is easier on the eyes than chars.
let mut ch = cch as u32;
if (ch & 0xFFFF_u32) == ch unchecked {
// The BMP falls through (assuming non-surrogate, as it should)
assert ch <= 0xD7FF_u32 || ch >= 0xE000_u32;
vec::push(u, ch as u16)
} else unchecked {
// Supplementary planes break into surrogates.
assert ch >= 0x1_0000_u32 && ch <= 0x10_FFFF_u32;
ch -= 0x1_0000_u32;
let w1 = 0xD800_u16 | ((ch >> 10) as u16);
let w2 = 0xDC00_u16 | ((ch as u16) & 0x3FF_u16);
vec::push_all(u, ~[w1, w2])
}
}
return u;
}
pure fn utf16_chars(v: &[u16], f: fn(char)) {
let len = vec::len(v);
let mut i = 0u;
while (i < len && v[i] != 0u16) {
let mut u = v[i];
if u <= 0xD7FF_u16 || u >= 0xE000_u16 {
f(u as char);
i += 1u;
} else {
let u2 = v[i+1u];
assert u >= 0xD800_u16 && u <= 0xDBFF_u16;
assert u2 >= 0xDC00_u16 && u2 <= 0xDFFF_u16;
let mut c = (u - 0xD800_u16) as char;
c = c << 10;
c |= (u2 - 0xDC00_u16) as char;
c |= 0x1_0000_u32 as char;
f(c);
i += 2u;
}
}
}
pure fn from_utf16(v: &[u16]) -> ~str {
let mut buf = ~"";
unchecked {
reserve(buf, vec::len(v));
utf16_chars(v, |ch| push_char(buf, ch));
}
return buf;
}
/**
* As char_len but for a slice of a string
*
* # Arguments
*
* * s - A valid string
* * start - The position inside `s` where to start counting in bytes
* * end - The position where to stop counting
*
* # Return value
*
* The number of Unicode characters in `s` between the given indices.
*/
pure fn count_chars(s: &str, start: uint, end: uint) -> uint {
assert is_char_boundary(s, start);
assert is_char_boundary(s, end);
let mut i = start, len = 0u;
while i < end {
let {next, _} = char_range_at(s, i);
len += 1u;
i = next;
}
return len;
}
/// Counts the number of bytes taken by the `n` in `s` starting from `start`.
pure fn count_bytes(s: &b/str, start: uint, n: uint) -> uint {
assert is_char_boundary(s, start);
let mut end = start, cnt = n;
let l = len(s);
while cnt > 0u {
assert end < l;
let {next, _} = char_range_at(s, end);
cnt -= 1u;
end = next;
}
end - start
}
/// Given a first byte, determine how many bytes are in this UTF-8 character
pure fn utf8_char_width(b: u8) -> uint {
let byte: uint = b as uint;
if byte < 128u { return 1u; }
// Not a valid start byte
if byte < 192u { return 0u; }
if byte < 224u { return 2u; }
if byte < 240u { return 3u; }
if byte < 248u { return 4u; }
if byte < 252u { return 5u; }
return 6u;
}
/**
* Returns false if the index points into the middle of a multi-byte
* character sequence.
*/
pure fn is_char_boundary(s: &str, index: uint) -> bool {
if index == len(s) { return true; }
let b = s[index];
return b < 128u8 || b >= 192u8;
}
/**
* Pluck a character out of a string and return the index of the next
* character.
*
* This function can be used to iterate over the unicode characters of a
* string.
*
* # Example
*
* ~~~
* let s = "中华Việt Nam";
* let i = 0u;
* while i < str::len(s) {
* let {ch, next} = str::char_range_at(s, i);
* std::io::println(fmt!("%u: %c",i,ch));
* i = next;
* }
* ~~~
*
* # Example output
*
* ~~~
* 0: 中
* 3: 华
* 6: V
* 7: i
* 8: ệ
* 11: t
* 12:
* 13: N
* 14: a
* 15: m
* ~~~
*
* # Arguments
*
* * s - The string
* * i - The byte offset of the char to extract
*
* # Return value
*
* A record {ch: char, next: uint} containing the char value and the byte
* index of the next unicode character.
*
* # Failure
*
* If `i` is greater than or equal to the length of the string.
* If `i` is not the index of the beginning of a valid UTF-8 character.
*/
pure fn char_range_at(s: &str, i: uint) -> {ch: char, next: uint} {
let b0 = s[i];
let w = utf8_char_width(b0);
assert (w != 0u);
if w == 1u { return {ch: b0 as char, next: i + 1u}; }
let mut val = 0u;
let end = i + w;
let mut i = i + 1u;
while i < end {
let byte = s[i];
assert (byte & 192u8 == tag_cont_u8);
val <<= 6u;
val += (byte & 63u8) as uint;
i += 1u;
}
// Clunky way to get the right bits from the first byte. Uses two shifts,
// the first to clip off the marker bits at the left of the byte, and then
// a second (as uint) to get it to the right position.
val += ((b0 << ((w + 1u) as u8)) as uint) << ((w - 1u) * 6u - w - 1u);
return {ch: val as char, next: i};
}
/// Pluck a character out of a string
pure fn char_at(s: &str, i: uint) -> char { return char_range_at(s, i).ch; }
/**
* Given a byte position and a str, return the previous char and its position
*
* This function can be used to iterate over a unicode string in reverse.
*/
pure fn char_range_at_reverse(ss: &str, start: uint)
-> {ch: char, prev: uint} {
let mut prev = start;
// while there is a previous byte == 10......
while prev > 0u && ss[prev - 1u] & 192u8 == tag_cont_u8 {
prev -= 1u;
}
// now refer to the initial byte of previous char
prev -= 1u;
let ch = char_at(ss, prev);
return {ch:ch, prev:prev};
}
/**
* Loop through a substring, char by char
*
* # Safety note
*
* * This function does not check whether the substring is valid.
* * This function fails if `start` or `end` do not
* represent valid positions inside `s`
*
* # Arguments
*
* * s - A string to traverse. It may be empty.
* * start - The byte offset at which to start in the string.
* * end - The end of the range to traverse
* * it - A block to execute with each consecutive character of `s`.
* Return `true` to continue, `false` to stop.
*
* # Return value
*
* `true` If execution proceeded correctly, `false` if it was interrupted,
* that is if `it` returned `false` at any point.
*/
pure fn all_between(s: &str, start: uint, end: uint,
it: fn(char) -> bool) -> bool {
assert is_char_boundary(s, start);
let mut i = start;
while i < end {
let {ch, next} = char_range_at(s, i);
if !it(ch) { return false; }
i = next;
}
return true;
}
/**
* Loop through a substring, char by char
*
* # Safety note
*
* * This function does not check whether the substring is valid.
* * This function fails if `start` or `end` do not
* represent valid positions inside `s`
*
* # Arguments
*
* * s - A string to traverse. It may be empty.
* * start - The byte offset at which to start in the string.
* * end - The end of the range to traverse
* * it - A block to execute with each consecutive character of `s`.
* Return `true` to continue, `false` to stop.
*
* # Return value
*
* `true` if `it` returns `true` for any character
*/
pure fn any_between(s: &str, start: uint, end: uint,
it: fn(char) -> bool) -> bool {
!all_between(s, start, end, |c| !it(c))
}
// UTF-8 tags and ranges
const tag_cont_u8: u8 = 128u8;
const tag_cont: uint = 128u;
const max_one_b: uint = 128u;
const tag_two_b: uint = 192u;
const max_two_b: uint = 2048u;
const tag_three_b: uint = 224u;
const max_three_b: uint = 65536u;
const tag_four_b: uint = 240u;
const max_four_b: uint = 2097152u;
const tag_five_b: uint = 248u;
const max_five_b: uint = 67108864u;
const tag_six_b: uint = 252u;
/**
* Work with the byte buffer of a string.
*
* Allows for unsafe manipulation of strings, which is useful for foreign
* interop.
*
* # Example
*
* ~~~
* let i = str::as_bytes("Hello World") { |bytes| vec::len(bytes) };
* ~~~
*/
pure fn as_bytes<T>(s: ~str, f: fn(~[u8]) -> T) -> T {
unsafe {
let v: *~[u8] = ::unsafe::reinterpret_cast(ptr::addr_of(s));
f(*v)
}
}
/**
* Work with the byte buffer of a string as a null-terminated C string.
*
* Allows for unsafe manipulation of strings, which is useful for foreign
* interop. This is similar to `str::as_buf`, but guarantees null-termination.
* If the given slice is not already null-terminated, this function will
* allocate a temporary, copy the slice, null terminate it, and pass
* that instead.
*
* # Example
*
* ~~~
* let s = str::as_c_str("PATH", { |path| libc::getenv(path) });
* ~~~
*/
pure fn as_c_str<T>(s: &str, f: fn(*libc::c_char) -> T) -> T {
do as_buf(s) |buf, len| {
// NB: len includes the trailing null.
assert len > 0;
if unsafe { *(ptr::offset(buf,len-1)) != 0 } {
as_c_str(from_slice(s), f)
} else {
f(buf as *libc::c_char)
}
}
}
/**
* Work with the byte buffer and length of a slice.
*
* The given length is one byte longer than the 'official' indexable
* length of the string. This is to permit probing the byte past the
* indexable area for a null byte, as is the case in slices pointing
* to full strings, or suffixes of them.
*/
#[inline(always)]
pure fn as_buf<T>(s: &str, f: fn(*u8, uint) -> T) -> T {
unsafe {
let v : *(*u8,uint) = ::unsafe::reinterpret_cast(ptr::addr_of(s));
let (buf,len) = *v;
f(buf, len)
}
}
/**
* Reserves capacity for exactly `n` bytes in the given string, not including
* the null terminator.
*
* Assuming single-byte characters, the resulting string will be large
* enough to hold a string of length `n`. To account for the null terminator,
* the underlying buffer will have the size `n` + 1.
*
* If the capacity for `s` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * s - A string
* * n - The number of bytes to reserve space for
*/
fn reserve(&s: ~str, n: uint) {
if capacity(s) < n {
rustrt::str_reserve_shared(s, n as size_t);
}
}
/**
* Reserves capacity for at least `n` bytes in the given string, not including
* the null terminator.
*
* Assuming single-byte characters, the resulting string will be large
* enough to hold a string of length `n`. To account for the null terminator,
* the underlying buffer will have the size `n` + 1.
*
* This function will over-allocate in order to amortize the allocation costs
* in scenarios where the caller may need to repeatedly reserve additional
* space.
*
* If the capacity for `s` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * s - A string
* * n - The number of bytes to reserve space for
*/
fn reserve_at_least(&s: ~str, n: uint) {
reserve(s, uint::next_power_of_two(n + 1u) - 1u)
}
/**
* Returns the number of single-byte characters the string can hold without
* reallocating
*/
pure fn capacity(&&s: ~str) -> uint {
do as_bytes(s) |buf| {
let vcap = vec::capacity(buf);
assert vcap > 0u;
vcap - 1u
}
}
/// Escape each char in `s` with char::escape_default.
pure fn escape_default(s: &str) -> ~str {
let mut out: ~str = ~"";
unchecked {
reserve_at_least(out, str::len(s));
chars_iter(s, |c| push_str(out, char::escape_default(c)));
}
return out;
}
/// Escape each char in `s` with char::escape_unicode.
pure fn escape_unicode(s: &str) -> ~str {
let mut out: ~str = ~"";
unchecked {
reserve_at_least(out, str::len(s));
chars_iter(s, |c| push_str(out, char::escape_unicode(c)));
}
return out;
}
/// Unsafe operations
mod unsafe {
export
from_buf,
from_buf_len,
from_buf_len_nocopy,
from_c_str,
from_c_str_len,
from_bytes,
slice_bytes,
view_bytes,
push_byte,
pop_byte,
shift_byte,
set_len;
/// Create a Rust string from a null-terminated *u8 buffer
unsafe fn from_buf(buf: *u8) -> ~str {
let mut curr = buf, i = 0u;
while *curr != 0u8 {
i += 1u;
curr = ptr::offset(buf, i);
}
return from_buf_len(buf, i);
}
/// Create a Rust string from a *u8 buffer of the given length
unsafe fn from_buf_len(buf: *const u8, len: uint) -> ~str {
let mut v: ~[mut u8] = ~[mut];
vec::reserve(v, len + 1u);
vec::as_buf(v, |b, _len| ptr::memcpy(b, buf as *u8, len));
vec::unsafe::set_len(v, len);
vec::push(v, 0u8);
assert is_utf8(v);
return ::unsafe::transmute(v);
}
/// Create a Rust string from a *u8 buffer of the given length
/// without copying
unsafe fn from_buf_len_nocopy(buf: &a / *u8, len: uint) -> &a / str {
let v = (*buf, len + 1);
assert is_utf8(::unsafe::reinterpret_cast(v));
return ::unsafe::transmute(v);
}
/// Create a Rust string from a null-terminated C string
unsafe fn from_c_str(c_str: *libc::c_char) -> ~str {
from_buf(::unsafe::reinterpret_cast(c_str))
}
/// Create a Rust string from a `*c_char` buffer of the given length
unsafe fn from_c_str_len(c_str: *libc::c_char, len: uint) -> ~str {
from_buf_len(::unsafe::reinterpret_cast(c_str), len)
}
/// Converts a vector of bytes to a string.
unsafe fn from_bytes(v: &[const u8]) -> ~str {
do vec::as_const_buf(v) |buf, len| {
from_buf_len(buf, len)
}
}
/// Converts a byte to a string.
unsafe fn from_byte(u: u8) -> ~str { unsafe::from_bytes([u]) }
/**
* Takes a bytewise (not UTF-8) slice from a string.
*
* Returns the substring from [`begin`..`end`).
*
* # Failure
*
* If begin is greater than end.
* If end is greater than the length of the string.
*/
unsafe fn slice_bytes(s: &str, begin: uint, end: uint) -> ~str {
do as_buf(s) |sbuf, n| {
assert (begin <= end);
assert (end <= n);
let mut v = ~[];
vec::reserve(v, end - begin + 1u);
unsafe {
do vec::as_buf(v) |vbuf, _vlen| {
let src = ptr::offset(sbuf, begin);
ptr::memcpy(vbuf, src, end - begin);
}
vec::unsafe::set_len(v, end - begin);
vec::push(v, 0u8);
::unsafe::transmute(v)
}
}
}
/**
* Takes a bytewise (not UTF-8) view from a string.
*
* Returns the substring from [`begin`..`end`).
*
* # Failure
*
* If begin is greater than end.
* If end is greater than the length of the string.
*/
#[inline]
unsafe fn view_bytes(s: &str, begin: uint, end: uint) -> &str {
do as_buf(s) |sbuf, n| {
assert (begin <= end);
assert (end <= n);
let tuple = (ptr::offset(sbuf, begin), end - begin + 1);
::unsafe::reinterpret_cast(tuple)
}
}
/// Appends a byte to a string. (Not UTF-8 safe).
unsafe fn push_byte(&s: ~str, b: u8) {
rustrt::rust_str_push(s, b);
}
/// Appends a vector of bytes to a string. (Not UTF-8 safe).
unsafe fn push_bytes(&s: ~str, bytes: ~[u8]) {
for vec::each(bytes) |byte| { rustrt::rust_str_push(s, byte); }
}
/// Removes the last byte from a string and returns it. (Not UTF-8 safe).
unsafe fn pop_byte(&s: ~str) -> u8 {
let len = len(s);
assert (len > 0u);
let b = s[len - 1u];
unsafe { set_len(s, len - 1u) };
return b;
}
/// Removes the first byte from a string and returns it. (Not UTF-8 safe).
unsafe fn shift_byte(&s: ~str) -> u8 {
let len = len(s);
assert (len > 0u);
let b = s[0];
s = unsafe { unsafe::slice_bytes(s, 1u, len) };
return b;
}
/// Sets the length of the string and adds the null terminator
unsafe fn set_len(&v: ~str, new_len: uint) {
let repr: *vec::unsafe::VecRepr = ::unsafe::reinterpret_cast(v);
(*repr).fill = new_len + 1u;
let null = ptr::mut_offset(ptr::mut_addr_of((*repr).data), new_len);
*null = 0u8;
}
#[test]
fn test_from_buf_len() {
unsafe {
let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8];
let b = vec::unsafe::to_ptr(a);
let c = from_buf_len(b, 3u);
assert (c == ~"AAA");
}
}
}
trait UniqueStr {
fn trim() -> self;
fn trim_left() -> self;
fn trim_right() -> self;
}
/// Extension methods for strings
impl ~str: UniqueStr {
/// Returns a string with leading and trailing whitespace removed
#[inline]
fn trim() -> ~str { trim(self) }
/// Returns a string with leading whitespace removed
#[inline]
fn trim_left() -> ~str { trim_left(self) }
/// Returns a string with trailing whitespace removed
#[inline]
fn trim_right() -> ~str { trim_right(self) }
}
#[cfg(notest)]
impl ~str: add<&str,~str> {
#[inline(always)]
pure fn add(rhs: &str) -> ~str {
append(self, rhs)
}
}
trait StrSlice {
fn all(it: fn(char) -> bool) -> bool;
fn any(it: fn(char) -> bool) -> bool;
fn contains(needle: &a/str) -> bool;
fn contains_char(needle: char) -> bool;
fn each(it: fn(u8) -> bool);
fn eachi(it: fn(uint, u8) -> bool);
fn each_char(it: fn(char) -> bool);
fn each_chari(it: fn(uint, char) -> bool);
fn ends_with(needle: &str) -> bool;
fn is_empty() -> bool;
fn is_not_empty() -> bool;
fn is_whitespace() -> bool;
fn is_alphanumeric() -> bool;
pure fn len() -> uint;
pure fn slice(begin: uint, end: uint) -> ~str;
fn split(sepfn: fn(char) -> bool) -> ~[~str];
fn split_char(sep: char) -> ~[~str];
fn split_str(sep: &a/str) -> ~[~str];
fn starts_with(needle: &a/str) -> bool;
fn substr(begin: uint, n: uint) -> ~str;
fn to_lower() -> ~str;
fn to_upper() -> ~str;
fn escape_default() -> ~str;
fn escape_unicode() -> ~str;
pure fn to_unique() -> ~str;
pure fn char_at(i: uint) -> char;
}
/// Extension methods for strings
impl &str: StrSlice {
/**
* Return true if a predicate matches all characters or if the string
* contains no characters
*/
#[inline]
fn all(it: fn(char) -> bool) -> bool { all(self, it) }
/**
* Return true if a predicate matches any character (and false if it
* matches none or there are no characters)
*/
#[inline]
fn any(it: fn(char) -> bool) -> bool { any(self, it) }
/// Returns true if one string contains another
#[inline]
fn contains(needle: &a/str) -> bool { contains(self, needle) }
/// Returns true if a string contains a char
#[inline]
fn contains_char(needle: char) -> bool { contains_char(self, needle) }
/// Iterate over the bytes in a string
#[inline]
fn each(it: fn(u8) -> bool) { each(self, it) }
/// Iterate over the bytes in a string, with indices
#[inline]
fn eachi(it: fn(uint, u8) -> bool) { eachi(self, it) }
/// Iterate over the chars in a string
#[inline]
fn each_char(it: fn(char) -> bool) { each_char(self, it) }
/// Iterate over the chars in a string, with indices
#[inline]
fn each_chari(it: fn(uint, char) -> bool) { each_chari(self, it) }
/// Returns true if one string ends with another
#[inline]
fn ends_with(needle: &str) -> bool { ends_with(self, needle) }
/// Returns true if the string has length 0
#[inline]
fn is_empty() -> bool { is_empty(self) }
/// Returns true if the string has length greater than 0
#[inline]
fn is_not_empty() -> bool { is_not_empty(self) }
/**
* Returns true if the string contains only whitespace
*
* Whitespace characters are determined by `char::is_whitespace`
*/
#[inline]
fn is_whitespace() -> bool { is_whitespace(self) }
/**
* Returns true if the string contains only alphanumerics
*
* Alphanumeric characters are determined by `char::is_alphanumeric`
*/
#[inline]
fn is_alphanumeric() -> bool { is_alphanumeric(self) }
#[inline]
/// Returns the size in bytes not counting the null terminator
pure fn len() -> uint { len(self) }
/**
* Returns a slice of the given string from the byte range
* [`begin`..`end`)
*
* Fails when `begin` and `end` do not point to valid characters or
* beyond the last character of the string
*/
#[inline]
pure fn slice(begin: uint, end: uint) -> ~str { slice(self, begin, end) }
/// Splits a string into substrings using a character function
#[inline]
fn split(sepfn: fn(char) -> bool) -> ~[~str] { split(self, sepfn) }
/**
* Splits a string into substrings at each occurrence of a given character
*/
#[inline]
fn split_char(sep: char) -> ~[~str] { split_char(self, sep) }
/**
* Splits a string into a vector of the substrings separated by a given
* string
*/
#[inline]
fn split_str(sep: &a/str) -> ~[~str] { split_str(self, sep) }
/// Returns true if one string starts with another
#[inline]
fn starts_with(needle: &a/str) -> bool { starts_with(self, needle) }
/**
* Take a substring of another.
*
* Returns a string containing `n` characters starting at byte offset
* `begin`.
*/
#[inline]
fn substr(begin: uint, n: uint) -> ~str { substr(self, begin, n) }
/// Convert a string to lowercase
#[inline]
fn to_lower() -> ~str { to_lower(self) }
/// Convert a string to uppercase
#[inline]
fn to_upper() -> ~str { to_upper(self) }
/// Escape each char in `s` with char::escape_default.
#[inline]
fn escape_default() -> ~str { escape_default(self) }
/// Escape each char in `s` with char::escape_unicode.
#[inline]
fn escape_unicode() -> ~str { escape_unicode(self) }
#[inline]
pure fn to_unique() -> ~str { self.slice(0, self.len()) }
#[inline]
pure fn char_at(i: uint) -> char { char_at(self, i) }
}
#[cfg(test)]
mod tests {
import libc::c_char;
#[test]
fn test_eq() {
assert (eq(&~"", &~""));
assert (eq(&~"foo", &~"foo"));
assert (!eq(&~"foo", &~"bar"));
}
#[test]
fn test_le() {
assert (le(&"", &""));
assert (le(&"", &"foo"));
assert (le(&"foo", &"foo"));
assert (!eq(&~"foo", &~"bar"));
}
#[test]
fn test_len() {
assert (len(~"") == 0u);
assert (len(~"hello world") == 11u);
assert (len(~"\x63") == 1u);
assert (len(~"\xa2") == 2u);
assert (len(~"\u03c0") == 2u);
assert (len(~"\u2620") == 3u);
assert (len(~"\U0001d11e") == 4u);
assert (char_len(~"") == 0u);
assert (char_len(~"hello world") == 11u);
assert (char_len(~"\x63") == 1u);
assert (char_len(~"\xa2") == 1u);
assert (char_len(~"\u03c0") == 1u);
assert (char_len(~"\u2620") == 1u);
assert (char_len(~"\U0001d11e") == 1u);
assert (char_len(~"ประเทศไทย中华Việt Nam") == 19u);
}
#[test]
fn test_rfind_char() {
assert rfind_char(~"hello", 'l') == Some(3u);
assert rfind_char(~"hello", 'o') == Some(4u);
assert rfind_char(~"hello", 'h') == Some(0u);
assert rfind_char(~"hello", 'z').is_none();
assert rfind_char(~"ประเทศไทย中华Việt Nam", '华') == Some(30u);
}
#[test]
fn test_pop_char() {
let mut data = ~"ประเทศไทย中华";
let cc = pop_char(data);
assert ~"ประเทศไทย中" == data;
assert '华' == cc;
}
#[test]
fn test_pop_char_2() {
let mut data2 = ~"";
let cc2 = pop_char(data2);
assert ~"" == data2;
assert '华' == cc2;
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_pop_char_fail() {
let mut data = ~"";
let _cc3 = pop_char(data);
}
#[test]
fn test_split_char() {
fn t(s: ~str, c: char, u: ~[~str]) {
log(debug, ~"split_byte: " + s);
let v = split_char(s, c);
debug!("split_byte to: %?", v);
assert vec::all2(v, u, |a,b| a == b);
}
t(~"abc.hello.there", '.', ~[~"abc", ~"hello", ~"there"]);
t(~".hello.there", '.', ~[~"", ~"hello", ~"there"]);
t(~"...hello.there.", '.', ~[~"", ~"", ~"", ~"hello", ~"there", ~""]);
assert ~[~"", ~"", ~"", ~"hello", ~"there", ~""]
== split_char(~"...hello.there.", '.');
assert ~[~""] == split_char(~"", 'z');
assert ~[~"",~""] == split_char(~"z", 'z');
assert ~[~"ok"] == split_char(~"ok", 'z');
}
#[test]
fn test_split_char_2() {
let data = ~"ประเทศไทย中华Việt Nam";
assert ~[~"ประเทศไทย中华", ~"iệt Nam"]
== split_char(data, 'V');
assert ~[~"ประเ", ~"ศไ", ~"ย中华Việt Nam"]
== split_char(data, 'ท');
}
#[test]
fn test_splitn_char() {
fn t(s: ~str, c: char, n: uint, u: ~[~str]) {
log(debug, ~"splitn_byte: " + s);
let v = splitn_char(s, c, n);
debug!("split_byte to: %?", v);
debug!("comparing vs. %?", u);
assert vec::all2(v, u, |a,b| a == b);
}
t(~"abc.hello.there", '.', 0u, ~[~"abc.hello.there"]);
t(~"abc.hello.there", '.', 1u, ~[~"abc", ~"hello.there"]);
t(~"abc.hello.there", '.', 2u, ~[~"abc", ~"hello", ~"there"]);
t(~"abc.hello.there", '.', 3u, ~[~"abc", ~"hello", ~"there"]);
t(~".hello.there", '.', 0u, ~[~".hello.there"]);
t(~".hello.there", '.', 1u, ~[~"", ~"hello.there"]);
t(~"...hello.there.", '.', 3u, ~[~"", ~"", ~"", ~"hello.there."]);
t(~"...hello.there.", '.', 5u,
~[~"", ~"", ~"", ~"hello", ~"there", ~""]);
assert ~[~""] == splitn_char(~"", 'z', 5u);
assert ~[~"",~""] == splitn_char(~"z", 'z', 5u);
assert ~[~"ok"] == splitn_char(~"ok", 'z', 5u);
assert ~[~"z"] == splitn_char(~"z", 'z', 0u);
assert ~[~"w.x.y"] == splitn_char(~"w.x.y", '.', 0u);
assert ~[~"w",~"x.y"] == splitn_char(~"w.x.y", '.', 1u);
}
#[test]
fn test_splitn_char_2 () {
let data = ~"ประเทศไทย中华Việt Nam";
assert ~[~"ประเทศไทย中", ~"Việt Nam"]
== splitn_char(data, '华', 1u);
assert ~[~"", ~"", ~"XXX", ~"YYYzWWWz"]
== splitn_char(~"zzXXXzYYYzWWWz", 'z', 3u);
assert ~[~"",~""] == splitn_char(~"z", 'z', 5u);
assert ~[~""] == splitn_char(~"", 'z', 5u);
assert ~[~"ok"] == splitn_char(~"ok", 'z', 5u);
}
#[test]
fn test_splitn_char_3() {
let data = ~"ประเทศไทย中华Việt Nam";
assert ~[~"ประเทศไทย中华", ~"iệt Nam"]
== splitn_char(data, 'V', 1u);
assert ~[~"ประเ", ~"ศไทย中华Việt Nam"]
== splitn_char(data, 'ท', 1u);
}
#[test]
fn test_split_str() {
fn t(s: ~str, sep: &a/str, i: int, k: ~str) {
let v = split_str(s, sep);
assert v[i] == k;
}
t(~"--1233345--", ~"12345", 0, ~"--1233345--");
t(~"abc::hello::there", ~"::", 0, ~"abc");
t(~"abc::hello::there", ~"::", 1, ~"hello");
t(~"abc::hello::there", ~"::", 2, ~"there");
t(~"::hello::there", ~"::", 0, ~"");
t(~"hello::there::", ~"::", 2, ~"");
t(~"::hello::there::", ~"::", 3, ~"");
let data = ~"ประเทศไทย中华Việt Nam";
assert ~[~"ประเทศไทย", ~"Việt Nam"]
== split_str (data, ~"中华");
assert ~[~"", ~"XXX", ~"YYY", ~""]
== split_str(~"zzXXXzzYYYzz", ~"zz");
assert ~[~"zz", ~"zYYYz"]
== split_str(~"zzXXXzYYYz", ~"XXX");
assert ~[~"", ~"XXX", ~"YYY", ~""] == split_str(~".XXX.YYY.", ~".");
assert ~[~""] == split_str(~"", ~".");
assert ~[~"",~""] == split_str(~"zz", ~"zz");
assert ~[~"ok"] == split_str(~"ok", ~"z");
assert ~[~"",~"z"] == split_str(~"zzz", ~"zz");
assert ~[~"",~"",~"z"] == split_str(~"zzzzz", ~"zz");
}
#[test]
fn test_split() {
let data = ~"ประเทศไทย中华Việt Nam";
assert ~[~"ประเทศไทย中", ~"Việt Nam"]
== split (data, |cc| cc == '华');
assert ~[~"", ~"", ~"XXX", ~"YYY", ~""]
== split(~"zzXXXzYYYz", char::is_lowercase);
assert ~[~"zz", ~"", ~"", ~"z", ~"", ~"", ~"z"]
== split(~"zzXXXzYYYz", char::is_uppercase);
assert ~[~"",~""] == split(~"z", |cc| cc == 'z');
assert ~[~""] == split(~"", |cc| cc == 'z');
assert ~[~"ok"] == split(~"ok", |cc| cc == 'z');
}
#[test]
fn test_lines() {
let lf = ~"\nMary had a little lamb\nLittle lamb\n";
let crlf = ~"\r\nMary had a little lamb\r\nLittle lamb\r\n";
assert ~[~"", ~"Mary had a little lamb", ~"Little lamb", ~""]
== lines(lf);
assert ~[~"", ~"Mary had a little lamb", ~"Little lamb", ~""]
== lines_any(lf);
assert ~[~"\r", ~"Mary had a little lamb\r", ~"Little lamb\r", ~""]
== lines(crlf);
assert ~[~"", ~"Mary had a little lamb", ~"Little lamb", ~""]
== lines_any(crlf);
assert ~[~""] == lines (~"");
assert ~[~""] == lines_any(~"");
assert ~[~"",~""] == lines (~"\n");
assert ~[~"",~""] == lines_any(~"\n");
assert ~[~"banana"] == lines (~"banana");
assert ~[~"banana"] == lines_any(~"banana");
}
#[test]
fn test_words () {
let data = ~"\nMary had a little lamb\nLittle lamb\n";
assert ~[~"Mary",~"had",~"a",~"little",~"lamb",~"Little",~"lamb"]
== words(data);
assert ~[~"ok"] == words(~"ok");
assert ~[] == words(~"");
}
#[test]
fn test_find_str() {
// byte positions
assert find_str(~"banana", ~"apple pie").is_none();
assert find_str(~"", ~"") == Some(0u);
let data = ~"ประเทศไทย中华Việt Nam";
assert find_str(data, ~"") == Some(0u);
assert find_str(data, ~"ประเ") == Some( 0u);
assert find_str(data, ~"ะเ") == Some( 6u);
assert find_str(data, ~"中华") == Some(27u);
assert find_str(data, ~"ไท华").is_none();
}
#[test]
fn test_find_str_between() {
// byte positions
assert find_str_between(~"", ~"", 0u, 0u) == Some(0u);
let data = ~"abcabc";
assert find_str_between(data, ~"ab", 0u, 6u) == Some(0u);
assert find_str_between(data, ~"ab", 2u, 6u) == Some(3u);
assert find_str_between(data, ~"ab", 2u, 4u).is_none();
let mut data = ~"ประเทศไทย中华Việt Nam";
data += data;
assert find_str_between(data, ~"", 0u, 43u) == Some(0u);
assert find_str_between(data, ~"", 6u, 43u) == Some(6u);
assert find_str_between(data, ~"ประ", 0u, 43u) == Some( 0u);
assert find_str_between(data, ~"ทศไ", 0u, 43u) == Some(12u);
assert find_str_between(data, ~"ย中", 0u, 43u) == Some(24u);
assert find_str_between(data, ~"iệt", 0u, 43u) == Some(34u);
assert find_str_between(data, ~"Nam", 0u, 43u) == Some(40u);
assert find_str_between(data, ~"ประ", 43u, 86u) == Some(43u);
assert find_str_between(data, ~"ทศไ", 43u, 86u) == Some(55u);
assert find_str_between(data, ~"ย中", 43u, 86u) == Some(67u);
assert find_str_between(data, ~"iệt", 43u, 86u) == Some(77u);
assert find_str_between(data, ~"Nam", 43u, 86u) == Some(83u);
}
#[test]
fn test_substr() {
fn t(a: ~str, b: ~str, start: int) {
assert substr(a, start as uint, len(b)) == b;
}
t(~"hello", ~"llo", 2);
t(~"hello", ~"el", 1);
assert ~"ะเทศไท" == substr(~"ประเทศไทย中华Việt Nam", 6u, 6u);
}
#[test]
fn test_concat() {
fn t(v: ~[~str], s: ~str) { assert concat(v) == s; }
t(~[~"you", ~"know", ~"I'm", ~"no", ~"good"], ~"youknowI'mnogood");
let v: ~[~str] = ~[];
t(v, ~"");
t(~[~"hi"], ~"hi");
}
#[test]
fn test_connect() {
fn t(v: ~[~str], sep: ~str, s: ~str) {
assert connect(v, sep) == s;
}
t(~[~"you", ~"know", ~"I'm", ~"no", ~"good"],
~" ", ~"you know I'm no good");
let v: ~[~str] = ~[];
t(v, ~" ", ~"");
t(~[~"hi"], ~" ", ~"hi");
}
#[test]
fn test_to_upper() {
// libc::toupper, and hence str::to_upper
// are culturally insensitive: they only work for ASCII
// (see Issue #1347)
let unicode = ~""; //"\u65e5\u672c"; // uncomment once non-ASCII works
let input = ~"abcDEF" + unicode + ~"xyz:.;";
let expected = ~"ABCDEF" + unicode + ~"XYZ:.;";
let actual = to_upper(input);
assert expected == actual;
}
#[test]
fn test_to_lower() {
assert ~"" == map(~"", |c| libc::tolower(c as c_char) as char);
assert ~"ymca" == map(~"YMCA",
|c| libc::tolower(c as c_char) as char);
}
#[test]
fn test_unsafe_slice() {
unsafe {
assert ~"ab" == unsafe::slice_bytes(~"abc", 0u, 2u);
assert ~"bc" == unsafe::slice_bytes(~"abc", 1u, 3u);
assert ~"" == unsafe::slice_bytes(~"abc", 1u, 1u);
fn a_million_letter_a() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(rs, ~"aaaaaaaaaa"); i += 1; }
return rs;
}
fn half_a_million_letter_a() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(rs, ~"aaaaa"); i += 1; }
return rs;
}
assert half_a_million_letter_a() ==
unsafe::slice_bytes(a_million_letter_a(), 0u, 500000u);
}
}
#[test]
fn test_starts_with() {
assert (starts_with(~"", ~""));
assert (starts_with(~"abc", ~""));
assert (starts_with(~"abc", ~"a"));
assert (!starts_with(~"a", ~"abc"));
assert (!starts_with(~"", ~"abc"));
}
#[test]
fn test_ends_with() {
assert (ends_with(~"", ~""));
assert (ends_with(~"abc", ~""));
assert (ends_with(~"abc", ~"c"));
assert (!ends_with(~"a", ~"abc"));
assert (!ends_with(~"", ~"abc"));
}
#[test]
fn test_is_empty() {
assert (is_empty(~""));
assert (!is_empty(~"a"));
}
#[test]
fn test_is_not_empty() {
assert (is_not_empty(~"a"));
assert (!is_not_empty(~""));
}
#[test]
fn test_replace() {
let a = ~"a";
assert replace(~"", a, ~"b") == ~"";
assert replace(~"a", a, ~"b") == ~"b";
assert replace(~"ab", a, ~"b") == ~"bb";
let test = ~"test";
assert replace(~" test test ", test, ~"toast") == ~" toast toast ";
assert replace(~" test test ", test, ~"") == ~" ";
}
#[test]
fn test_replace_2a() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let a = ~"ประเ";
let A = ~"دولة الكويتทศไทย中华";
assert (replace(data, a, repl) == A);
}
#[test]
fn test_replace_2b() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let b = ~"ะเ";
let B = ~"ปรدولة الكويتทศไทย中华";
assert (replace(data, b, repl) == B);
}
#[test]
fn test_replace_2c() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let c = ~"中华";
let C = ~"ประเทศไทยدولة الكويت";
assert (replace(data, c, repl) == C);
}
#[test]
fn test_replace_2d() {
let data = ~"ประเทศไทย中华";
let repl = ~"دولة الكويت";
let d = ~"ไท华";
assert (replace(data, d, repl) == data);
}
#[test]
fn test_slice() {
assert ~"ab" == slice(~"abc", 0u, 2u);
assert ~"bc" == slice(~"abc", 1u, 3u);
assert ~"" == slice(~"abc", 1u, 1u);
assert ~"\u65e5" == slice(~"\u65e5\u672c", 0u, 3u);
let data = ~"ประเทศไทย中华";
assert ~"" == slice(data, 0u, 3u);
assert ~"" == slice(data, 3u, 6u);
assert ~"" == slice(data, 3u, 3u);
assert ~"" == slice(data, 30u, 33u);
fn a_million_letter_X() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(rs, ~"华华华华华华华华华华"); i += 1; }
return rs;
}
fn half_a_million_letter_X() -> ~str {
let mut i = 0;
let mut rs = ~"";
while i < 100000 { push_str(rs, ~"华华华华华"); i += 1; }
return rs;
}
assert half_a_million_letter_X() ==
slice(a_million_letter_X(), 0u, 3u * 500000u);
}
#[test]
fn test_slice_2() {
let ss = ~"中华Việt Nam";
assert ~"" == slice(ss, 3u, 6u);
assert ~"Việt Nam" == slice(ss, 6u, 16u);
assert ~"ab" == slice(~"abc", 0u, 2u);
assert ~"bc" == slice(~"abc", 1u, 3u);
assert ~"" == slice(~"abc", 1u, 1u);
assert ~"" == slice(ss, 0u, 3u);
assert ~"华V" == slice(ss, 3u, 7u);
assert ~"" == slice(ss, 3u, 3u);
/*0: 中
3: 华
6: V
7: i
8: ệ
11: t
12:
13: N
14: a
15: m */
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_slice_fail() {
slice(~"中华Việt Nam", 0u, 2u);
}
#[test]
fn test_trim_left() {
assert (trim_left(~"") == ~"");
assert (trim_left(~"a") == ~"a");
assert (trim_left(~" ") == ~"");
assert (trim_left(~" blah") == ~"blah");
assert (trim_left(~" \u3000 wut") == ~"wut");
assert (trim_left(~"hey ") == ~"hey ");
}
#[test]
fn test_trim_right() {
assert (trim_right(~"") == ~"");
assert (trim_right(~"a") == ~"a");
assert (trim_right(~" ") == ~"");
assert (trim_right(~"blah ") == ~"blah");
assert (trim_right(~"wut \u3000 ") == ~"wut");
assert (trim_right(~" hey") == ~" hey");
}
#[test]
fn test_trim() {
assert (trim(~"") == ~"");
assert (trim(~"a") == ~"a");
assert (trim(~" ") == ~"");
assert (trim(~" blah ") == ~"blah");
assert (trim(~"\nwut \u3000 ") == ~"wut");
assert (trim(~" hey dude ") == ~"hey dude");
}
#[test]
fn test_is_whitespace() {
assert (is_whitespace(~""));
assert (is_whitespace(~" "));
assert (is_whitespace(~"\u2009")); // Thin space
assert (is_whitespace(~" \n\t "));
assert (!is_whitespace(~" _ "));
}
#[test]
fn test_is_ascii() {
assert (is_ascii(~""));
assert (is_ascii(~"a"));
assert (!is_ascii(~"\u2009"));
}
#[test]
fn test_shift_byte() {
let mut s = ~"ABC";
let b = unsafe { unsafe::shift_byte(s) };
assert (s == ~"BC");
assert (b == 65u8);
}
#[test]
fn test_pop_byte() {
let mut s = ~"ABC";
let b = unsafe { unsafe::pop_byte(s) };
assert (s == ~"AB");
assert (b == 67u8);
}
#[test]
fn test_unsafe_from_bytes() {
let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8];
let b = unsafe { unsafe::from_bytes(a) };
assert (b == ~"AAAAAAA");
}
#[test]
fn test_from_bytes() {
let ss = ~"ศไทย中华Việt Nam";
let bb = ~[0xe0_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8];
assert ss == from_bytes(bb);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_from_bytes_fail() {
let bb = ~[0xff_u8, 0xb8_u8, 0xa8_u8,
0xe0_u8, 0xb9_u8, 0x84_u8,
0xe0_u8, 0xb8_u8, 0x97_u8,
0xe0_u8, 0xb8_u8, 0xa2_u8,
0xe4_u8, 0xb8_u8, 0xad_u8,
0xe5_u8, 0x8d_u8, 0x8e_u8,
0x56_u8, 0x69_u8, 0xe1_u8,
0xbb_u8, 0x87_u8, 0x74_u8,
0x20_u8, 0x4e_u8, 0x61_u8,
0x6d_u8];
let _x = from_bytes(bb);
}
#[test]
fn test_from_buf() {
unsafe {
let a = ~[65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 65u8, 0u8];
let b = vec::unsafe::to_ptr(a);
let c = unsafe::from_buf(b);
assert (c == ~"AAAAAAA");
}
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_as_bytes_fail() {
// Don't double free
as_bytes::<()>(~"", |_bytes| fail );
}
#[test]
fn test_as_buf() {
let a = ~"Abcdefg";
let b = as_buf(a, |buf, _l| {
assert unsafe { *buf } == 65u8;
100
});
assert (b == 100);
}
#[test]
fn test_as_buf_small() {
let a = ~"A";
let b = as_buf(a, |buf, _l| {
assert unsafe { *buf } == 65u8;
100
});
assert (b == 100);
}
#[test]
fn test_as_buf2() {
unsafe {
let s = ~"hello";
let sb = as_buf(s, |b, _l| b);
let s_cstr = unsafe::from_buf(sb);
assert s_cstr == s;
}
}
#[test]
fn test_as_buf_3() {
let a = ~"hello";
do as_buf(a) |buf, len| {
unsafe {
assert a[0] == 'h' as u8;
assert *buf == 'h' as u8;
assert len == 6u;
assert *ptr::offset(buf,4u) == 'o' as u8;
assert *ptr::offset(buf,5u) == 0u8;
}
}
}
#[test]
fn vec_str_conversions() {
let s1: ~str = ~"All mimsy were the borogoves";
let v: ~[u8] = to_bytes(s1);
let s2: ~str = from_bytes(v);
let mut i: uint = 0u;
let n1: uint = len(s1);
let n2: uint = vec::len::<u8>(v);
assert (n1 == n2);
while i < n1 {
let a: u8 = s1[i];
let b: u8 = s2[i];
log(debug, a);
log(debug, b);
assert (a == b);
i += 1u;
}
}
#[test]
fn test_contains() {
assert contains(~"abcde", ~"bcd");
assert contains(~"abcde", ~"abcd");
assert contains(~"abcde", ~"bcde");
assert contains(~"abcde", ~"");
assert contains(~"", ~"");
assert !contains(~"abcde", ~"def");
assert !contains(~"", ~"a");
let data = ~"ประเทศไทย中华Việt Nam";
assert contains(data, ~"ประเ");
assert contains(data, ~"ะเ");
assert contains(data, ~"中华");
assert !contains(data, ~"ไท华");
}
#[test]
fn test_contains_char() {
assert contains_char(~"abc", 'b');
assert contains_char(~"a", 'a');
assert !contains_char(~"abc", 'd');
assert !contains_char(~"", 'a');
}
#[test]
fn test_chars_iter() {
let mut i = 0;
do chars_iter(~"x\u03c0y") |ch| {
match i {
0 => assert ch == 'x',
1 => assert ch == '\u03c0',
2 => assert ch == 'y',
_ => fail ~"test_chars_iter failed"
}
i += 1;
}
chars_iter(~"", |_ch| fail ); // should not fail
}
#[test]
fn test_bytes_iter() {
let mut i = 0;
do bytes_iter(~"xyz") |bb| {
match i {
0 => assert bb == 'x' as u8,
1 => assert bb == 'y' as u8,
2 => assert bb == 'z' as u8,
_ => fail ~"test_bytes_iter failed"
}
i += 1;
}
bytes_iter(~"", |bb| assert bb == 0u8);
}
#[test]
fn test_split_char_iter() {
let data = ~"\nMary had a little lamb\nLittle lamb\n";
let mut ii = 0;
do split_char_iter(data, ' ') |xx| {
match ii {
0 => assert ~"\nMary" == xx,
1 => assert ~"had" == xx,
2 => assert ~"a" == xx,
3 => assert ~"little" == xx,
_ => ()
}
ii += 1;
}
}
#[test]
fn test_splitn_char_iter() {
let data = ~"\nMary had a little lamb\nLittle lamb\n";
let mut ii = 0;
do splitn_char_iter(data, ' ', 2u) |xx| {
match ii {
0 => assert ~"\nMary" == xx,
1 => assert ~"had" == xx,
2 => assert ~"a little lamb\nLittle lamb\n" == xx,
_ => ()
}
ii += 1;
}
}
#[test]
fn test_words_iter() {
let data = ~"\nMary had a little lamb\nLittle lamb\n";
let mut ii = 0;
do words_iter(data) |ww| {
match ii {
0 => assert ~"Mary" == ww,
1 => assert ~"had" == ww,
2 => assert ~"a" == ww,
3 => assert ~"little" == ww,
_ => ()
}
ii += 1;
}
words_iter(~"", |_x| fail); // should not fail
}
#[test]
fn test_lines_iter () {
let lf = ~"\nMary had a little lamb\nLittle lamb\n";
let mut ii = 0;
do lines_iter(lf) |x| {
match ii {
0 => assert ~"" == x,
1 => assert ~"Mary had a little lamb" == x,
2 => assert ~"Little lamb" == x,
3 => assert ~"" == x,
_ => ()
}
ii += 1;
}
}
#[test]
fn test_map() {
assert ~"" == map(~"", |c| libc::toupper(c as c_char) as char);
assert ~"YMCA" == map(~"ymca",
|c| libc::toupper(c as c_char) as char);
}
#[test]
fn test_all() {
assert true == all(~"", char::is_uppercase);
assert false == all(~"ymca", char::is_uppercase);
assert true == all(~"YMCA", char::is_uppercase);
assert false == all(~"yMCA", char::is_uppercase);
assert false == all(~"YMCy", char::is_uppercase);
}
#[test]
fn test_any() {
assert false == any(~"", char::is_uppercase);
assert false == any(~"ymca", char::is_uppercase);
assert true == any(~"YMCA", char::is_uppercase);
assert true == any(~"yMCA", char::is_uppercase);
assert true == any(~"Ymcy", char::is_uppercase);
}
#[test]
fn test_chars() {
let ss = ~"ศไทย中华Việt Nam";
assert ~['ศ','ไ','ท','ย','中','华','V','i','ệ','t',' ','N','a','m']
== chars(ss);
}
#[test]
fn test_utf16() {
let pairs =
~[(~"𐍅𐌿𐌻𐍆𐌹𐌻𐌰\n",
~[0xd800_u16, 0xdf45_u16, 0xd800_u16, 0xdf3f_u16,
0xd800_u16, 0xdf3b_u16, 0xd800_u16, 0xdf46_u16,
0xd800_u16, 0xdf39_u16, 0xd800_u16, 0xdf3b_u16,
0xd800_u16, 0xdf30_u16, 0x000a_u16]),
(~"𐐒𐑉𐐮𐑀𐐲𐑋 𐐏𐐲𐑍\n",
~[0xd801_u16, 0xdc12_u16, 0xd801_u16,
0xdc49_u16, 0xd801_u16, 0xdc2e_u16, 0xd801_u16,
0xdc40_u16, 0xd801_u16, 0xdc32_u16, 0xd801_u16,
0xdc4b_u16, 0x0020_u16, 0xd801_u16, 0xdc0f_u16,
0xd801_u16, 0xdc32_u16, 0xd801_u16, 0xdc4d_u16,
0x000a_u16]),
(~"𐌀𐌖𐌋𐌄𐌑𐌉·𐌌𐌄𐌕𐌄𐌋𐌉𐌑\n",
~[0xd800_u16, 0xdf00_u16, 0xd800_u16, 0xdf16_u16,
0xd800_u16, 0xdf0b_u16, 0xd800_u16, 0xdf04_u16,
0xd800_u16, 0xdf11_u16, 0xd800_u16, 0xdf09_u16,
0x00b7_u16, 0xd800_u16, 0xdf0c_u16, 0xd800_u16,
0xdf04_u16, 0xd800_u16, 0xdf15_u16, 0xd800_u16,
0xdf04_u16, 0xd800_u16, 0xdf0b_u16, 0xd800_u16,
0xdf09_u16, 0xd800_u16, 0xdf11_u16, 0x000a_u16 ]),
(~"𐒋𐒘𐒈𐒑𐒛𐒒 𐒕𐒓 𐒈𐒚𐒍 𐒏𐒜𐒒𐒖𐒆 𐒕𐒆\n",
~[0xd801_u16, 0xdc8b_u16, 0xd801_u16, 0xdc98_u16,
0xd801_u16, 0xdc88_u16, 0xd801_u16, 0xdc91_u16,
0xd801_u16, 0xdc9b_u16, 0xd801_u16, 0xdc92_u16,
0x0020_u16, 0xd801_u16, 0xdc95_u16, 0xd801_u16,
0xdc93_u16, 0x0020_u16, 0xd801_u16, 0xdc88_u16,
0xd801_u16, 0xdc9a_u16, 0xd801_u16, 0xdc8d_u16,
0x0020_u16, 0xd801_u16, 0xdc8f_u16, 0xd801_u16,
0xdc9c_u16, 0xd801_u16, 0xdc92_u16, 0xd801_u16,
0xdc96_u16, 0xd801_u16, 0xdc86_u16, 0x0020_u16,
0xd801_u16, 0xdc95_u16, 0xd801_u16, 0xdc86_u16,
0x000a_u16 ]) ];
for vec::each(pairs) |p| {
let (s, u) = p;
assert to_utf16(s) == u;
assert from_utf16(u) == s;
assert from_utf16(to_utf16(s)) == s;
assert to_utf16(from_utf16(u)) == u;
}
}
#[test]
fn test_each_char() {
let s = ~"abc";
let mut found_b = false;
for each_char(s) |ch| {
if ch == 'b' {
found_b = true;
break;
}
}
assert found_b;
}
#[test]
fn test_escape_unicode() {
assert escape_unicode(~"abc") == ~"\\x61\\x62\\x63";
assert escape_unicode(~"a c") == ~"\\x61\\x20\\x63";
assert escape_unicode(~"\r\n\t") == ~"\\x0d\\x0a\\x09";
assert escape_unicode(~"'\"\\") == ~"\\x27\\x22\\x5c";
assert escape_unicode(~"\x00\x01\xfe\xff") == ~"\\x00\\x01\\xfe\\xff";
assert escape_unicode(~"\u0100\uffff") == ~"\\u0100\\uffff";
assert escape_unicode(~"\U00010000\U0010ffff") ==
~"\\U00010000\\U0010ffff";
assert escape_unicode(~"ab\ufb00") == ~"\\x61\\x62\\ufb00";
assert escape_unicode(~"\U0001d4ea\r") == ~"\\U0001d4ea\\x0d";
}
#[test]
fn test_escape_default() {
assert escape_default(~"abc") == ~"abc";
assert escape_default(~"a c") == ~"a c";
assert escape_default(~"\r\n\t") == ~"\\r\\n\\t";
assert escape_default(~"'\"\\") == ~"\\'\\\"\\\\";
assert escape_default(~"\u0100\uffff") == ~"\\u0100\\uffff";
assert escape_default(~"\U00010000\U0010ffff") ==
~"\\U00010000\\U0010ffff";
assert escape_default(~"ab\ufb00") == ~"ab\\ufb00";
assert escape_default(~"\U0001d4ea\r") == ~"\\U0001d4ea\\r";
}
}