4649 lines
124 KiB
Rust
4649 lines
124 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Vectors
|
|
|
|
#[warn(non_camel_case_types)];
|
|
|
|
use cast::transmute;
|
|
use cast;
|
|
use container::{Container, Mutable};
|
|
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Less, Equal, Greater};
|
|
use clone::Clone;
|
|
use old_iter::BaseIter;
|
|
use old_iter;
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
use iterator::Iterator;
|
|
use kinds::Copy;
|
|
use libc;
|
|
use option::{None, Option, Some};
|
|
use unstable::intrinsics;
|
|
use ptr;
|
|
use ptr::addr_of;
|
|
use sys;
|
|
use uint;
|
|
use vec;
|
|
|
|
#[cfg(notest)] use cmp::Equiv;
|
|
|
|
pub mod rustrt {
|
|
use libc;
|
|
use sys;
|
|
use vec::raw;
|
|
|
|
#[abi = "cdecl"]
|
|
pub extern {
|
|
// These names are terrible. reserve_shared applies
|
|
// to ~[] and reserve_shared_actual applies to @[].
|
|
#[fast_ffi]
|
|
unsafe fn vec_reserve_shared(++t: *sys::TypeDesc,
|
|
++v: **raw::VecRepr,
|
|
++n: libc::size_t);
|
|
#[fast_ffi]
|
|
unsafe fn vec_reserve_shared_actual(++t: *sys::TypeDesc,
|
|
++v: **raw::VecRepr,
|
|
++n: libc::size_t);
|
|
}
|
|
}
|
|
|
|
/// Returns true if a vector contains no elements
|
|
pub fn is_empty<T>(v: &const [T]) -> bool {
|
|
as_const_buf(v, |_p, len| len == 0u)
|
|
}
|
|
|
|
/// Returns true if two vectors have the same length
|
|
pub fn same_length<T, U>(xs: &const [T], ys: &const [U]) -> bool {
|
|
xs.len() == ys.len()
|
|
}
|
|
|
|
/**
|
|
* Reserves capacity for exactly `n` elements in the given vector.
|
|
*
|
|
* If the capacity for `v` is already equal to or greater than the requested
|
|
* capacity, then no action is taken.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * v - A vector
|
|
* * n - The number of elements to reserve space for
|
|
*/
|
|
#[inline]
|
|
pub fn reserve<T>(v: &mut ~[T], n: uint) {
|
|
// Only make the (slow) call into the runtime if we have to
|
|
use managed;
|
|
if capacity(v) < n {
|
|
unsafe {
|
|
let ptr: **raw::VecRepr = cast::transmute(v);
|
|
let td = sys::get_type_desc::<T>();
|
|
if ((**ptr).box_header.ref_count ==
|
|
managed::raw::RC_MANAGED_UNIQUE) {
|
|
rustrt::vec_reserve_shared_actual(td, ptr, n as libc::size_t);
|
|
} else {
|
|
rustrt::vec_reserve_shared(td, ptr, n as libc::size_t);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reserves capacity for at least `n` elements in the given vector.
|
|
*
|
|
* This function will over-allocate in order to amortize the allocation costs
|
|
* in scenarios where the caller may need to repeatedly reserve additional
|
|
* space.
|
|
*
|
|
* If the capacity for `v` is already equal to or greater than the requested
|
|
* capacity, then no action is taken.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * v - A vector
|
|
* * n - The number of elements to reserve space for
|
|
*/
|
|
pub fn reserve_at_least<T>(v: &mut ~[T], n: uint) {
|
|
reserve(v, uint::next_power_of_two(n));
|
|
}
|
|
|
|
/// Returns the number of elements the vector can hold without reallocating
|
|
#[inline(always)]
|
|
pub fn capacity<T>(v: &const ~[T]) -> uint {
|
|
unsafe {
|
|
let repr: **raw::VecRepr = ::cast::transmute(v);
|
|
(**repr).unboxed.alloc / sys::nonzero_size_of::<T>()
|
|
}
|
|
}
|
|
|
|
/// Returns the length of a vector
|
|
#[inline(always)]
|
|
pub fn len<T>(v: &const [T]) -> uint {
|
|
as_const_buf(v, |_p, len| len)
|
|
}
|
|
|
|
// A botch to tide us over until core and std are fully demuted.
|
|
pub fn uniq_len<T>(v: &const ~[T]) -> uint {
|
|
unsafe {
|
|
let v: &~[T] = ::cast::transmute(v);
|
|
as_const_buf(*v, |_p, len| len)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates and initializes an immutable vector.
|
|
*
|
|
* Creates an immutable vector of size `n_elts` and initializes the elements
|
|
* to the value returned by the function `op`.
|
|
*/
|
|
pub fn from_fn<T>(n_elts: uint, op: old_iter::InitOp<T>) -> ~[T] {
|
|
unsafe {
|
|
let mut v = with_capacity(n_elts);
|
|
do as_mut_buf(v) |p, _len| {
|
|
let mut i: uint = 0u;
|
|
while i < n_elts {
|
|
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i)),
|
|
op(i));
|
|
i += 1u;
|
|
}
|
|
}
|
|
raw::set_len(&mut v, n_elts);
|
|
v
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Creates and initializes an immutable vector.
|
|
*
|
|
* Creates an immutable vector of size `n_elts` and initializes the elements
|
|
* to the value `t`.
|
|
*/
|
|
pub fn from_elem<T:Copy>(n_elts: uint, t: T) -> ~[T] {
|
|
from_fn(n_elts, |_i| copy t)
|
|
}
|
|
|
|
/// Creates a new unique vector with the same contents as the slice
|
|
pub fn from_slice<T:Copy>(t: &[T]) -> ~[T] {
|
|
from_fn(t.len(), |i| t[i])
|
|
}
|
|
|
|
/// Creates a new vector with a capacity of `capacity`
|
|
pub fn with_capacity<T>(capacity: uint) -> ~[T] {
|
|
let mut vec = ~[];
|
|
reserve(&mut vec, capacity);
|
|
vec
|
|
}
|
|
|
|
/**
|
|
* Builds a vector by calling a provided function with an argument
|
|
* function that pushes an element to the back of a vector.
|
|
* This version takes an initial capacity for the vector.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * size - An initial size of the vector to reserve
|
|
* * builder - A function that will construct the vector. It receives
|
|
* as an argument a function that will push an element
|
|
* onto the vector being constructed.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn build_sized<A>(size: uint, builder: &fn(push: &fn(v: A))) -> ~[A] {
|
|
let mut vec = with_capacity(size);
|
|
builder(|x| vec.push(x));
|
|
vec
|
|
}
|
|
|
|
/**
|
|
* Builds a vector by calling a provided function with an argument
|
|
* function that pushes an element to the back of a vector.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * builder - A function that will construct the vector. It receives
|
|
* as an argument a function that will push an element
|
|
* onto the vector being constructed.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn build<A>(builder: &fn(push: &fn(v: A))) -> ~[A] {
|
|
build_sized(4, builder)
|
|
}
|
|
|
|
/**
|
|
* Builds a vector by calling a provided function with an argument
|
|
* function that pushes an element to the back of a vector.
|
|
* This version takes an initial size for the vector.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * size - An option, maybe containing initial size of the vector to reserve
|
|
* * builder - A function that will construct the vector. It recieves
|
|
* as an argument a function that will push an element
|
|
* onto the vector being constructed.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn build_sized_opt<A>(size: Option<uint>,
|
|
builder: &fn(push: &fn(v: A)))
|
|
-> ~[A] {
|
|
build_sized(size.get_or_default(4), builder)
|
|
}
|
|
|
|
// Accessors
|
|
|
|
/// Returns the first element of a vector
|
|
pub fn head<'r,T>(v: &'r [T]) -> &'r T {
|
|
if v.len() == 0 { fail!(~"head: empty vector") }
|
|
&v[0]
|
|
}
|
|
|
|
/// Returns `Some(x)` where `x` is the first element of the slice `v`,
|
|
/// or `None` if the vector is empty.
|
|
pub fn head_opt<'r,T>(v: &'r [T]) -> Option<&'r T> {
|
|
if v.len() == 0 { None } else { Some(&v[0]) }
|
|
}
|
|
|
|
/// Returns a vector containing all but the first element of a slice
|
|
pub fn tail<'r,T>(v: &'r [T]) -> &'r [T] { slice(v, 1, v.len()) }
|
|
|
|
/// Returns a vector containing all but the first `n` elements of a slice
|
|
pub fn tailn<'r,T>(v: &'r [T], n: uint) -> &'r [T] { slice(v, n, v.len()) }
|
|
|
|
/// Returns a vector containing all but the last element of a slice
|
|
pub fn init<'r,T>(v: &'r [T]) -> &'r [T] { slice(v, 0, v.len() - 1) }
|
|
|
|
/// Returns a vector containing all but the last `n' elements of a slice
|
|
pub fn initn<'r,T>(v: &'r [T], n: uint) -> &'r [T] {
|
|
slice(v, 0, v.len() - n)
|
|
}
|
|
|
|
/// Returns the last element of the slice `v`, failing if the slice is empty.
|
|
pub fn last<'r,T>(v: &'r [T]) -> &'r T {
|
|
if v.len() == 0 { fail!(~"last: empty vector") }
|
|
&v[v.len() - 1]
|
|
}
|
|
|
|
/// Returns `Some(x)` where `x` is the last element of the slice `v`, or
|
|
/// `None` if the vector is empty.
|
|
pub fn last_opt<'r,T>(v: &'r [T]) -> Option<&'r T> {
|
|
if v.len() == 0 { None } else { Some(&v[v.len() - 1]) }
|
|
}
|
|
|
|
/// Return a slice that points into another slice.
|
|
#[inline(always)]
|
|
pub fn slice<'r,T>(v: &'r [T], start: uint, end: uint) -> &'r [T] {
|
|
assert!(start <= end);
|
|
assert!(end <= len(v));
|
|
do as_imm_buf(v) |p, _len| {
|
|
unsafe {
|
|
::cast::transmute(
|
|
(ptr::offset(p, start),
|
|
(end - start) * sys::nonzero_size_of::<T>()))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a slice that points into another slice.
|
|
#[inline(always)]
|
|
pub fn mut_slice<'r,T>(v: &'r mut [T], start: uint, end: uint)
|
|
-> &'r mut [T] {
|
|
assert!(start <= end);
|
|
assert!(end <= v.len());
|
|
do as_mut_buf(v) |p, _len| {
|
|
unsafe {
|
|
::cast::transmute(
|
|
(ptr::mut_offset(p, start),
|
|
(end - start) * sys::nonzero_size_of::<T>()))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Return a slice that points into another slice.
|
|
#[inline(always)]
|
|
pub fn const_slice<'r,T>(v: &'r const [T], start: uint, end: uint)
|
|
-> &'r const [T] {
|
|
assert!(start <= end);
|
|
assert!(end <= len(v));
|
|
do as_const_buf(v) |p, _len| {
|
|
unsafe {
|
|
::cast::transmute(
|
|
(ptr::const_offset(p, start),
|
|
(end - start) * sys::nonzero_size_of::<T>()))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Copies
|
|
|
|
/// Split the vector `v` by applying each element against the predicate `f`.
|
|
pub fn split<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> ~[~[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { return ~[] }
|
|
|
|
let mut start = 0u;
|
|
let mut result = ~[];
|
|
while start < ln {
|
|
match position_between(v, start, ln, f) {
|
|
None => break,
|
|
Some(i) => {
|
|
result.push(slice(v, start, i).to_vec());
|
|
start = i + 1u;
|
|
}
|
|
}
|
|
}
|
|
result.push(slice(v, start, ln).to_vec());
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Split the vector `v` by applying each element against the predicate `f` up
|
|
* to `n` times.
|
|
*/
|
|
pub fn splitn<T:Copy>(v: &[T], n: uint, f: &fn(t: &T) -> bool) -> ~[~[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { return ~[] }
|
|
|
|
let mut start = 0u;
|
|
let mut count = n;
|
|
let mut result = ~[];
|
|
while start < ln && count > 0u {
|
|
match position_between(v, start, ln, f) {
|
|
None => break,
|
|
Some(i) => {
|
|
result.push(slice(v, start, i).to_vec());
|
|
// Make sure to skip the separator.
|
|
start = i + 1u;
|
|
count -= 1u;
|
|
}
|
|
}
|
|
}
|
|
result.push(slice(v, start, ln).to_vec());
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Reverse split the vector `v` by applying each element against the predicate
|
|
* `f`.
|
|
*/
|
|
pub fn rsplit<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> ~[~[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0) { return ~[] }
|
|
|
|
let mut end = ln;
|
|
let mut result = ~[];
|
|
while end > 0 {
|
|
match rposition_between(v, 0, end, f) {
|
|
None => break,
|
|
Some(i) => {
|
|
result.push(slice(v, i + 1, end).to_vec());
|
|
end = i;
|
|
}
|
|
}
|
|
}
|
|
result.push(slice(v, 0u, end).to_vec());
|
|
reverse(result);
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Reverse split the vector `v` by applying each element against the predicate
|
|
* `f` up to `n times.
|
|
*/
|
|
pub fn rsplitn<T:Copy>(v: &[T], n: uint, f: &fn(t: &T) -> bool) -> ~[~[T]] {
|
|
let ln = len(v);
|
|
if (ln == 0u) { return ~[] }
|
|
|
|
let mut end = ln;
|
|
let mut count = n;
|
|
let mut result = ~[];
|
|
while end > 0u && count > 0u {
|
|
match rposition_between(v, 0u, end, f) {
|
|
None => break,
|
|
Some(i) => {
|
|
result.push(slice(v, i + 1u, end).to_vec());
|
|
// Make sure to skip the separator.
|
|
end = i;
|
|
count -= 1u;
|
|
}
|
|
}
|
|
}
|
|
result.push(slice(v, 0u, end).to_vec());
|
|
reverse(result);
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Partitions a vector into two new vectors: those that satisfies the
|
|
* predicate, and those that do not.
|
|
*/
|
|
pub fn partition<T>(v: ~[T], f: &fn(&T) -> bool) -> (~[T], ~[T]) {
|
|
let mut lefts = ~[];
|
|
let mut rights = ~[];
|
|
|
|
// FIXME (#4355 maybe): using v.consume here crashes
|
|
// do v.consume |_, elt| {
|
|
do consume(v) |_, elt| {
|
|
if f(&elt) {
|
|
lefts.push(elt);
|
|
} else {
|
|
rights.push(elt);
|
|
}
|
|
}
|
|
|
|
(lefts, rights)
|
|
}
|
|
|
|
/**
|
|
* Partitions a vector into two new vectors: those that satisfies the
|
|
* predicate, and those that do not.
|
|
*/
|
|
pub fn partitioned<T:Copy>(v: &[T], f: &fn(&T) -> bool) -> (~[T], ~[T]) {
|
|
let mut lefts = ~[];
|
|
let mut rights = ~[];
|
|
|
|
for each(v) |elt| {
|
|
if f(elt) {
|
|
lefts.push(*elt);
|
|
} else {
|
|
rights.push(*elt);
|
|
}
|
|
}
|
|
|
|
(lefts, rights)
|
|
}
|
|
|
|
// Mutators
|
|
|
|
/// Removes the first element from a vector and return it
|
|
pub fn shift<T>(v: &mut ~[T]) -> T {
|
|
unsafe {
|
|
assert!(!v.is_empty());
|
|
|
|
if v.len() == 1 { return v.pop() }
|
|
|
|
if v.len() == 2 {
|
|
let last = v.pop();
|
|
let first = v.pop();
|
|
v.push(last);
|
|
return first;
|
|
}
|
|
|
|
let ln = v.len();
|
|
let next_ln = v.len() - 1;
|
|
|
|
// Save the last element. We're going to overwrite its position
|
|
let mut work_elt = v.pop();
|
|
// We still should have room to work where what last element was
|
|
assert!(capacity(v) >= ln);
|
|
// Pretend like we have the original length so we can use
|
|
// the vector copy_memory to overwrite the hole we just made
|
|
raw::set_len(&mut *v, ln);
|
|
|
|
// Memcopy the head element (the one we want) to the location we just
|
|
// popped. For the moment it unsafely exists at both the head and last
|
|
// positions
|
|
{
|
|
let first_slice = slice(*v, 0, 1);
|
|
let last_slice = slice(*v, next_ln, ln);
|
|
raw::copy_memory(::cast::transmute(last_slice), first_slice, 1);
|
|
}
|
|
|
|
// Memcopy everything to the left one element
|
|
{
|
|
let init_slice = slice(*v, 0, next_ln);
|
|
let tail_slice = slice(*v, 1, ln);
|
|
raw::copy_memory(::cast::transmute(init_slice),
|
|
tail_slice,
|
|
next_ln);
|
|
}
|
|
|
|
// Set the new length. Now the vector is back to normal
|
|
raw::set_len(&mut *v, next_ln);
|
|
|
|
// Swap out the element we want from the end
|
|
let vp = raw::to_mut_ptr(*v);
|
|
let vp = ptr::mut_offset(vp, next_ln - 1);
|
|
*vp <-> work_elt;
|
|
|
|
work_elt
|
|
}
|
|
}
|
|
|
|
/// Prepend an element to the vector
|
|
pub fn unshift<T>(v: &mut ~[T], x: T) {
|
|
let mut vv = ~[x];
|
|
*v <-> vv;
|
|
v.push_all_move(vv);
|
|
}
|
|
|
|
/// Insert an element at position i within v, shifting all
|
|
/// elements after position i one position to the right.
|
|
pub fn insert<T>(v: &mut ~[T], i: uint, x: T) {
|
|
let len = v.len();
|
|
assert!(i <= len);
|
|
|
|
v.push(x);
|
|
let mut j = len;
|
|
while j > i {
|
|
v[j] <-> v[j - 1];
|
|
j -= 1;
|
|
}
|
|
}
|
|
|
|
/// Remove and return the element at position i within v, shifting
|
|
/// all elements after position i one position to the left.
|
|
pub fn remove<T>(v: &mut ~[T], i: uint) -> T {
|
|
let len = v.len();
|
|
assert!(i < len);
|
|
|
|
let mut j = i;
|
|
while j < len - 1 {
|
|
v[j] <-> v[j + 1];
|
|
j += 1;
|
|
}
|
|
v.pop()
|
|
}
|
|
|
|
pub fn consume<T>(mut v: ~[T], f: &fn(uint, v: T)) {
|
|
unsafe {
|
|
do as_mut_buf(v) |p, ln| {
|
|
for uint::range(0, ln) |i| {
|
|
// NB: This unsafe operation counts on init writing 0s to the
|
|
// holes we create in the vector. That ensures that, if the
|
|
// iterator fails then we won't try to clean up the consumed
|
|
// elements during unwinding
|
|
let mut x = intrinsics::init();
|
|
let p = ptr::mut_offset(p, i);
|
|
x <-> *p;
|
|
f(i, x);
|
|
}
|
|
}
|
|
|
|
raw::set_len(&mut v, 0);
|
|
}
|
|
}
|
|
|
|
pub fn consume_reverse<T>(mut v: ~[T], f: &fn(uint, v: T)) {
|
|
unsafe {
|
|
do as_mut_buf(v) |p, ln| {
|
|
let mut i = ln;
|
|
while i > 0 {
|
|
i -= 1;
|
|
|
|
// NB: This unsafe operation counts on init writing 0s to the
|
|
// holes we create in the vector. That ensures that, if the
|
|
// iterator fails then we won't try to clean up the consumed
|
|
// elements during unwinding
|
|
let mut x = intrinsics::init();
|
|
let p = ptr::mut_offset(p, i);
|
|
x <-> *p;
|
|
f(i, x);
|
|
}
|
|
}
|
|
|
|
raw::set_len(&mut v, 0);
|
|
}
|
|
}
|
|
|
|
/// Remove the last element from a vector and return it
|
|
pub fn pop<T>(v: &mut ~[T]) -> T {
|
|
let ln = v.len();
|
|
if ln == 0 {
|
|
fail!(~"sorry, cannot vec::pop an empty vector")
|
|
}
|
|
let valptr = ptr::to_mut_unsafe_ptr(&mut v[ln - 1u]);
|
|
unsafe {
|
|
// FIXME #4204: Should be uninit() - we don't need this zeroed
|
|
let mut val = intrinsics::init();
|
|
val <-> *valptr;
|
|
raw::set_len(v, ln - 1u);
|
|
val
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Remove an element from anywhere in the vector and return it, replacing it
|
|
* with the last element. This does not preserve ordering, but is O(1).
|
|
*
|
|
* Fails if index >= length.
|
|
*/
|
|
pub fn swap_remove<T>(v: &mut ~[T], index: uint) -> T {
|
|
let ln = v.len();
|
|
if index >= ln {
|
|
fail!(fmt!("vec::swap_remove - index %u >= length %u", index, ln));
|
|
}
|
|
if index < ln - 1 {
|
|
v[index] <-> v[ln - 1];
|
|
}
|
|
v.pop()
|
|
}
|
|
|
|
/// Append an element to a vector
|
|
#[inline(always)]
|
|
pub fn push<T>(v: &mut ~[T], initval: T) {
|
|
unsafe {
|
|
let repr: **raw::VecRepr = ::cast::transmute(&mut *v);
|
|
let fill = (**repr).unboxed.fill;
|
|
if (**repr).unboxed.alloc > fill {
|
|
push_fast(v, initval);
|
|
}
|
|
else {
|
|
push_slow(v, initval);
|
|
}
|
|
}
|
|
}
|
|
|
|
// This doesn't bother to make sure we have space.
|
|
#[inline(always)] // really pretty please
|
|
unsafe fn push_fast<T>(v: &mut ~[T], initval: T) {
|
|
let repr: **mut raw::VecRepr = ::cast::transmute(v);
|
|
let fill = (**repr).unboxed.fill;
|
|
(**repr).unboxed.fill += sys::nonzero_size_of::<T>();
|
|
let p = addr_of(&((**repr).unboxed.data));
|
|
let p = ptr::offset(p, fill) as *mut T;
|
|
intrinsics::move_val_init(&mut(*p), initval);
|
|
}
|
|
|
|
#[inline(never)]
|
|
fn push_slow<T>(v: &mut ~[T], initval: T) {
|
|
let new_len = v.len() + 1;
|
|
reserve_at_least(&mut *v, new_len);
|
|
unsafe { push_fast(v, initval) }
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn push_all<T:Copy>(v: &mut ~[T], rhs: &const [T]) {
|
|
let new_len = v.len() + rhs.len();
|
|
reserve(&mut *v, new_len);
|
|
|
|
for uint::range(0u, rhs.len()) |i| {
|
|
push(&mut *v, unsafe { raw::get(rhs, i) })
|
|
}
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn push_all_move<T>(v: &mut ~[T], mut rhs: ~[T]) {
|
|
let new_len = v.len() + rhs.len();
|
|
reserve(&mut *v, new_len);
|
|
unsafe {
|
|
do as_mut_buf(rhs) |p, len| {
|
|
for uint::range(0, len) |i| {
|
|
// FIXME #4204 Should be uninit() - don't need to zero
|
|
let mut x = intrinsics::init();
|
|
x <-> *ptr::mut_offset(p, i);
|
|
push(&mut *v, x);
|
|
}
|
|
}
|
|
raw::set_len(&mut rhs, 0);
|
|
}
|
|
}
|
|
|
|
/// Shorten a vector, dropping excess elements.
|
|
pub fn truncate<T>(v: &mut ~[T], newlen: uint) {
|
|
do as_mut_buf(*v) |p, oldlen| {
|
|
assert!(newlen <= oldlen);
|
|
unsafe {
|
|
// This loop is optimized out for non-drop types.
|
|
for uint::range(newlen, oldlen) |i| {
|
|
// FIXME #4204 Should be uninit() - don't need to zero
|
|
let mut dropped = intrinsics::init();
|
|
dropped <-> *ptr::mut_offset(p, i);
|
|
}
|
|
}
|
|
}
|
|
unsafe { raw::set_len(&mut *v, newlen); }
|
|
}
|
|
|
|
/**
|
|
* Remove consecutive repeated elements from a vector; if the vector is
|
|
* sorted, this removes all duplicates.
|
|
*/
|
|
pub fn dedup<T:Eq>(v: &mut ~[T]) {
|
|
unsafe {
|
|
if v.len() < 1 { return; }
|
|
let mut last_written = 0, next_to_read = 1;
|
|
do as_const_buf(*v) |p, ln| {
|
|
// We have a mutable reference to v, so we can make arbitrary
|
|
// changes. (cf. push and pop)
|
|
let p = p as *mut T;
|
|
// last_written < next_to_read <= ln
|
|
while next_to_read < ln {
|
|
// last_written < next_to_read < ln
|
|
if *ptr::mut_offset(p, next_to_read) ==
|
|
*ptr::mut_offset(p, last_written) {
|
|
// FIXME #4204 Should be uninit() - don't need to
|
|
// zero
|
|
let mut dropped = intrinsics::init();
|
|
dropped <-> *ptr::mut_offset(p, next_to_read);
|
|
} else {
|
|
last_written += 1;
|
|
// last_written <= next_to_read < ln
|
|
if next_to_read != last_written {
|
|
*ptr::mut_offset(p, last_written) <->
|
|
*ptr::mut_offset(p, next_to_read);
|
|
}
|
|
}
|
|
// last_written <= next_to_read < ln
|
|
next_to_read += 1;
|
|
// last_written < next_to_read <= ln
|
|
}
|
|
}
|
|
// last_written < next_to_read == ln
|
|
raw::set_len(v, last_written + 1);
|
|
}
|
|
}
|
|
|
|
|
|
// Appending
|
|
#[inline(always)]
|
|
pub fn append<T:Copy>(lhs: ~[T], rhs: &const [T]) -> ~[T] {
|
|
let mut v = lhs;
|
|
v.push_all(rhs);
|
|
v
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn append_one<T>(lhs: ~[T], x: T) -> ~[T] {
|
|
let mut v = lhs;
|
|
v.push(x);
|
|
v
|
|
}
|
|
|
|
/**
|
|
* Expands a vector in place, initializing the new elements to a given value
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * v - The vector to grow
|
|
* * n - The number of elements to add
|
|
* * initval - The value for the new elements
|
|
*/
|
|
pub fn grow<T:Copy>(v: &mut ~[T], n: uint, initval: &T) {
|
|
let new_len = v.len() + n;
|
|
reserve_at_least(&mut *v, new_len);
|
|
let mut i: uint = 0u;
|
|
|
|
while i < n {
|
|
v.push(*initval);
|
|
i += 1u;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Expands a vector in place, initializing the new elements to the result of
|
|
* a function
|
|
*
|
|
* Function `init_op` is called `n` times with the values [0..`n`)
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * v - The vector to grow
|
|
* * n - The number of elements to add
|
|
* * init_op - A function to call to retreive each appended element's
|
|
* value
|
|
*/
|
|
pub fn grow_fn<T>(v: &mut ~[T], n: uint, op: old_iter::InitOp<T>) {
|
|
let new_len = v.len() + n;
|
|
reserve_at_least(&mut *v, new_len);
|
|
let mut i: uint = 0u;
|
|
while i < n {
|
|
v.push(op(i));
|
|
i += 1u;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Sets the value of a vector element at a given index, growing the vector as
|
|
* needed
|
|
*
|
|
* Sets the element at position `index` to `val`. If `index` is past the end
|
|
* of the vector, expands the vector by replicating `initval` to fill the
|
|
* intervening space.
|
|
*/
|
|
pub fn grow_set<T:Copy>(v: &mut ~[T], index: uint, initval: &T, val: T) {
|
|
let l = v.len();
|
|
if index >= l { grow(&mut *v, index - l + 1u, initval); }
|
|
v[index] = val;
|
|
}
|
|
|
|
// Functional utilities
|
|
|
|
/// Apply a function to each element of a vector and return the results
|
|
pub fn map<T, U>(v: &[T], f: &fn(t: &T) -> U) -> ~[U] {
|
|
let mut result = with_capacity(len(v));
|
|
for each(v) |elem| {
|
|
result.push(f(elem));
|
|
}
|
|
result
|
|
}
|
|
|
|
pub fn map_consume<T, U>(v: ~[T], f: &fn(v: T) -> U) -> ~[U] {
|
|
let mut result = ~[];
|
|
do consume(v) |_i, x| {
|
|
result.push(f(x));
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Apply a function to each element of a vector and return the results
|
|
pub fn mapi<T, U>(v: &[T], f: &fn(uint, t: &T) -> U) -> ~[U] {
|
|
let mut i = 0;
|
|
do map(v) |e| {
|
|
i += 1;
|
|
f(i - 1, e)
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Apply a function to each element of a vector and return a concatenation
|
|
* of each result vector
|
|
*/
|
|
pub fn flat_map<T, U>(v: &[T], f: &fn(t: &T) -> ~[U]) -> ~[U] {
|
|
let mut result = ~[];
|
|
for each(v) |elem| { result.push_all_move(f(elem)); }
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Apply a function to each pair of elements and return the results.
|
|
* Equivalent to `map(zip(v0, v1), f)`.
|
|
*/
|
|
pub fn map_zip<T:Copy,U:Copy,V>(v0: &[T], v1: &[U],
|
|
f: &fn(t: &T, v: &U) -> V) -> ~[V] {
|
|
let v0_len = len(v0);
|
|
if v0_len != len(v1) { fail!(); }
|
|
let mut u: ~[V] = ~[];
|
|
let mut i = 0u;
|
|
while i < v0_len {
|
|
u.push(f(&v0[i], &v1[i]));
|
|
i += 1u;
|
|
}
|
|
u
|
|
}
|
|
|
|
pub fn filter_map<T, U>(
|
|
v: ~[T],
|
|
f: &fn(t: T) -> Option<U>) -> ~[U]
|
|
{
|
|
/*!
|
|
*
|
|
* Apply a function to each element of a vector and return the results.
|
|
* Consumes the input vector. If function `f` returns `None` then that
|
|
* element is excluded from the resulting vector.
|
|
*/
|
|
|
|
let mut result = ~[];
|
|
do consume(v) |_, elem| {
|
|
match f(elem) {
|
|
None => {}
|
|
Some(result_elem) => { result.push(result_elem); }
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
pub fn filter_mapped<T, U: Copy>(
|
|
v: &[T],
|
|
f: &fn(t: &T) -> Option<U>) -> ~[U]
|
|
{
|
|
/*!
|
|
*
|
|
* Like `filter_map()`, but operates on a borrowed slice
|
|
* and does not consume the input.
|
|
*/
|
|
|
|
let mut result = ~[];
|
|
for each(v) |elem| {
|
|
match f(elem) {
|
|
None => {/* no-op */ }
|
|
Some(result_elem) => { result.push(result_elem); }
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Construct a new vector from the elements of a vector for which some
|
|
* predicate holds.
|
|
*
|
|
* Apply function `f` to each element of `v` and return a vector containing
|
|
* only those elements for which `f` returned true.
|
|
*/
|
|
pub fn filter<T>(v: ~[T], f: &fn(t: &T) -> bool) -> ~[T] {
|
|
let mut result = ~[];
|
|
// FIXME (#4355 maybe): using v.consume here crashes
|
|
// do v.consume |_, elem| {
|
|
do consume(v) |_, elem| {
|
|
if f(&elem) { result.push(elem); }
|
|
}
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Construct a new vector from the elements of a vector for which some
|
|
* predicate holds.
|
|
*
|
|
* Apply function `f` to each element of `v` and return a vector containing
|
|
* only those elements for which `f` returned true.
|
|
*/
|
|
pub fn filtered<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> ~[T] {
|
|
let mut result = ~[];
|
|
for each(v) |elem| {
|
|
if f(elem) { result.push(*elem); }
|
|
}
|
|
result
|
|
}
|
|
|
|
/**
|
|
* Like `filter()`, but in place. Preserves order of `v`. Linear time.
|
|
*/
|
|
pub fn retain<T>(v: &mut ~[T], f: &fn(t: &T) -> bool) {
|
|
let len = v.len();
|
|
let mut deleted: uint = 0;
|
|
|
|
for uint::range(0, len) |i| {
|
|
if !f(&v[i]) {
|
|
deleted += 1;
|
|
} else if deleted > 0 {
|
|
v[i - deleted] <-> v[i];
|
|
}
|
|
}
|
|
|
|
if deleted > 0 {
|
|
v.truncate(len - deleted);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Concatenate a vector of vectors.
|
|
*
|
|
* Flattens a vector of vectors of T into a single vector of T.
|
|
*/
|
|
pub fn concat<T:Copy>(v: &[~[T]]) -> ~[T] {
|
|
let mut r = ~[];
|
|
for each(v) |inner| { r.push_all(*inner); }
|
|
r
|
|
}
|
|
|
|
/// Concatenate a vector of vectors, placing a given separator between each
|
|
pub fn connect<T:Copy>(v: &[~[T]], sep: &T) -> ~[T] {
|
|
let mut r: ~[T] = ~[];
|
|
let mut first = true;
|
|
for each(v) |inner| {
|
|
if first { first = false; } else { r.push(*sep); }
|
|
r.push_all(*inner);
|
|
}
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Reduces a vector from left to right.
|
|
*
|
|
* # Arguments
|
|
* * `z` - initial accumulator value
|
|
* * `v` - vector to iterate over
|
|
* * `p` - a closure to operate on vector elements
|
|
*
|
|
* # Examples
|
|
*
|
|
* Sum all values in the vector [1, 2, 3]:
|
|
*
|
|
* ~~~
|
|
* vec::foldl(0, [1, 2, 3], |a, b| a + *b);
|
|
* ~~~
|
|
*
|
|
*/
|
|
pub fn foldl<T, U>(z: T, v: &[U], p: &fn(t: T, u: &U) -> T) -> T {
|
|
let mut accum = z;
|
|
let mut i = 0;
|
|
let l = v.len();
|
|
while i < l {
|
|
// Use a while loop so that liveness analysis can handle moving
|
|
// the accumulator.
|
|
accum = p(accum, &v[i]);
|
|
i += 1;
|
|
}
|
|
accum
|
|
}
|
|
|
|
/**
|
|
* Reduces a vector from right to left. Note that the argument order is
|
|
* reversed compared to `foldl` to reflect the order they are provided to
|
|
* the closure.
|
|
*
|
|
* # Arguments
|
|
* * `v` - vector to iterate over
|
|
* * `z` - initial accumulator value
|
|
* * `p` - a closure to do operate on vector elements
|
|
*
|
|
* # Examples
|
|
*
|
|
* Sum all values in the vector [1, 2, 3]:
|
|
*
|
|
* ~~~
|
|
* vec::foldr([1, 2, 3], 0, |a, b| a + *b);
|
|
* ~~~
|
|
*
|
|
*/
|
|
pub fn foldr<T, U: Copy>(v: &[T], z: U, p: &fn(t: &T, u: U) -> U) -> U {
|
|
let mut accum = z;
|
|
for v.each_reverse |elt| {
|
|
accum = p(elt, accum);
|
|
}
|
|
accum
|
|
}
|
|
|
|
/**
|
|
* Return true if a predicate matches any elements
|
|
*
|
|
* If the vector contains no elements then false is returned.
|
|
*/
|
|
pub fn any<T>(v: &[T], f: &fn(t: &T) -> bool) -> bool {
|
|
for each(v) |elem| { if f(elem) { return true; } }
|
|
false
|
|
}
|
|
|
|
/**
|
|
* Return true if a predicate matches any elements in both vectors.
|
|
*
|
|
* If the vectors contains no elements then false is returned.
|
|
*/
|
|
pub fn any2<T, U>(v0: &[T], v1: &[U],
|
|
f: &fn(a: &T, b: &U) -> bool) -> bool {
|
|
let v0_len = len(v0);
|
|
let v1_len = len(v1);
|
|
let mut i = 0u;
|
|
while i < v0_len && i < v1_len {
|
|
if f(&v0[i], &v1[i]) { return true; };
|
|
i += 1u;
|
|
}
|
|
false
|
|
}
|
|
|
|
/**
|
|
* Return true if a predicate matches all elements
|
|
*
|
|
* If the vector contains no elements then true is returned.
|
|
*/
|
|
pub fn all<T>(v: &[T], f: &fn(t: &T) -> bool) -> bool {
|
|
for each(v) |elem| { if !f(elem) { return false; } }
|
|
true
|
|
}
|
|
|
|
/**
|
|
* Return true if a predicate matches all elements
|
|
*
|
|
* If the vector contains no elements then true is returned.
|
|
*/
|
|
pub fn alli<T>(v: &[T], f: &fn(uint, t: &T) -> bool) -> bool {
|
|
for eachi(v) |i, elem| { if !f(i, elem) { return false; } }
|
|
true
|
|
}
|
|
|
|
/**
|
|
* Return true if a predicate matches all elements in both vectors.
|
|
*
|
|
* If the vectors are not the same size then false is returned.
|
|
*/
|
|
pub fn all2<T, U>(v0: &[T], v1: &[U],
|
|
f: &fn(t: &T, u: &U) -> bool) -> bool {
|
|
let v0_len = len(v0);
|
|
if v0_len != len(v1) { return false; }
|
|
let mut i = 0u;
|
|
while i < v0_len { if !f(&v0[i], &v1[i]) { return false; }; i += 1u; }
|
|
true
|
|
}
|
|
|
|
/// Return true if a vector contains an element with the given value
|
|
pub fn contains<T:Eq>(v: &[T], x: &T) -> bool {
|
|
for each(v) |elt| { if *x == *elt { return true; } }
|
|
false
|
|
}
|
|
|
|
/// Returns the number of elements that are equal to a given value
|
|
pub fn count<T:Eq>(v: &[T], x: &T) -> uint {
|
|
let mut cnt = 0u;
|
|
for each(v) |elt| { if *x == *elt { cnt += 1u; } }
|
|
cnt
|
|
}
|
|
|
|
/**
|
|
* Search for the first element that matches a given predicate
|
|
*
|
|
* Apply function `f` to each element of `v`, starting from the first.
|
|
* When function `f` returns true then an option containing the element
|
|
* is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
pub fn find<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> Option<T> {
|
|
find_between(v, 0u, len(v), f)
|
|
}
|
|
|
|
/**
|
|
* Search for the first element that matches a given predicate within a range
|
|
*
|
|
* Apply function `f` to each element of `v` within the range
|
|
* [`start`, `end`). When function `f` returns true then an option containing
|
|
* the element is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
pub fn find_between<T:Copy>(v: &[T], start: uint, end: uint,
|
|
f: &fn(t: &T) -> bool) -> Option<T> {
|
|
position_between(v, start, end, f).map(|i| v[*i])
|
|
}
|
|
|
|
/**
|
|
* Search for the last element that matches a given predicate
|
|
*
|
|
* Apply function `f` to each element of `v` in reverse order. When function
|
|
* `f` returns true then an option containing the element is returned. If `f`
|
|
* matches no elements then none is returned.
|
|
*/
|
|
pub fn rfind<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> Option<T> {
|
|
rfind_between(v, 0u, len(v), f)
|
|
}
|
|
|
|
/**
|
|
* Search for the last element that matches a given predicate within a range
|
|
*
|
|
* Apply function `f` to each element of `v` in reverse order within the range
|
|
* [`start`, `end`). When function `f` returns true then an option containing
|
|
* the element is returned. If `f` matches no elements then none is return.
|
|
*/
|
|
pub fn rfind_between<T:Copy>(v: &[T],
|
|
start: uint,
|
|
end: uint,
|
|
f: &fn(t: &T) -> bool)
|
|
-> Option<T> {
|
|
rposition_between(v, start, end, f).map(|i| v[*i])
|
|
}
|
|
|
|
/// Find the first index containing a matching value
|
|
pub fn position_elem<T:Eq>(v: &[T], x: &T) -> Option<uint> {
|
|
position(v, |y| *x == *y)
|
|
}
|
|
|
|
/**
|
|
* Find the first index matching some predicate
|
|
*
|
|
* Apply function `f` to each element of `v`. When function `f` returns true
|
|
* then an option containing the index is returned. If `f` matches no elements
|
|
* then none is returned.
|
|
*/
|
|
pub fn position<T>(v: &[T], f: &fn(t: &T) -> bool) -> Option<uint> {
|
|
position_between(v, 0u, len(v), f)
|
|
}
|
|
|
|
/**
|
|
* Find the first index matching some predicate within a range
|
|
*
|
|
* Apply function `f` to each element of `v` between the range
|
|
* [`start`, `end`). When function `f` returns true then an option containing
|
|
* the index is returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
pub fn position_between<T>(v: &[T],
|
|
start: uint,
|
|
end: uint,
|
|
f: &fn(t: &T) -> bool)
|
|
-> Option<uint> {
|
|
assert!(start <= end);
|
|
assert!(end <= len(v));
|
|
let mut i = start;
|
|
while i < end { if f(&v[i]) { return Some::<uint>(i); } i += 1u; }
|
|
None
|
|
}
|
|
|
|
/// Find the last index containing a matching value
|
|
pub fn rposition_elem<T:Eq>(v: &[T], x: &T) -> Option<uint> {
|
|
rposition(v, |y| *x == *y)
|
|
}
|
|
|
|
/**
|
|
* Find the last index matching some predicate
|
|
*
|
|
* Apply function `f` to each element of `v` in reverse order. When function
|
|
* `f` returns true then an option containing the index is returned. If `f`
|
|
* matches no elements then none is returned.
|
|
*/
|
|
pub fn rposition<T>(v: &[T], f: &fn(t: &T) -> bool) -> Option<uint> {
|
|
rposition_between(v, 0u, len(v), f)
|
|
}
|
|
|
|
/**
|
|
* Find the last index matching some predicate within a range
|
|
*
|
|
* Apply function `f` to each element of `v` in reverse order between the
|
|
* range [`start`, `end`). When function `f` returns true then an option
|
|
* containing the index is returned. If `f` matches no elements then none is
|
|
* returned.
|
|
*/
|
|
pub fn rposition_between<T>(v: &[T], start: uint, end: uint,
|
|
f: &fn(t: &T) -> bool) -> Option<uint> {
|
|
assert!(start <= end);
|
|
assert!(end <= len(v));
|
|
let mut i = end;
|
|
while i > start {
|
|
if f(&v[i - 1u]) { return Some::<uint>(i - 1u); }
|
|
i -= 1u;
|
|
}
|
|
None
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* Binary search a sorted vector with a comparator function.
|
|
*
|
|
* The comparator should implement an order consistent with the sort
|
|
* order of the underlying vector, returning an order code that indicates
|
|
* whether its argument is `Less`, `Equal` or `Greater` the desired target.
|
|
*
|
|
* Returns the index where the comparator returned `Equal`, or `None` if
|
|
* not found.
|
|
*/
|
|
pub fn bsearch<T>(v: &[T], f: &fn(&T) -> Ordering) -> Option<uint> {
|
|
let mut base : uint = 0;
|
|
let mut lim : uint = v.len();
|
|
|
|
while lim != 0 {
|
|
let ix = base + (lim >> 1);
|
|
match f(&v[ix]) {
|
|
Equal => return Some(ix),
|
|
Less => {
|
|
base = ix + 1;
|
|
lim -= 1;
|
|
}
|
|
Greater => ()
|
|
}
|
|
lim >>= 1;
|
|
}
|
|
return None;
|
|
}
|
|
|
|
/**
|
|
* Binary search a sorted vector for a given element.
|
|
*
|
|
* Returns the index of the element or None if not found.
|
|
*/
|
|
pub fn bsearch_elem<T:TotalOrd>(v: &[T], x: &T) -> Option<uint> {
|
|
bsearch(v, |p| p.cmp(x))
|
|
}
|
|
|
|
// FIXME: if issue #586 gets implemented, could have a postcondition
|
|
// saying the two result lists have the same length -- or, could
|
|
// return a nominal record with a constraint saying that, instead of
|
|
// returning a tuple (contingent on issue #869)
|
|
/**
|
|
* Convert a vector of pairs into a pair of vectors, by reference. As unzip().
|
|
*/
|
|
pub fn unzip_slice<T:Copy,U:Copy>(v: &[(T, U)]) -> (~[T], ~[U]) {
|
|
let mut ts = ~[], us = ~[];
|
|
for each(v) |p| {
|
|
let (t, u) = *p;
|
|
ts.push(t);
|
|
us.push(u);
|
|
}
|
|
(ts, us)
|
|
}
|
|
|
|
/**
|
|
* Convert a vector of pairs into a pair of vectors.
|
|
*
|
|
* Returns a tuple containing two vectors where the i-th element of the first
|
|
* vector contains the first element of the i-th tuple of the input vector,
|
|
* and the i-th element of the second vector contains the second element
|
|
* of the i-th tuple of the input vector.
|
|
*/
|
|
pub fn unzip<T,U>(v: ~[(T, U)]) -> (~[T], ~[U]) {
|
|
let mut ts = ~[], us = ~[];
|
|
do consume(v) |_i, p| {
|
|
let (t, u) = p;
|
|
ts.push(t);
|
|
us.push(u);
|
|
}
|
|
(ts, us)
|
|
}
|
|
|
|
/**
|
|
* Convert two vectors to a vector of pairs, by reference. As zip().
|
|
*/
|
|
pub fn zip_slice<T:Copy,U:Copy>(v: &const [T], u: &const [U])
|
|
-> ~[(T, U)] {
|
|
let mut zipped = ~[];
|
|
let sz = len(v);
|
|
let mut i = 0u;
|
|
assert!(sz == len(u));
|
|
while i < sz {
|
|
zipped.push((v[i], u[i]));
|
|
i += 1u;
|
|
}
|
|
zipped
|
|
}
|
|
|
|
/**
|
|
* Convert two vectors to a vector of pairs.
|
|
*
|
|
* Returns a vector of tuples, where the i-th tuple contains contains the
|
|
* i-th elements from each of the input vectors.
|
|
*/
|
|
pub fn zip<T, U>(mut v: ~[T], mut u: ~[U]) -> ~[(T, U)] {
|
|
let mut i = len(v);
|
|
assert!(i == len(u));
|
|
let mut w = with_capacity(i);
|
|
while i > 0 {
|
|
w.push((v.pop(),u.pop()));
|
|
i -= 1;
|
|
}
|
|
reverse(w);
|
|
w
|
|
}
|
|
|
|
/**
|
|
* Swaps two elements in a vector
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * v The input vector
|
|
* * a - The index of the first element
|
|
* * b - The index of the second element
|
|
*/
|
|
pub fn swap<T>(v: &mut [T], a: uint, b: uint) {
|
|
v[a] <-> v[b];
|
|
}
|
|
|
|
/// Reverse the order of elements in a vector, in place
|
|
pub fn reverse<T>(v: &mut [T]) {
|
|
let mut i: uint = 0;
|
|
let ln = len::<T>(v);
|
|
while i < ln / 2 { v[i] <-> v[ln - i - 1]; i += 1; }
|
|
}
|
|
|
|
/// Returns a vector with the order of elements reversed
|
|
pub fn reversed<T:Copy>(v: &const [T]) -> ~[T] {
|
|
let mut rs: ~[T] = ~[];
|
|
let mut i = len::<T>(v);
|
|
if i == 0 { return (rs); } else { i -= 1; }
|
|
while i != 0 { rs.push(v[i]); i -= 1; }
|
|
rs.push(v[0]);
|
|
rs
|
|
}
|
|
|
|
/**
|
|
* Iterates over a vector, yielding each element to a closure.
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * `v` - A vector, to be iterated over
|
|
* * `f` - A closure to do the iterating. Within this closure, return true to
|
|
* * continue iterating, false to break.
|
|
*
|
|
* # Examples
|
|
* ~~~
|
|
* [1,2,3].each(|&i| {
|
|
* io::println(int::str(i));
|
|
* true
|
|
* });
|
|
* ~~~
|
|
*
|
|
* ~~~
|
|
* [1,2,3,4,5].each(|&i| {
|
|
* if i < 4 {
|
|
* io::println(int::str(i));
|
|
* true
|
|
* }
|
|
* else {
|
|
* false
|
|
* }
|
|
* });
|
|
* ~~~
|
|
*
|
|
* You probably will want to use each with a `for`/`do` expression, depending
|
|
* on your iteration needs:
|
|
*
|
|
* ~~~
|
|
* for [1,2,3].each |&i| {
|
|
* io::println(int::str(i));
|
|
* }
|
|
* ~~~
|
|
*/
|
|
#[inline(always)]
|
|
pub fn each<'r,T>(v: &'r [T], f: &fn(&'r T) -> bool) {
|
|
// ^^^^
|
|
// NB---this CANNOT be &const [T]! The reason
|
|
// is that you are passing it to `f()` using
|
|
// an immutable.
|
|
|
|
do vec::as_imm_buf(v) |p, n| {
|
|
let mut n = n;
|
|
let mut p = p;
|
|
while n > 0u {
|
|
unsafe {
|
|
let q = cast::copy_lifetime_vec(v, &*p);
|
|
if !f(q) { break; }
|
|
p = ptr::offset(p, 1u);
|
|
}
|
|
n -= 1u;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Like `each()`, but for the case where you have
|
|
/// a vector with mutable contents and you would like
|
|
/// to mutate the contents as you iterate.
|
|
#[inline(always)]
|
|
pub fn each_mut<'r,T>(v: &'r mut [T], f: &fn(elem: &'r mut T) -> bool) {
|
|
do vec::as_mut_buf(v) |p, n| {
|
|
let mut n = n;
|
|
let mut p = p;
|
|
while n > 0 {
|
|
unsafe {
|
|
let q: &'r mut T = cast::transmute_mut_region(&mut *p);
|
|
if !f(q) {
|
|
break;
|
|
}
|
|
p = p.offset(1);
|
|
}
|
|
n -= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Like `each()`, but for the case where you have a vector that *may or may
|
|
/// not* have mutable contents.
|
|
#[inline(always)]
|
|
pub fn each_const<T>(v: &const [T], f: &fn(elem: &const T) -> bool) {
|
|
let mut i = 0;
|
|
let n = v.len();
|
|
while i < n {
|
|
if !f(&const v[i]) {
|
|
return;
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterates over a vector's elements and indices
|
|
*
|
|
* Return true to continue, false to break.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn eachi<'r,T>(v: &'r [T], f: &fn(uint, v: &'r T) -> bool) {
|
|
let mut i = 0;
|
|
for each(v) |p| {
|
|
if !f(i, p) { return; }
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterates over a mutable vector's elements and indices
|
|
*
|
|
* Return true to continue, false to break.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn eachi_mut<'r,T>(v: &'r mut [T], f: &fn(uint, v: &'r mut T) -> bool) {
|
|
let mut i = 0;
|
|
for each_mut(v) |p| {
|
|
if !f(i, p) {
|
|
return;
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterates over a vector's elements in reverse
|
|
*
|
|
* Return true to continue, false to break.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn each_reverse<'r,T>(v: &'r [T], blk: &fn(v: &'r T) -> bool) {
|
|
eachi_reverse(v, |_i, v| blk(v))
|
|
}
|
|
|
|
/**
|
|
* Iterates over a vector's elements and indices in reverse
|
|
*
|
|
* Return true to continue, false to break.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn eachi_reverse<'r,T>(v: &'r [T], blk: &fn(i: uint, v: &'r T) -> bool) {
|
|
let mut i = v.len();
|
|
while i > 0 {
|
|
i -= 1;
|
|
if !blk(i, &v[i]) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterates over two vectors simultaneously
|
|
*
|
|
* # Failure
|
|
*
|
|
* Both vectors must have the same length
|
|
*/
|
|
#[inline]
|
|
pub fn each2<U, T>(v1: &[U], v2: &[T], f: &fn(u: &U, t: &T) -> bool) {
|
|
assert!(len(v1) == len(v2));
|
|
for uint::range(0u, len(v1)) |i| {
|
|
if !f(&v1[i], &v2[i]) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterate over all permutations of vector `v`.
|
|
*
|
|
* Permutations are produced in lexicographic order with respect to the order
|
|
* of elements in `v` (so if `v` is sorted then the permutations are
|
|
* lexicographically sorted).
|
|
*
|
|
* The total number of permutations produced is `len(v)!`. If `v` contains
|
|
* repeated elements, then some permutations are repeated.
|
|
*/
|
|
pub fn each_permutation<T:Copy>(v: &[T], put: &fn(ts: &[T]) -> bool) {
|
|
let ln = len(v);
|
|
if ln <= 1 {
|
|
put(v);
|
|
} else {
|
|
// This does not seem like the most efficient implementation. You
|
|
// could make far fewer copies if you put your mind to it.
|
|
let mut i = 0u;
|
|
while i < ln {
|
|
let elt = v[i];
|
|
let mut rest = slice(v, 0u, i).to_vec();
|
|
rest.push_all(const_slice(v, i+1u, ln));
|
|
for each_permutation(rest) |permutation| {
|
|
if !put(append(~[elt], permutation)) {
|
|
return;
|
|
}
|
|
}
|
|
i += 1u;
|
|
}
|
|
}
|
|
}
|
|
|
|
// see doc below
|
|
#[cfg(stage0)] // XXX: lifetimes!
|
|
pub fn windowed<T>(n: uint, v: &[T], it: &fn(&[T]) -> bool) {
|
|
assert!(1u <= n);
|
|
if n > v.len() { return; }
|
|
for uint::range(0, v.len() - n + 1) |i| {
|
|
if !it(v.slice(i, i+n)) { return }
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Iterate over all contiguous windows of length `n` of the vector `v`.
|
|
*
|
|
* # Example
|
|
*
|
|
* Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`, `[3,4]`)
|
|
*
|
|
* ~~~
|
|
* for windowed(2, &[1,2,3,4]) |v| {
|
|
* io::println(fmt!("%?", v));
|
|
* }
|
|
* ~~~
|
|
*
|
|
*/
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
pub fn windowed<'r, T>(n: uint, v: &'r [T], it: &fn(&'r [T]) -> bool) {
|
|
assert!(1u <= n);
|
|
if n > v.len() { return; }
|
|
for uint::range(0, v.len() - n + 1) |i| {
|
|
if !it(v.slice(i, i + n)) { return }
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Work with the buffer of a vector.
|
|
*
|
|
* Allows for unsafe manipulation of vector contents, which is useful for
|
|
* foreign interop.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn as_imm_buf<T,U>(s: &[T],
|
|
/* NB---this CANNOT be const, see below */
|
|
f: &fn(*T, uint) -> U) -> U {
|
|
|
|
// NB---Do not change the type of s to `&const [T]`. This is
|
|
// unsound. The reason is that we are going to create immutable pointers
|
|
// into `s` and pass them to `f()`, but in fact they are potentially
|
|
// pointing at *mutable memory*. Use `as_const_buf` or `as_mut_buf`
|
|
// instead!
|
|
|
|
unsafe {
|
|
let v : *(*T,uint) =
|
|
::cast::transmute(addr_of(&s));
|
|
let (buf,len) = *v;
|
|
f(buf, len / sys::nonzero_size_of::<T>())
|
|
}
|
|
}
|
|
|
|
/// Similar to `as_imm_buf` but passing a `*const T`
|
|
#[inline(always)]
|
|
pub fn as_const_buf<T,U>(s: &const [T], f: &fn(*const T, uint) -> U) -> U {
|
|
unsafe {
|
|
let v : *(*const T,uint) =
|
|
::cast::transmute(addr_of(&s));
|
|
let (buf,len) = *v;
|
|
f(buf, len / sys::nonzero_size_of::<T>())
|
|
}
|
|
}
|
|
|
|
/// Similar to `as_imm_buf` but passing a `*mut T`
|
|
#[inline(always)]
|
|
pub fn as_mut_buf<T,U>(s: &mut [T], f: &fn(*mut T, uint) -> U) -> U {
|
|
unsafe {
|
|
let v : *(*mut T,uint) =
|
|
::cast::transmute(addr_of(&s));
|
|
let (buf,len) = *v;
|
|
f(buf, len / sys::nonzero_size_of::<T>())
|
|
}
|
|
}
|
|
|
|
// Equality
|
|
|
|
fn eq<T: Eq>(a: &[T], b: &[T]) -> bool {
|
|
let (a_len, b_len) = (a.len(), b.len());
|
|
if a_len != b_len { return false; }
|
|
|
|
let mut i = 0;
|
|
while i < a_len {
|
|
if a[i] != b[i] { return false; }
|
|
i += 1;
|
|
}
|
|
true
|
|
}
|
|
|
|
fn equals<T: TotalEq>(a: &[T], b: &[T]) -> bool {
|
|
let (a_len, b_len) = (a.len(), b.len());
|
|
if a_len != b_len { return false; }
|
|
|
|
let mut i = 0;
|
|
while i < a_len {
|
|
if !a[i].equals(&b[i]) { return false; }
|
|
i += 1;
|
|
}
|
|
true
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<'self,T:Eq> Eq for &'self [T] {
|
|
#[inline(always)]
|
|
fn eq(&self, other: & &'self [T]) -> bool { eq(*self, *other) }
|
|
#[inline(always)]
|
|
fn ne(&self, other: & &'self [T]) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T:Eq> Eq for ~[T] {
|
|
#[inline(always)]
|
|
fn eq(&self, other: &~[T]) -> bool { eq(*self, *other) }
|
|
#[inline(always)]
|
|
fn ne(&self, other: &~[T]) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T:Eq> Eq for @[T] {
|
|
#[inline(always)]
|
|
fn eq(&self, other: &@[T]) -> bool { eq(*self, *other) }
|
|
#[inline(always)]
|
|
fn ne(&self, other: &@[T]) -> bool { !self.eq(other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<'self,T:TotalEq> TotalEq for &'self [T] {
|
|
#[inline(always)]
|
|
fn equals(&self, other: & &'self [T]) -> bool { equals(*self, *other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T:TotalEq> TotalEq for ~[T] {
|
|
#[inline(always)]
|
|
fn equals(&self, other: &~[T]) -> bool { equals(*self, *other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T:TotalEq> TotalEq for @[T] {
|
|
#[inline(always)]
|
|
fn equals(&self, other: &@[T]) -> bool { equals(*self, *other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<'self,T:Eq> Equiv<~[T]> for &'self [T] {
|
|
#[inline(always)]
|
|
fn equiv(&self, other: &~[T]) -> bool { eq(*self, *other) }
|
|
}
|
|
|
|
// Lexicographical comparison
|
|
|
|
fn cmp<T: TotalOrd>(a: &[T], b: &[T]) -> Ordering {
|
|
let low = uint::min(a.len(), b.len());
|
|
|
|
for uint::range(0, low) |idx| {
|
|
match a[idx].cmp(&b[idx]) {
|
|
Greater => return Greater,
|
|
Less => return Less,
|
|
Equal => ()
|
|
}
|
|
}
|
|
|
|
a.len().cmp(&b.len())
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<'self,T:TotalOrd> TotalOrd for &'self [T] {
|
|
#[inline(always)]
|
|
fn cmp(&self, other: & &'self [T]) -> Ordering { cmp(*self, *other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T: TotalOrd> TotalOrd for ~[T] {
|
|
#[inline(always)]
|
|
fn cmp(&self, other: &~[T]) -> Ordering { cmp(*self, *other) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T: TotalOrd> TotalOrd for @[T] {
|
|
#[inline(always)]
|
|
fn cmp(&self, other: &@[T]) -> Ordering { cmp(*self, *other) }
|
|
}
|
|
|
|
fn lt<T:Ord>(a: &[T], b: &[T]) -> bool {
|
|
let (a_len, b_len) = (a.len(), b.len());
|
|
let end = uint::min(a_len, b_len);
|
|
|
|
let mut i = 0;
|
|
while i < end {
|
|
let (c_a, c_b) = (&a[i], &b[i]);
|
|
if *c_a < *c_b { return true; }
|
|
if *c_a > *c_b { return false; }
|
|
i += 1;
|
|
}
|
|
|
|
a_len < b_len
|
|
}
|
|
|
|
fn le<T:Ord>(a: &[T], b: &[T]) -> bool { !lt(b, a) }
|
|
fn ge<T:Ord>(a: &[T], b: &[T]) -> bool { !lt(a, b) }
|
|
fn gt<T:Ord>(a: &[T], b: &[T]) -> bool { lt(b, a) }
|
|
|
|
#[cfg(notest)]
|
|
impl<'self,T:Ord> Ord for &'self [T] {
|
|
#[inline(always)]
|
|
fn lt(&self, other: & &'self [T]) -> bool { lt((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn le(&self, other: & &'self [T]) -> bool { le((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn ge(&self, other: & &'self [T]) -> bool { ge((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn gt(&self, other: & &'self [T]) -> bool { gt((*self), (*other)) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T:Ord> Ord for ~[T] {
|
|
#[inline(always)]
|
|
fn lt(&self, other: &~[T]) -> bool { lt((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn le(&self, other: &~[T]) -> bool { le((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn ge(&self, other: &~[T]) -> bool { ge((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn gt(&self, other: &~[T]) -> bool { gt((*self), (*other)) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
impl<T:Ord> Ord for @[T] {
|
|
#[inline(always)]
|
|
fn lt(&self, other: &@[T]) -> bool { lt((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn le(&self, other: &@[T]) -> bool { le((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn ge(&self, other: &@[T]) -> bool { ge((*self), (*other)) }
|
|
#[inline(always)]
|
|
fn gt(&self, other: &@[T]) -> bool { gt((*self), (*other)) }
|
|
}
|
|
|
|
#[cfg(notest)]
|
|
pub mod traits {
|
|
use kinds::Copy;
|
|
use ops::Add;
|
|
use vec::append;
|
|
|
|
impl<'self,T:Copy> Add<&'self const [T],~[T]> for ~[T] {
|
|
#[inline(always)]
|
|
fn add(&self, rhs: & &'self const [T]) -> ~[T] {
|
|
append(copy *self, (*rhs))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'self,T> Container for &'self const [T] {
|
|
/// Returns true if a vector contains no elements
|
|
#[inline]
|
|
fn is_empty(&const self) -> bool { is_empty(*self) }
|
|
|
|
/// Returns the length of a vector
|
|
#[inline]
|
|
fn len(&const self) -> uint { len(*self) }
|
|
}
|
|
|
|
pub trait CopyableVector<T> {
|
|
fn to_owned(&self) -> ~[T];
|
|
}
|
|
|
|
/// Extension methods for vectors
|
|
impl<'self,T:Copy> CopyableVector<T> for &'self const [T] {
|
|
/// Returns a copy of `v`.
|
|
#[inline]
|
|
fn to_owned(&self) -> ~[T] {
|
|
let mut result = ~[];
|
|
// FIXME: #4568
|
|
unsafe {
|
|
reserve(&mut result, self.len());
|
|
for self.each |e| {
|
|
result.push(copy *e);
|
|
}
|
|
}
|
|
result
|
|
|
|
}
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
pub trait ImmutableVector<T> {
|
|
fn slice(&self, start: uint, end: uint) -> &'self [T];
|
|
fn head(&self) -> &'self T;
|
|
fn head_opt(&self) -> Option<&'self T>;
|
|
fn tail(&self) -> &'self [T];
|
|
fn tailn(&self, n: uint) -> &'self [T];
|
|
fn init(&self) -> &'self [T];
|
|
fn initn(&self, n: uint) -> &'self [T];
|
|
fn last(&self) -> &'self T;
|
|
fn last_opt(&self) -> Option<&'self T>;
|
|
fn each_reverse(&self, blk: &fn(&T) -> bool);
|
|
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool);
|
|
fn foldr<U: Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U;
|
|
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U];
|
|
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U];
|
|
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U];
|
|
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool;
|
|
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U];
|
|
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U];
|
|
unsafe fn unsafe_ref(&self, index: uint) -> *T;
|
|
}
|
|
|
|
/// Extension methods for vectors
|
|
#[cfg(stage0)]
|
|
impl<'self,T> ImmutableVector<T> for &'self [T] {
|
|
/// Return a slice that points into another slice.
|
|
#[inline]
|
|
fn slice(&self, start: uint, end: uint) -> &'self [T] {
|
|
slice(*self, start, end)
|
|
}
|
|
|
|
/// Returns the first element of a vector, failing if the vector is empty.
|
|
#[inline]
|
|
fn head(&self) -> &'self T { head(*self) }
|
|
|
|
/// Returns the first element of a vector
|
|
#[inline]
|
|
fn head_opt(&self) -> Option<&'self T> { head_opt(*self) }
|
|
|
|
/// Returns all but the first element of a vector
|
|
#[inline]
|
|
fn tail(&self) -> &'self [T] { tail(*self) }
|
|
|
|
/// Returns all but the first `n' elements of a vector
|
|
#[inline]
|
|
fn tailn(&self, n: uint) -> &'self [T] { tailn(*self, n) }
|
|
|
|
/// Returns all but the last elemnt of a vector
|
|
#[inline]
|
|
fn init(&self) -> &'self [T] { init(*self) }
|
|
|
|
/// Returns all but the last `n' elemnts of a vector
|
|
#[inline]
|
|
fn initn(&self, n: uint) -> &'self [T] { initn(*self, n) }
|
|
|
|
/// Returns the last element of a `v`, failing if the vector is empty.
|
|
#[inline]
|
|
fn last(&self) -> &'self T { last(*self) }
|
|
|
|
/// Returns the last element of a `v`, failing if the vector is empty.
|
|
#[inline]
|
|
fn last_opt(&self) -> Option<&'self T> { last_opt(*self) }
|
|
|
|
/// Iterates over a vector's elements in reverse.
|
|
#[inline]
|
|
fn each_reverse(&self, blk: &fn(&T) -> bool) {
|
|
each_reverse(*self, blk)
|
|
}
|
|
|
|
/// Iterates over a vector's elements and indices in reverse.
|
|
#[inline]
|
|
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool) {
|
|
eachi_reverse(*self, blk)
|
|
}
|
|
|
|
/// Reduce a vector from right to left
|
|
#[inline]
|
|
fn foldr<U:Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U {
|
|
foldr(*self, z, p)
|
|
}
|
|
|
|
/// Apply a function to each element of a vector and return the results
|
|
#[inline]
|
|
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U] { map(*self, f) }
|
|
|
|
/**
|
|
* Apply a function to the index and value of each element in the vector
|
|
* and return the results
|
|
*/
|
|
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U] {
|
|
mapi(*self, f)
|
|
}
|
|
|
|
#[inline]
|
|
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U] {
|
|
let mut r = ~[];
|
|
let mut i = 0;
|
|
while i < self.len() {
|
|
r.push(f(&self[i]));
|
|
i += 1;
|
|
}
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Returns true if the function returns true for all elements.
|
|
*
|
|
* If the vector is empty, true is returned.
|
|
*/
|
|
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool {
|
|
alli(*self, f)
|
|
}
|
|
/**
|
|
* Apply a function to each element of a vector and return a concatenation
|
|
* of each result vector
|
|
*/
|
|
#[inline]
|
|
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U] {
|
|
flat_map(*self, f)
|
|
}
|
|
/**
|
|
* Apply a function to each element of a vector and return the results
|
|
*
|
|
* If function `f` returns `none` then that element is excluded from
|
|
* the resulting vector.
|
|
*/
|
|
#[inline]
|
|
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U] {
|
|
filter_mapped(*self, f)
|
|
}
|
|
|
|
/// Returns a pointer to the element at the given index, without doing
|
|
/// bounds checking.
|
|
#[inline(always)]
|
|
unsafe fn unsafe_ref(&self, index: uint) -> *T {
|
|
let (ptr, _): (*T, uint) = transmute(*self);
|
|
ptr.offset(index)
|
|
}
|
|
}
|
|
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
pub trait ImmutableVector<'self, T> {
|
|
fn slice(&self, start: uint, end: uint) -> &'self [T];
|
|
fn iter(self) -> VecIterator<'self, T>;
|
|
fn head(&self) -> &'self T;
|
|
fn head_opt(&self) -> Option<&'self T>;
|
|
fn tail(&self) -> &'self [T];
|
|
fn tailn(&self, n: uint) -> &'self [T];
|
|
fn init(&self) -> &'self [T];
|
|
fn initn(&self, n: uint) -> &'self [T];
|
|
fn last(&self) -> &'self T;
|
|
fn last_opt(&self) -> Option<&'self T>;
|
|
fn each_reverse(&self, blk: &fn(&T) -> bool);
|
|
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool);
|
|
fn foldr<U: Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U;
|
|
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U];
|
|
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U];
|
|
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U];
|
|
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool;
|
|
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U];
|
|
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U];
|
|
unsafe fn unsafe_ref(&self, index: uint) -> *T;
|
|
}
|
|
|
|
/// Extension methods for vectors
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<'self,T> ImmutableVector<'self, T> for &'self [T] {
|
|
/// Return a slice that points into another slice.
|
|
#[inline]
|
|
fn slice(&self, start: uint, end: uint) -> &'self [T] {
|
|
slice(*self, start, end)
|
|
}
|
|
|
|
#[inline]
|
|
fn iter(self) -> VecIterator<'self, T> {
|
|
unsafe {
|
|
let p = vec::raw::to_ptr(self);
|
|
VecIterator{ptr: p, end: p.offset(self.len()),
|
|
lifetime: cast::transmute(p)}
|
|
}
|
|
}
|
|
|
|
/// Returns the first element of a vector, failing if the vector is empty.
|
|
#[inline]
|
|
fn head(&self) -> &'self T { head(*self) }
|
|
|
|
/// Returns the first element of a vector
|
|
#[inline]
|
|
fn head_opt(&self) -> Option<&'self T> { head_opt(*self) }
|
|
|
|
/// Returns all but the first element of a vector
|
|
#[inline]
|
|
fn tail(&self) -> &'self [T] { tail(*self) }
|
|
|
|
/// Returns all but the first `n' elements of a vector
|
|
#[inline]
|
|
fn tailn(&self, n: uint) -> &'self [T] { tailn(*self, n) }
|
|
|
|
/// Returns all but the last elemnt of a vector
|
|
#[inline]
|
|
fn init(&self) -> &'self [T] { init(*self) }
|
|
|
|
/// Returns all but the last `n' elemnts of a vector
|
|
#[inline]
|
|
fn initn(&self, n: uint) -> &'self [T] { initn(*self, n) }
|
|
|
|
/// Returns the last element of a `v`, failing if the vector is empty.
|
|
#[inline]
|
|
fn last(&self) -> &'self T { last(*self) }
|
|
|
|
/// Returns the last element of a `v`, failing if the vector is empty.
|
|
#[inline]
|
|
fn last_opt(&self) -> Option<&'self T> { last_opt(*self) }
|
|
|
|
/// Iterates over a vector's elements in reverse.
|
|
#[inline]
|
|
fn each_reverse(&self, blk: &fn(&T) -> bool) {
|
|
each_reverse(*self, blk)
|
|
}
|
|
|
|
/// Iterates over a vector's elements and indices in reverse.
|
|
#[inline]
|
|
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool) {
|
|
eachi_reverse(*self, blk)
|
|
}
|
|
|
|
/// Reduce a vector from right to left
|
|
#[inline]
|
|
fn foldr<U:Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U {
|
|
foldr(*self, z, p)
|
|
}
|
|
|
|
/// Apply a function to each element of a vector and return the results
|
|
#[inline]
|
|
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U] { map(*self, f) }
|
|
|
|
/**
|
|
* Apply a function to the index and value of each element in the vector
|
|
* and return the results
|
|
*/
|
|
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U] {
|
|
mapi(*self, f)
|
|
}
|
|
|
|
#[inline]
|
|
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U] {
|
|
let mut r = ~[];
|
|
let mut i = 0;
|
|
while i < self.len() {
|
|
r.push(f(&self[i]));
|
|
i += 1;
|
|
}
|
|
r
|
|
}
|
|
|
|
/**
|
|
* Returns true if the function returns true for all elements.
|
|
*
|
|
* If the vector is empty, true is returned.
|
|
*/
|
|
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool {
|
|
alli(*self, f)
|
|
}
|
|
/**
|
|
* Apply a function to each element of a vector and return a concatenation
|
|
* of each result vector
|
|
*/
|
|
#[inline]
|
|
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U] {
|
|
flat_map(*self, f)
|
|
}
|
|
/**
|
|
* Apply a function to each element of a vector and return the results
|
|
*
|
|
* If function `f` returns `none` then that element is excluded from
|
|
* the resulting vector.
|
|
*/
|
|
#[inline]
|
|
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U] {
|
|
filter_mapped(*self, f)
|
|
}
|
|
|
|
/// Returns a pointer to the element at the given index, without doing
|
|
/// bounds checking.
|
|
#[inline(always)]
|
|
unsafe fn unsafe_ref(&self, index: uint) -> *T {
|
|
let (ptr, _): (*T, uint) = transmute(*self);
|
|
ptr.offset(index)
|
|
}
|
|
}
|
|
|
|
pub trait ImmutableEqVector<T:Eq> {
|
|
fn position(&self, f: &fn(t: &T) -> bool) -> Option<uint>;
|
|
fn position_elem(&self, t: &T) -> Option<uint>;
|
|
fn rposition(&self, f: &fn(t: &T) -> bool) -> Option<uint>;
|
|
fn rposition_elem(&self, t: &T) -> Option<uint>;
|
|
}
|
|
|
|
impl<'self,T:Eq> ImmutableEqVector<T> for &'self [T] {
|
|
/**
|
|
* Find the first index matching some predicate
|
|
*
|
|
* Apply function `f` to each element of `v`. When function `f` returns
|
|
* true then an option containing the index is returned. If `f` matches no
|
|
* elements then none is returned.
|
|
*/
|
|
#[inline]
|
|
fn position(&self, f: &fn(t: &T) -> bool) -> Option<uint> {
|
|
position(*self, f)
|
|
}
|
|
|
|
/// Find the first index containing a matching value
|
|
#[inline]
|
|
fn position_elem(&self, x: &T) -> Option<uint> {
|
|
position_elem(*self, x)
|
|
}
|
|
|
|
/**
|
|
* Find the last index matching some predicate
|
|
*
|
|
* Apply function `f` to each element of `v` in reverse order. When
|
|
* function `f` returns true then an option containing the index is
|
|
* returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
#[inline]
|
|
fn rposition(&self, f: &fn(t: &T) -> bool) -> Option<uint> {
|
|
rposition(*self, f)
|
|
}
|
|
|
|
/// Find the last index containing a matching value
|
|
#[inline]
|
|
fn rposition_elem(&self, t: &T) -> Option<uint> {
|
|
rposition_elem(*self, t)
|
|
}
|
|
}
|
|
|
|
pub trait ImmutableCopyableVector<T> {
|
|
fn filtered(&self, f: &fn(&T) -> bool) -> ~[T];
|
|
fn rfind(&self, f: &fn(t: &T) -> bool) -> Option<T>;
|
|
fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]);
|
|
unsafe fn unsafe_get(&self, elem: uint) -> T;
|
|
}
|
|
|
|
/// Extension methods for vectors
|
|
impl<'self,T:Copy> ImmutableCopyableVector<T> for &'self [T] {
|
|
/**
|
|
* Construct a new vector from the elements of a vector for which some
|
|
* predicate holds.
|
|
*
|
|
* Apply function `f` to each element of `v` and return a vector
|
|
* containing only those elements for which `f` returned true.
|
|
*/
|
|
#[inline]
|
|
fn filtered(&self, f: &fn(t: &T) -> bool) -> ~[T] {
|
|
filtered(*self, f)
|
|
}
|
|
|
|
/**
|
|
* Search for the last element that matches a given predicate
|
|
*
|
|
* Apply function `f` to each element of `v` in reverse order. When
|
|
* function `f` returns true then an option containing the element is
|
|
* returned. If `f` matches no elements then none is returned.
|
|
*/
|
|
#[inline]
|
|
fn rfind(&self, f: &fn(t: &T) -> bool) -> Option<T> {
|
|
rfind(*self, f)
|
|
}
|
|
|
|
/**
|
|
* Partitions the vector into those that satisfies the predicate, and
|
|
* those that do not.
|
|
*/
|
|
#[inline]
|
|
fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]) {
|
|
partitioned(*self, f)
|
|
}
|
|
|
|
/// Returns the element at the given index, without doing bounds checking.
|
|
#[inline(always)]
|
|
unsafe fn unsafe_get(&self, index: uint) -> T {
|
|
*self.unsafe_ref(index)
|
|
}
|
|
}
|
|
|
|
pub trait OwnedVector<T> {
|
|
fn push(&mut self, t: T);
|
|
fn push_all_move(&mut self, rhs: ~[T]);
|
|
fn pop(&mut self) -> T;
|
|
fn shift(&mut self) -> T;
|
|
fn unshift(&mut self, x: T);
|
|
fn insert(&mut self, i: uint, x:T);
|
|
fn remove(&mut self, i: uint) -> T;
|
|
fn swap_remove(&mut self, index: uint) -> T;
|
|
fn truncate(&mut self, newlen: uint);
|
|
fn retain(&mut self, f: &fn(t: &T) -> bool);
|
|
fn consume(self, f: &fn(uint, v: T));
|
|
fn consume_reverse(self, f: &fn(uint, v: T));
|
|
fn filter(self, f: &fn(t: &T) -> bool) -> ~[T];
|
|
fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]);
|
|
fn grow_fn(&mut self, n: uint, op: old_iter::InitOp<T>);
|
|
}
|
|
|
|
impl<T> OwnedVector<T> for ~[T] {
|
|
#[inline]
|
|
fn push(&mut self, t: T) {
|
|
push(self, t);
|
|
}
|
|
|
|
#[inline]
|
|
fn push_all_move(&mut self, rhs: ~[T]) {
|
|
push_all_move(self, rhs);
|
|
}
|
|
|
|
#[inline]
|
|
fn pop(&mut self) -> T {
|
|
pop(self)
|
|
}
|
|
|
|
#[inline]
|
|
fn shift(&mut self) -> T {
|
|
shift(self)
|
|
}
|
|
|
|
#[inline]
|
|
fn unshift(&mut self, x: T) {
|
|
unshift(self, x)
|
|
}
|
|
|
|
#[inline]
|
|
fn insert(&mut self, i: uint, x:T) {
|
|
insert(self, i, x)
|
|
}
|
|
|
|
#[inline]
|
|
fn remove(&mut self, i: uint) -> T {
|
|
remove(self, i)
|
|
}
|
|
|
|
#[inline]
|
|
fn swap_remove(&mut self, index: uint) -> T {
|
|
swap_remove(self, index)
|
|
}
|
|
|
|
#[inline]
|
|
fn truncate(&mut self, newlen: uint) {
|
|
truncate(self, newlen);
|
|
}
|
|
|
|
#[inline]
|
|
fn retain(&mut self, f: &fn(t: &T) -> bool) {
|
|
retain(self, f);
|
|
}
|
|
|
|
#[inline]
|
|
fn consume(self, f: &fn(uint, v: T)) {
|
|
consume(self, f)
|
|
}
|
|
|
|
#[inline]
|
|
fn consume_reverse(self, f: &fn(uint, v: T)) {
|
|
consume_reverse(self, f)
|
|
}
|
|
|
|
#[inline]
|
|
fn filter(self, f: &fn(&T) -> bool) -> ~[T] {
|
|
filter(self, f)
|
|
}
|
|
|
|
/**
|
|
* Partitions the vector into those that satisfies the predicate, and
|
|
* those that do not.
|
|
*/
|
|
#[inline]
|
|
fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]) {
|
|
partition(self, f)
|
|
}
|
|
|
|
#[inline]
|
|
fn grow_fn(&mut self, n: uint, op: old_iter::InitOp<T>) {
|
|
grow_fn(self, n, op);
|
|
}
|
|
}
|
|
|
|
impl<T> Mutable for ~[T] {
|
|
/// Clear the vector, removing all values.
|
|
fn clear(&mut self) { self.truncate(0) }
|
|
}
|
|
|
|
pub trait OwnedCopyableVector<T:Copy> {
|
|
fn push_all(&mut self, rhs: &const [T]);
|
|
fn grow(&mut self, n: uint, initval: &T);
|
|
fn grow_set(&mut self, index: uint, initval: &T, val: T);
|
|
}
|
|
|
|
impl<T:Copy> OwnedCopyableVector<T> for ~[T] {
|
|
#[inline]
|
|
fn push_all(&mut self, rhs: &const [T]) {
|
|
push_all(self, rhs);
|
|
}
|
|
|
|
#[inline]
|
|
fn grow(&mut self, n: uint, initval: &T) {
|
|
grow(self, n, initval);
|
|
}
|
|
|
|
#[inline]
|
|
fn grow_set(&mut self, index: uint, initval: &T, val: T) {
|
|
grow_set(self, index, initval, val);
|
|
}
|
|
}
|
|
|
|
trait OwnedEqVector<T:Eq> {
|
|
fn dedup(&mut self);
|
|
}
|
|
|
|
impl<T:Eq> OwnedEqVector<T> for ~[T] {
|
|
#[inline]
|
|
fn dedup(&mut self) {
|
|
dedup(self)
|
|
}
|
|
}
|
|
|
|
pub trait MutableVector<T> {
|
|
unsafe fn unsafe_mut_ref(&self, index: uint) -> *mut T;
|
|
unsafe fn unsafe_set(&self, index: uint, val: T);
|
|
}
|
|
|
|
impl<'self,T> MutableVector<T> for &'self mut [T] {
|
|
#[inline(always)]
|
|
unsafe fn unsafe_mut_ref(&self, index: uint) -> *mut T {
|
|
let pair_ptr: &(*mut T, uint) = transmute(self);
|
|
let (ptr, _) = *pair_ptr;
|
|
ptr.offset(index)
|
|
}
|
|
|
|
#[inline(always)]
|
|
unsafe fn unsafe_set(&self, index: uint, val: T) {
|
|
*self.unsafe_mut_ref(index) = val;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a vector from an unsafe pointer to a buffer
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * ptr - An unsafe pointer to a buffer of `T`
|
|
* * elts - The number of elements in the buffer
|
|
*/
|
|
// Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb
|
|
pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
|
|
raw::from_buf_raw(ptr, elts)
|
|
}
|
|
|
|
/// The internal 'unboxed' representation of a vector
|
|
pub struct UnboxedVecRepr {
|
|
fill: uint,
|
|
alloc: uint,
|
|
data: u8
|
|
}
|
|
|
|
/// Unsafe operations
|
|
pub mod raw {
|
|
use kinds::Copy;
|
|
use managed;
|
|
use option::{None, Some};
|
|
use unstable::intrinsics;
|
|
use ptr::addr_of;
|
|
use ptr;
|
|
use sys;
|
|
use vec::{UnboxedVecRepr, as_const_buf, as_mut_buf, len, with_capacity};
|
|
|
|
/// The internal representation of a (boxed) vector
|
|
pub struct VecRepr {
|
|
box_header: managed::raw::BoxHeaderRepr,
|
|
unboxed: UnboxedVecRepr
|
|
}
|
|
|
|
pub struct SliceRepr {
|
|
data: *u8,
|
|
len: uint
|
|
}
|
|
|
|
/**
|
|
* Sets the length of a vector
|
|
*
|
|
* This will explicitly set the size of the vector, without actually
|
|
* modifing its buffers, so it is up to the caller to ensure that
|
|
* the vector is actually the specified size.
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn set_len<T>(v: &mut ~[T], new_len: uint) {
|
|
let repr: **mut VecRepr = ::cast::transmute(v);
|
|
(**repr).unboxed.fill = new_len * sys::nonzero_size_of::<T>();
|
|
}
|
|
|
|
/**
|
|
* Returns an unsafe pointer to the vector's buffer
|
|
*
|
|
* The caller must ensure that the vector outlives the pointer this
|
|
* function returns, or else it will end up pointing to garbage.
|
|
*
|
|
* Modifying the vector may cause its buffer to be reallocated, which
|
|
* would also make any pointers to it invalid.
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn to_ptr<T>(v: &[T]) -> *T {
|
|
let repr: **SliceRepr = ::cast::transmute(&v);
|
|
::cast::transmute(addr_of(&((**repr).data)))
|
|
}
|
|
|
|
/** see `to_ptr()` */
|
|
#[inline(always)]
|
|
pub unsafe fn to_const_ptr<T>(v: &const [T]) -> *const T {
|
|
let repr: **SliceRepr = ::cast::transmute(&v);
|
|
::cast::transmute(addr_of(&((**repr).data)))
|
|
}
|
|
|
|
/** see `to_ptr()` */
|
|
#[inline(always)]
|
|
pub unsafe fn to_mut_ptr<T>(v: &mut [T]) -> *mut T {
|
|
let repr: **SliceRepr = ::cast::transmute(&v);
|
|
::cast::transmute(addr_of(&((**repr).data)))
|
|
}
|
|
|
|
/**
|
|
* Form a slice from a pointer and length (as a number of units,
|
|
* not bytes).
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn buf_as_slice<T,U>(p: *T,
|
|
len: uint,
|
|
f: &fn(v: &[T]) -> U) -> U {
|
|
let pair = (p, len * sys::nonzero_size_of::<T>());
|
|
let v : *(&'blk [T]) =
|
|
::cast::transmute(addr_of(&pair));
|
|
f(*v)
|
|
}
|
|
|
|
/**
|
|
* Form a slice from a pointer and length (as a number of units,
|
|
* not bytes).
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn mut_buf_as_slice<T,U>(p: *mut T,
|
|
len: uint,
|
|
f: &fn(v: &mut [T]) -> U) -> U {
|
|
let pair = (p, len * sys::nonzero_size_of::<T>());
|
|
let v : *(&'blk mut [T]) =
|
|
::cast::transmute(addr_of(&pair));
|
|
f(*v)
|
|
}
|
|
|
|
/**
|
|
* Unchecked vector indexing.
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn get<T:Copy>(v: &const [T], i: uint) -> T {
|
|
as_const_buf(v, |p, _len| *ptr::const_offset(p, i))
|
|
}
|
|
|
|
/**
|
|
* Unchecked vector index assignment. Does not drop the
|
|
* old value and hence is only suitable when the vector
|
|
* is newly allocated.
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn init_elem<T>(v: &mut [T], i: uint, val: T) {
|
|
let mut box = Some(val);
|
|
do as_mut_buf(v) |p, _len| {
|
|
let mut box2 = None;
|
|
box2 <-> box;
|
|
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i)),
|
|
box2.unwrap());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a vector from an unsafe pointer to a buffer
|
|
*
|
|
* # Arguments
|
|
*
|
|
* * ptr - An unsafe pointer to a buffer of `T`
|
|
* * elts - The number of elements in the buffer
|
|
*/
|
|
// Was in raw, but needs to be called by net_tcp::on_tcp_read_cb
|
|
#[inline(always)]
|
|
pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] {
|
|
let mut dst = with_capacity(elts);
|
|
set_len(&mut dst, elts);
|
|
as_mut_buf(dst, |p_dst, _len_dst| ptr::copy_memory(p_dst, ptr, elts));
|
|
dst
|
|
}
|
|
|
|
/**
|
|
* Copies data from one vector to another.
|
|
*
|
|
* Copies `count` bytes from `src` to `dst`. The source and destination
|
|
* may overlap.
|
|
*/
|
|
#[inline(always)]
|
|
pub unsafe fn copy_memory<T>(dst: &mut [T], src: &const [T],
|
|
count: uint) {
|
|
assert!(dst.len() >= count);
|
|
assert!(src.len() >= count);
|
|
|
|
do as_mut_buf(dst) |p_dst, _len_dst| {
|
|
do as_const_buf(src) |p_src, _len_src| {
|
|
ptr::copy_memory(p_dst, p_src, count)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Operations on `[u8]`
|
|
pub mod bytes {
|
|
use libc;
|
|
use uint;
|
|
use vec::raw;
|
|
use vec;
|
|
|
|
/// Bytewise string comparison
|
|
pub fn memcmp(a: &~[u8], b: &~[u8]) -> int {
|
|
let a_len = a.len();
|
|
let b_len = b.len();
|
|
let n = uint::min(a_len, b_len) as libc::size_t;
|
|
let r = unsafe {
|
|
libc::memcmp(raw::to_ptr(*a) as *libc::c_void,
|
|
raw::to_ptr(*b) as *libc::c_void, n) as int
|
|
};
|
|
|
|
if r != 0 { r } else {
|
|
if a_len == b_len {
|
|
0
|
|
} else if a_len < b_len {
|
|
-1
|
|
} else {
|
|
1
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Bytewise less than or equal
|
|
pub fn lt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) < 0 }
|
|
|
|
/// Bytewise less than or equal
|
|
pub fn le(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) <= 0 }
|
|
|
|
/// Bytewise equality
|
|
pub fn eq(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) == 0 }
|
|
|
|
/// Bytewise inequality
|
|
pub fn ne(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) != 0 }
|
|
|
|
/// Bytewise greater than or equal
|
|
pub fn ge(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) >= 0 }
|
|
|
|
/// Bytewise greater than
|
|
pub fn gt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) > 0 }
|
|
|
|
/**
|
|
* Copies data from one vector to another.
|
|
*
|
|
* Copies `count` bytes from `src` to `dst`. The source and destination
|
|
* may overlap.
|
|
*/
|
|
#[inline(always)]
|
|
pub fn copy_memory(dst: &mut [u8], src: &const [u8], count: uint) {
|
|
// Bound checks are done at vec::raw::copy_memory.
|
|
unsafe { vec::raw::copy_memory(dst, src, count) }
|
|
}
|
|
}
|
|
|
|
// ___________________________________________________________________________
|
|
// ITERATION TRAIT METHODS
|
|
|
|
#[cfg(stage0)]
|
|
impl<'self,A> old_iter::BaseIter<A> for &'self [A] {
|
|
#[inline(always)]
|
|
fn each(&self, blk: &fn(v: &'self A) -> bool) { each(*self, blk) }
|
|
#[inline(always)]
|
|
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
|
|
}
|
|
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<'self,A> old_iter::BaseIter<A> for &'self [A] {
|
|
#[inline(always)]
|
|
fn each<'a>(&'a self, blk: &fn(v: &'a A) -> bool) { each(*self, blk) }
|
|
#[inline(always)]
|
|
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
#[cfg(stage0)]
|
|
impl<A> old_iter::BaseIter<A> for ~[A] {
|
|
#[inline(always)]
|
|
fn each(&self, blk: &fn(v: &'self A) -> bool) { each(*self, blk) }
|
|
#[inline(always)]
|
|
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<A> old_iter::BaseIter<A> for ~[A] {
|
|
#[inline(always)]
|
|
fn each<'a>(&'a self, blk: &fn(v: &'a A) -> bool) { each(*self, blk) }
|
|
#[inline(always)]
|
|
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
#[cfg(stage0)]
|
|
impl<A> old_iter::BaseIter<A> for @[A] {
|
|
#[inline(always)]
|
|
fn each(&self, blk: &fn(v: &'self A) -> bool) { each(*self, blk) }
|
|
#[inline(always)]
|
|
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<A> old_iter::BaseIter<A> for @[A] {
|
|
#[inline(always)]
|
|
fn each<'a>(&'a self, blk: &fn(v: &'a A) -> bool) { each(*self, blk) }
|
|
#[inline(always)]
|
|
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
|
|
}
|
|
|
|
#[cfg(stage0)]
|
|
impl<'self,A> old_iter::MutableIter<A> for &'self mut [A] {
|
|
#[inline(always)]
|
|
fn each_mut(&mut self, blk: &fn(v: &'self mut A) -> bool) {
|
|
each_mut(*self, blk)
|
|
}
|
|
}
|
|
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<'self,A> old_iter::MutableIter<A> for &'self mut [A] {
|
|
#[inline(always)]
|
|
fn each_mut<'a>(&'a mut self, blk: &fn(v: &'a mut A) -> bool) {
|
|
each_mut(*self, blk)
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
#[cfg(stage0)]
|
|
impl<A> old_iter::MutableIter<A> for ~[A] {
|
|
#[inline(always)]
|
|
fn each_mut(&mut self, blk: &fn(v: &'self mut A) -> bool) {
|
|
each_mut(*self, blk)
|
|
}
|
|
}
|
|
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<A> old_iter::MutableIter<A> for ~[A] {
|
|
#[inline(always)]
|
|
fn each_mut<'a>(&'a mut self, blk: &fn(v: &'a mut A) -> bool) {
|
|
each_mut(*self, blk)
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A> old_iter::MutableIter<A> for @mut [A] {
|
|
#[inline(always)]
|
|
fn each_mut(&mut self, blk: &fn(v: &mut A) -> bool) {
|
|
each_mut(*self, blk)
|
|
}
|
|
}
|
|
|
|
impl<'self,A> old_iter::ExtendedIter<A> for &'self [A] {
|
|
pub fn eachi(&self, blk: &fn(uint, v: &A) -> bool) {
|
|
old_iter::eachi(self, blk)
|
|
}
|
|
pub fn all(&self, blk: &fn(&A) -> bool) -> bool {
|
|
old_iter::all(self, blk)
|
|
}
|
|
pub fn any(&self, blk: &fn(&A) -> bool) -> bool {
|
|
old_iter::any(self, blk)
|
|
}
|
|
pub fn foldl<B>(&self, b0: B, blk: &fn(&B, &A) -> B) -> B {
|
|
old_iter::foldl(self, b0, blk)
|
|
}
|
|
pub fn position(&self, f: &fn(&A) -> bool) -> Option<uint> {
|
|
old_iter::position(self, f)
|
|
}
|
|
fn map_to_vec<B>(&self, op: &fn(&A) -> B) -> ~[B] {
|
|
old_iter::map_to_vec(self, op)
|
|
}
|
|
fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: &fn(&A) -> IB)
|
|
-> ~[B] {
|
|
old_iter::flat_map_to_vec(self, op)
|
|
}
|
|
}
|
|
|
|
impl<'self,A> old_iter::ExtendedMutableIter<A> for &'self mut [A] {
|
|
#[inline(always)]
|
|
pub fn eachi_mut(&mut self, blk: &fn(uint, v: &mut A) -> bool) {
|
|
eachi_mut(*self, blk)
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A> old_iter::ExtendedIter<A> for ~[A] {
|
|
pub fn eachi(&self, blk: &fn(uint, v: &A) -> bool) {
|
|
old_iter::eachi(self, blk)
|
|
}
|
|
pub fn all(&self, blk: &fn(&A) -> bool) -> bool {
|
|
old_iter::all(self, blk)
|
|
}
|
|
pub fn any(&self, blk: &fn(&A) -> bool) -> bool {
|
|
old_iter::any(self, blk)
|
|
}
|
|
pub fn foldl<B>(&self, b0: B, blk: &fn(&B, &A) -> B) -> B {
|
|
old_iter::foldl(self, b0, blk)
|
|
}
|
|
pub fn position(&self, f: &fn(&A) -> bool) -> Option<uint> {
|
|
old_iter::position(self, f)
|
|
}
|
|
fn map_to_vec<B>(&self, op: &fn(&A) -> B) -> ~[B] {
|
|
old_iter::map_to_vec(self, op)
|
|
}
|
|
fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: &fn(&A) -> IB)
|
|
-> ~[B] {
|
|
old_iter::flat_map_to_vec(self, op)
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A> old_iter::ExtendedIter<A> for @[A] {
|
|
pub fn eachi(&self, blk: &fn(uint, v: &A) -> bool) {
|
|
old_iter::eachi(self, blk)
|
|
}
|
|
pub fn all(&self, blk: &fn(&A) -> bool) -> bool {
|
|
old_iter::all(self, blk)
|
|
}
|
|
pub fn any(&self, blk: &fn(&A) -> bool) -> bool {
|
|
old_iter::any(self, blk)
|
|
}
|
|
pub fn foldl<B>(&self, b0: B, blk: &fn(&B, &A) -> B) -> B {
|
|
old_iter::foldl(self, b0, blk)
|
|
}
|
|
pub fn position(&self, f: &fn(&A) -> bool) -> Option<uint> {
|
|
old_iter::position(self, f)
|
|
}
|
|
fn map_to_vec<B>(&self, op: &fn(&A) -> B) -> ~[B] {
|
|
old_iter::map_to_vec(self, op)
|
|
}
|
|
fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: &fn(&A) -> IB)
|
|
-> ~[B] {
|
|
old_iter::flat_map_to_vec(self, op)
|
|
}
|
|
}
|
|
|
|
impl<'self,A:Eq> old_iter::EqIter<A> for &'self [A] {
|
|
pub fn contains(&self, x: &A) -> bool { old_iter::contains(self, x) }
|
|
pub fn count(&self, x: &A) -> uint { old_iter::count(self, x) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Eq> old_iter::EqIter<A> for ~[A] {
|
|
pub fn contains(&self, x: &A) -> bool { old_iter::contains(self, x) }
|
|
pub fn count(&self, x: &A) -> uint { old_iter::count(self, x) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Eq> old_iter::EqIter<A> for @[A] {
|
|
pub fn contains(&self, x: &A) -> bool { old_iter::contains(self, x) }
|
|
pub fn count(&self, x: &A) -> uint { old_iter::count(self, x) }
|
|
}
|
|
|
|
impl<'self,A:Copy> old_iter::CopyableIter<A> for &'self [A] {
|
|
fn filter_to_vec(&self, pred: &fn(&A) -> bool) -> ~[A] {
|
|
old_iter::filter_to_vec(self, pred)
|
|
}
|
|
fn to_vec(&self) -> ~[A] { old_iter::to_vec(self) }
|
|
pub fn find(&self, f: &fn(&A) -> bool) -> Option<A> {
|
|
old_iter::find(self, f)
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Copy> old_iter::CopyableIter<A> for ~[A] {
|
|
fn filter_to_vec(&self, pred: &fn(&A) -> bool) -> ~[A] {
|
|
old_iter::filter_to_vec(self, pred)
|
|
}
|
|
fn to_vec(&self) -> ~[A] { old_iter::to_vec(self) }
|
|
pub fn find(&self, f: &fn(&A) -> bool) -> Option<A> {
|
|
old_iter::find(self, f)
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Copy> old_iter::CopyableIter<A> for @[A] {
|
|
fn filter_to_vec(&self, pred: &fn(&A) -> bool) -> ~[A] {
|
|
old_iter::filter_to_vec(self, pred)
|
|
}
|
|
fn to_vec(&self) -> ~[A] { old_iter::to_vec(self) }
|
|
pub fn find(&self, f: &fn(&A) -> bool) -> Option<A> {
|
|
old_iter::find(self, f)
|
|
}
|
|
}
|
|
|
|
impl<'self,A:Copy + Ord> old_iter::CopyableOrderedIter<A> for &'self [A] {
|
|
fn min(&self) -> A { old_iter::min(self) }
|
|
fn max(&self) -> A { old_iter::max(self) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Copy + Ord> old_iter::CopyableOrderedIter<A> for ~[A] {
|
|
fn min(&self) -> A { old_iter::min(self) }
|
|
fn max(&self) -> A { old_iter::max(self) }
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Copy + Ord> old_iter::CopyableOrderedIter<A> for @[A] {
|
|
fn min(&self) -> A { old_iter::min(self) }
|
|
fn max(&self) -> A { old_iter::max(self) }
|
|
}
|
|
|
|
impl<'self,A:Copy> old_iter::CopyableNonstrictIter<A> for &'self [A] {
|
|
fn each_val(&const self, f: &fn(A) -> bool) {
|
|
let mut i = 0;
|
|
while i < self.len() {
|
|
if !f(copy self[i]) { break; }
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Copy> old_iter::CopyableNonstrictIter<A> for ~[A] {
|
|
fn each_val(&const self, f: &fn(A) -> bool) {
|
|
let mut i = 0;
|
|
while i < uniq_len(self) {
|
|
if !f(copy self[i]) { break; }
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME(#4148): This should be redundant
|
|
impl<A:Copy> old_iter::CopyableNonstrictIter<A> for @[A] {
|
|
fn each_val(&const self, f: &fn(A) -> bool) {
|
|
let mut i = 0;
|
|
while i < self.len() {
|
|
if !f(copy self[i]) { break; }
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A:Clone> Clone for ~[A] {
|
|
#[inline]
|
|
fn clone(&self) -> ~[A] {
|
|
self.map(|item| item.clone())
|
|
}
|
|
}
|
|
|
|
// could be implemented with &[T] with .slice(), but this avoids bounds checks
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
pub struct VecIterator<'self, T> {
|
|
priv ptr: *T,
|
|
priv end: *T,
|
|
priv lifetime: &'self T // FIXME: #5922
|
|
}
|
|
|
|
#[cfg(stage1)]
|
|
#[cfg(stage2)]
|
|
#[cfg(stage3)]
|
|
impl<'self, T> Iterator<&'self T> for VecIterator<'self, T> {
|
|
#[inline]
|
|
fn next(&mut self) -> Option<&'self T> {
|
|
unsafe {
|
|
if self.ptr == self.end {
|
|
None
|
|
} else {
|
|
let old = self.ptr;
|
|
self.ptr = self.ptr.offset(1);
|
|
Some(cast::transmute(old))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use option::{None, Option, Some};
|
|
use sys;
|
|
use vec::*;
|
|
use cmp::*;
|
|
|
|
fn square(n: uint) -> uint { n * n }
|
|
|
|
fn square_ref(n: &uint) -> uint { square(*n) }
|
|
|
|
fn is_three(n: &uint) -> bool { *n == 3u }
|
|
|
|
fn is_odd(n: &uint) -> bool { *n % 2u == 1u }
|
|
|
|
fn is_equal(x: &uint, y:&uint) -> bool { *x == *y }
|
|
|
|
fn square_if_odd_r(n: &uint) -> Option<uint> {
|
|
if *n % 2u == 1u { Some(*n * *n) } else { None }
|
|
}
|
|
|
|
fn square_if_odd_v(n: uint) -> Option<uint> {
|
|
if n % 2u == 1u { Some(n * n) } else { None }
|
|
}
|
|
|
|
fn add(x: uint, y: &uint) -> uint { x + *y }
|
|
|
|
#[test]
|
|
fn test_unsafe_ptrs() {
|
|
unsafe {
|
|
// Test on-stack copy-from-buf.
|
|
let a = ~[1, 2, 3];
|
|
let mut ptr = raw::to_ptr(a);
|
|
let b = from_buf(ptr, 3u);
|
|
assert!(b.len() == 3u);
|
|
assert!(b[0] == 1);
|
|
assert!(b[1] == 2);
|
|
assert!(b[2] == 3);
|
|
|
|
// Test on-heap copy-from-buf.
|
|
let c = ~[1, 2, 3, 4, 5];
|
|
ptr = raw::to_ptr(c);
|
|
let d = from_buf(ptr, 5u);
|
|
assert!(d.len() == 5u);
|
|
assert!(d[0] == 1);
|
|
assert!(d[1] == 2);
|
|
assert!(d[2] == 3);
|
|
assert!(d[3] == 4);
|
|
assert!(d[4] == 5);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_fn() {
|
|
// Test on-stack from_fn.
|
|
let mut v = from_fn(3u, square);
|
|
assert!(v.len() == 3u);
|
|
assert!(v[0] == 0u);
|
|
assert!(v[1] == 1u);
|
|
assert!(v[2] == 4u);
|
|
|
|
// Test on-heap from_fn.
|
|
v = from_fn(5u, square);
|
|
assert!(v.len() == 5u);
|
|
assert!(v[0] == 0u);
|
|
assert!(v[1] == 1u);
|
|
assert!(v[2] == 4u);
|
|
assert!(v[3] == 9u);
|
|
assert!(v[4] == 16u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_elem() {
|
|
// Test on-stack from_elem.
|
|
let mut v = from_elem(2u, 10u);
|
|
assert!(v.len() == 2u);
|
|
assert!(v[0] == 10u);
|
|
assert!(v[1] == 10u);
|
|
|
|
// Test on-heap from_elem.
|
|
v = from_elem(6u, 20u);
|
|
assert!(v[0] == 20u);
|
|
assert!(v[1] == 20u);
|
|
assert!(v[2] == 20u);
|
|
assert!(v[3] == 20u);
|
|
assert!(v[4] == 20u);
|
|
assert!(v[5] == 20u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_empty() {
|
|
assert!(is_empty::<int>(~[]));
|
|
assert!(!is_empty(~[0]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_len_divzero() {
|
|
type Z = [i8, ..0];
|
|
let v0 : &[Z] = &[];
|
|
let v1 : &[Z] = &[[]];
|
|
let v2 : &[Z] = &[[], []];
|
|
assert!(sys::size_of::<Z>() == 0);
|
|
assert!(v0.len() == 0);
|
|
assert!(v1.len() == 1);
|
|
assert!(v2.len() == 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_head() {
|
|
let mut a = ~[11];
|
|
assert!(a.head() == &11);
|
|
a = ~[11, 12];
|
|
assert!(a.head() == &11);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_head_empty() {
|
|
let a: ~[int] = ~[];
|
|
a.head();
|
|
}
|
|
|
|
#[test]
|
|
fn test_head_opt() {
|
|
let mut a = ~[];
|
|
assert!(a.head_opt() == None);
|
|
a = ~[11];
|
|
assert!(a.head_opt().unwrap() == &11);
|
|
a = ~[11, 12];
|
|
assert!(a.head_opt().unwrap() == &11);
|
|
}
|
|
|
|
#[test]
|
|
fn test_tail() {
|
|
let mut a = ~[11];
|
|
assert!(a.tail() == &[]);
|
|
a = ~[11, 12];
|
|
assert!(a.tail() == &[12]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_tail_empty() {
|
|
let a: ~[int] = ~[];
|
|
a.tail();
|
|
}
|
|
|
|
#[test]
|
|
fn test_tailn() {
|
|
let mut a = ~[11, 12, 13];
|
|
assert!(a.tailn(0) == &[11, 12, 13]);
|
|
a = ~[11, 12, 13];
|
|
assert!(a.tailn(2) == &[13]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_tailn_empty() {
|
|
let a: ~[int] = ~[];
|
|
a.tailn(2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_init() {
|
|
let mut a = ~[11];
|
|
assert!(a.init() == &[]);
|
|
a = ~[11, 12];
|
|
assert!(a.init() == &[11]);
|
|
}
|
|
|
|
#[init]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_init_empty() {
|
|
let a: ~[int] = ~[];
|
|
a.init();
|
|
}
|
|
|
|
#[test]
|
|
fn test_initn() {
|
|
let mut a = ~[11, 12, 13];
|
|
assert!(a.initn(0) == &[11, 12, 13]);
|
|
a = ~[11, 12, 13];
|
|
assert!(a.initn(2) == &[11]);
|
|
}
|
|
|
|
#[init]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_initn_empty() {
|
|
let a: ~[int] = ~[];
|
|
a.initn(2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_last() {
|
|
let mut a = ~[11];
|
|
assert!(a.last() == &11);
|
|
a = ~[11, 12];
|
|
assert!(a.last() == &12);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_last_empty() {
|
|
let a: ~[int] = ~[];
|
|
a.last();
|
|
}
|
|
|
|
#[test]
|
|
fn test_last_opt() {
|
|
let mut a = ~[];
|
|
assert!(a.last_opt() == None);
|
|
a = ~[11];
|
|
assert!(a.last_opt().unwrap() == &11);
|
|
a = ~[11, 12];
|
|
assert!(a.last_opt().unwrap() == &12);
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice() {
|
|
// Test fixed length vector.
|
|
let vec_fixed = [1, 2, 3, 4];
|
|
let v_a = slice(vec_fixed, 1u, vec_fixed.len()).to_vec();
|
|
assert!(v_a.len() == 3u);
|
|
assert!(v_a[0] == 2);
|
|
assert!(v_a[1] == 3);
|
|
assert!(v_a[2] == 4);
|
|
|
|
// Test on stack.
|
|
let vec_stack = &[1, 2, 3];
|
|
let v_b = slice(vec_stack, 1u, 3u).to_vec();
|
|
assert!(v_b.len() == 2u);
|
|
assert!(v_b[0] == 2);
|
|
assert!(v_b[1] == 3);
|
|
|
|
// Test on managed heap.
|
|
let vec_managed = @[1, 2, 3, 4, 5];
|
|
let v_c = slice(vec_managed, 0u, 3u).to_vec();
|
|
assert!(v_c.len() == 3u);
|
|
assert!(v_c[0] == 1);
|
|
assert!(v_c[1] == 2);
|
|
assert!(v_c[2] == 3);
|
|
|
|
// Test on exchange heap.
|
|
let vec_unique = ~[1, 2, 3, 4, 5, 6];
|
|
let v_d = slice(vec_unique, 1u, 6u).to_vec();
|
|
assert!(v_d.len() == 5u);
|
|
assert!(v_d[0] == 2);
|
|
assert!(v_d[1] == 3);
|
|
assert!(v_d[2] == 4);
|
|
assert!(v_d[3] == 5);
|
|
assert!(v_d[4] == 6);
|
|
}
|
|
|
|
#[test]
|
|
fn test_pop() {
|
|
// Test on-heap pop.
|
|
let mut v = ~[1, 2, 3, 4, 5];
|
|
let e = v.pop();
|
|
assert!(v.len() == 4u);
|
|
assert!(v[0] == 1);
|
|
assert!(v[1] == 2);
|
|
assert!(v[2] == 3);
|
|
assert!(v[3] == 4);
|
|
assert!(e == 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_remove() {
|
|
let mut v = ~[1, 2, 3, 4, 5];
|
|
let mut e = v.swap_remove(0);
|
|
assert!(v.len() == 4);
|
|
assert!(e == 1);
|
|
assert!(v[0] == 5);
|
|
e = v.swap_remove(3);
|
|
assert!(v.len() == 3);
|
|
assert!(e == 4);
|
|
assert!(v[0] == 5);
|
|
assert!(v[1] == 2);
|
|
assert!(v[2] == 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_swap_remove_noncopyable() {
|
|
// Tests that we don't accidentally run destructors twice.
|
|
let mut v = ~[::unstable::exclusive(()), ::unstable::exclusive(()),
|
|
::unstable::exclusive(())];
|
|
let mut _e = v.swap_remove(0);
|
|
assert!(v.len() == 2);
|
|
_e = v.swap_remove(1);
|
|
assert!(v.len() == 1);
|
|
_e = v.swap_remove(0);
|
|
assert!(v.len() == 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_push() {
|
|
// Test on-stack push().
|
|
let mut v = ~[];
|
|
v.push(1);
|
|
assert!(v.len() == 1u);
|
|
assert!(v[0] == 1);
|
|
|
|
// Test on-heap push().
|
|
v.push(2);
|
|
assert!(v.len() == 2u);
|
|
assert!(v[0] == 1);
|
|
assert!(v[1] == 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_grow() {
|
|
// Test on-stack grow().
|
|
let mut v = ~[];
|
|
v.grow(2u, &1);
|
|
assert!(v.len() == 2u);
|
|
assert!(v[0] == 1);
|
|
assert!(v[1] == 1);
|
|
|
|
// Test on-heap grow().
|
|
v.grow(3u, &2);
|
|
assert!(v.len() == 5u);
|
|
assert!(v[0] == 1);
|
|
assert!(v[1] == 1);
|
|
assert!(v[2] == 2);
|
|
assert!(v[3] == 2);
|
|
assert!(v[4] == 2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_grow_fn() {
|
|
let mut v = ~[];
|
|
v.grow_fn(3u, square);
|
|
assert!(v.len() == 3u);
|
|
assert!(v[0] == 0u);
|
|
assert!(v[1] == 1u);
|
|
assert!(v[2] == 4u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_grow_set() {
|
|
let mut v = ~[1, 2, 3];
|
|
v.grow_set(4u, &4, 5);
|
|
assert!(v.len() == 5u);
|
|
assert!(v[0] == 1);
|
|
assert!(v[1] == 2);
|
|
assert!(v[2] == 3);
|
|
assert!(v[3] == 4);
|
|
assert!(v[4] == 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_truncate() {
|
|
let mut v = ~[@6,@5,@4];
|
|
v.truncate(1);
|
|
assert!(v.len() == 1);
|
|
assert!(*(v[0]) == 6);
|
|
// If the unsafe block didn't drop things properly, we blow up here.
|
|
}
|
|
|
|
#[test]
|
|
fn test_clear() {
|
|
let mut v = ~[@6,@5,@4];
|
|
v.clear();
|
|
assert!(v.len() == 0);
|
|
// If the unsafe block didn't drop things properly, we blow up here.
|
|
}
|
|
|
|
#[test]
|
|
fn test_dedup() {
|
|
fn case(a: ~[uint], b: ~[uint]) {
|
|
let mut v = a;
|
|
v.dedup();
|
|
assert!(v == b);
|
|
}
|
|
case(~[], ~[]);
|
|
case(~[1], ~[1]);
|
|
case(~[1,1], ~[1]);
|
|
case(~[1,2,3], ~[1,2,3]);
|
|
case(~[1,1,2,3], ~[1,2,3]);
|
|
case(~[1,2,2,3], ~[1,2,3]);
|
|
case(~[1,2,3,3], ~[1,2,3]);
|
|
case(~[1,1,2,2,2,3,3], ~[1,2,3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_dedup_unique() {
|
|
let mut v0 = ~[~1, ~1, ~2, ~3];
|
|
v0.dedup();
|
|
let mut v1 = ~[~1, ~2, ~2, ~3];
|
|
v1.dedup();
|
|
let mut v2 = ~[~1, ~2, ~3, ~3];
|
|
v2.dedup();
|
|
/*
|
|
* If the ~pointers were leaked or otherwise misused, valgrind and/or
|
|
* rustrt should raise errors.
|
|
*/
|
|
}
|
|
|
|
#[test]
|
|
fn test_dedup_shared() {
|
|
let mut v0 = ~[@1, @1, @2, @3];
|
|
v0.dedup();
|
|
let mut v1 = ~[@1, @2, @2, @3];
|
|
v1.dedup();
|
|
let mut v2 = ~[@1, @2, @3, @3];
|
|
v2.dedup();
|
|
/*
|
|
* If the @pointers were leaked or otherwise misused, valgrind and/or
|
|
* rustrt should raise errors.
|
|
*/
|
|
}
|
|
|
|
#[test]
|
|
fn test_map() {
|
|
// Test on-stack map.
|
|
let mut v = ~[1u, 2u, 3u];
|
|
let mut w = map(v, square_ref);
|
|
assert!(w.len() == 3u);
|
|
assert!(w[0] == 1u);
|
|
assert!(w[1] == 4u);
|
|
assert!(w[2] == 9u);
|
|
|
|
// Test on-heap map.
|
|
v = ~[1u, 2u, 3u, 4u, 5u];
|
|
w = map(v, square_ref);
|
|
assert!(w.len() == 5u);
|
|
assert!(w[0] == 1u);
|
|
assert!(w[1] == 4u);
|
|
assert!(w[2] == 9u);
|
|
assert!(w[3] == 16u);
|
|
assert!(w[4] == 25u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_map_zip() {
|
|
fn times(x: &int, y: &int) -> int { *x * *y }
|
|
let f = times;
|
|
let v0 = ~[1, 2, 3, 4, 5];
|
|
let v1 = ~[5, 4, 3, 2, 1];
|
|
let u = map_zip::<int, int, int>(v0, v1, f);
|
|
let mut i = 0;
|
|
while i < 5 { assert!(v0[i] * v1[i] == u[i]); i += 1; }
|
|
}
|
|
|
|
#[test]
|
|
fn test_filter_mapped() {
|
|
// Test on-stack filter-map.
|
|
let mut v = ~[1u, 2u, 3u];
|
|
let mut w = filter_mapped(v, square_if_odd_r);
|
|
assert!(w.len() == 2u);
|
|
assert!(w[0] == 1u);
|
|
assert!(w[1] == 9u);
|
|
|
|
// Test on-heap filter-map.
|
|
v = ~[1u, 2u, 3u, 4u, 5u];
|
|
w = filter_mapped(v, square_if_odd_r);
|
|
assert!(w.len() == 3u);
|
|
assert!(w[0] == 1u);
|
|
assert!(w[1] == 9u);
|
|
assert!(w[2] == 25u);
|
|
|
|
fn halve(i: &int) -> Option<int> {
|
|
if *i % 2 == 0 {
|
|
Some::<int>(*i / 2)
|
|
} else {
|
|
None::<int>
|
|
}
|
|
}
|
|
fn halve_for_sure(i: &int) -> int { *i / 2 }
|
|
let all_even: ~[int] = ~[0, 2, 8, 6];
|
|
let all_odd1: ~[int] = ~[1, 7, 3];
|
|
let all_odd2: ~[int] = ~[];
|
|
let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
|
|
let mix_dest: ~[int] = ~[1, 3, 0, 0];
|
|
assert!(filter_mapped(all_even, halve) ==
|
|
map(all_even, halve_for_sure));
|
|
assert!(filter_mapped(all_odd1, halve) == ~[]);
|
|
assert!(filter_mapped(all_odd2, halve) == ~[]);
|
|
assert!(filter_mapped(mix, halve) == mix_dest);
|
|
}
|
|
|
|
#[test]
|
|
fn test_filter_map() {
|
|
// Test on-stack filter-map.
|
|
let mut v = ~[1u, 2u, 3u];
|
|
let mut w = filter_map(v, square_if_odd_v);
|
|
assert!(w.len() == 2u);
|
|
assert!(w[0] == 1u);
|
|
assert!(w[1] == 9u);
|
|
|
|
// Test on-heap filter-map.
|
|
v = ~[1u, 2u, 3u, 4u, 5u];
|
|
w = filter_map(v, square_if_odd_v);
|
|
assert!(w.len() == 3u);
|
|
assert!(w[0] == 1u);
|
|
assert!(w[1] == 9u);
|
|
assert!(w[2] == 25u);
|
|
|
|
fn halve(i: int) -> Option<int> {
|
|
if i % 2 == 0 {
|
|
Some::<int>(i / 2)
|
|
} else {
|
|
None::<int>
|
|
}
|
|
}
|
|
fn halve_for_sure(i: &int) -> int { *i / 2 }
|
|
let all_even: ~[int] = ~[0, 2, 8, 6];
|
|
let all_even0: ~[int] = copy all_even;
|
|
let all_odd1: ~[int] = ~[1, 7, 3];
|
|
let all_odd2: ~[int] = ~[];
|
|
let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
|
|
let mix_dest: ~[int] = ~[1, 3, 0, 0];
|
|
assert!(filter_map(all_even, halve) ==
|
|
map(all_even0, halve_for_sure));
|
|
assert!(filter_map(all_odd1, halve) == ~[]);
|
|
assert!(filter_map(all_odd2, halve) == ~[]);
|
|
assert!(filter_map(mix, halve) == mix_dest);
|
|
}
|
|
|
|
#[test]
|
|
fn test_filter() {
|
|
assert!(filter(~[1u, 2u, 3u], is_odd) == ~[1u, 3u]);
|
|
assert!(filter(~[1u, 2u, 4u, 8u, 16u], is_three) == ~[]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_retain() {
|
|
let mut v = ~[1, 2, 3, 4, 5];
|
|
v.retain(is_odd);
|
|
assert!(v == ~[1, 3, 5]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_foldl() {
|
|
// Test on-stack fold.
|
|
let mut v = ~[1u, 2u, 3u];
|
|
let mut sum = foldl(0u, v, add);
|
|
assert!(sum == 6u);
|
|
|
|
// Test on-heap fold.
|
|
v = ~[1u, 2u, 3u, 4u, 5u];
|
|
sum = foldl(0u, v, add);
|
|
assert!(sum == 15u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_foldl2() {
|
|
fn sub(a: int, b: &int) -> int {
|
|
a - *b
|
|
}
|
|
let mut v = ~[1, 2, 3, 4];
|
|
let sum = foldl(0, v, sub);
|
|
assert!(sum == -10);
|
|
}
|
|
|
|
#[test]
|
|
fn test_foldr() {
|
|
fn sub(a: &int, b: int) -> int {
|
|
*a - b
|
|
}
|
|
let mut v = ~[1, 2, 3, 4];
|
|
let sum = foldr(v, 0, sub);
|
|
assert!(sum == -2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_each_empty() {
|
|
for each::<int>(~[]) |_v| {
|
|
fail!(); // should never be executed
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_iter_nonempty() {
|
|
let mut i = 0;
|
|
for each(~[1, 2, 3]) |v| {
|
|
i += *v;
|
|
}
|
|
assert!(i == 6);
|
|
}
|
|
|
|
#[test]
|
|
fn test_iteri() {
|
|
let mut i = 0;
|
|
for eachi(~[1, 2, 3]) |j, v| {
|
|
if i == 0 { assert!(*v == 1); }
|
|
assert!(j + 1u == *v as uint);
|
|
i += *v;
|
|
}
|
|
assert!(i == 6);
|
|
}
|
|
|
|
#[test]
|
|
fn test_each_reverse_empty() {
|
|
let v: ~[int] = ~[];
|
|
for v.each_reverse |_v| {
|
|
fail!(); // should never execute
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_each_reverse_nonempty() {
|
|
let mut i = 0;
|
|
for each_reverse(~[1, 2, 3]) |v| {
|
|
if i == 0 { assert!(*v == 3); }
|
|
i += *v
|
|
}
|
|
assert!(i == 6);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eachi_reverse() {
|
|
let mut i = 0;
|
|
for eachi_reverse(~[0, 1, 2]) |j, v| {
|
|
if i == 0 { assert!(*v == 2); }
|
|
assert!(j == *v as uint);
|
|
i += *v;
|
|
}
|
|
assert!(i == 3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_eachi_reverse_empty() {
|
|
let v: ~[int] = ~[];
|
|
for v.eachi_reverse |_i, _v| {
|
|
fail!(); // should never execute
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_each_permutation() {
|
|
let mut results: ~[~[int]];
|
|
|
|
results = ~[];
|
|
for each_permutation(~[]) |v| { results.push(from_slice(v)); }
|
|
assert!(results == ~[~[]]);
|
|
|
|
results = ~[];
|
|
for each_permutation(~[7]) |v| { results.push(from_slice(v)); }
|
|
assert!(results == ~[~[7]]);
|
|
|
|
results = ~[];
|
|
for each_permutation(~[1,1]) |v| { results.push(from_slice(v)); }
|
|
assert!(results == ~[~[1,1],~[1,1]]);
|
|
|
|
results = ~[];
|
|
for each_permutation(~[5,2,0]) |v| { results.push(from_slice(v)); }
|
|
assert!(results ==
|
|
~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_any_and_all() {
|
|
assert!(any(~[1u, 2u, 3u], is_three));
|
|
assert!(!any(~[0u, 1u, 2u], is_three));
|
|
assert!(any(~[1u, 2u, 3u, 4u, 5u], is_three));
|
|
assert!(!any(~[1u, 2u, 4u, 5u, 6u], is_three));
|
|
|
|
assert!(all(~[3u, 3u, 3u], is_three));
|
|
assert!(!all(~[3u, 3u, 2u], is_three));
|
|
assert!(all(~[3u, 3u, 3u, 3u, 3u], is_three));
|
|
assert!(!all(~[3u, 3u, 0u, 1u, 2u], is_three));
|
|
}
|
|
|
|
#[test]
|
|
fn test_any2_and_all2() {
|
|
|
|
assert!(any2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
|
|
assert!(any2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
|
|
assert!(!any2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
|
|
assert!(any2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
|
|
|
|
assert!(all2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
|
|
assert!(!all2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
|
|
assert!(!all2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
|
|
assert!(!all2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
|
|
}
|
|
|
|
#[test]
|
|
fn test_zip_unzip() {
|
|
let v1 = ~[1, 2, 3];
|
|
let v2 = ~[4, 5, 6];
|
|
|
|
let z1 = zip(v1, v2);
|
|
|
|
assert!((1, 4) == z1[0]);
|
|
assert!((2, 5) == z1[1]);
|
|
assert!((3, 6) == z1[2]);
|
|
|
|
let (left, right) = unzip(z1);
|
|
|
|
assert!((1, 4) == (left[0], right[0]));
|
|
assert!((2, 5) == (left[1], right[1]));
|
|
assert!((3, 6) == (left[2], right[2]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_position_elem() {
|
|
assert!(position_elem(~[], &1).is_none());
|
|
|
|
let v1 = ~[1, 2, 3, 3, 2, 5];
|
|
assert!(position_elem(v1, &1) == Some(0u));
|
|
assert!(position_elem(v1, &2) == Some(1u));
|
|
assert!(position_elem(v1, &5) == Some(5u));
|
|
assert!(position_elem(v1, &4).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_position() {
|
|
fn less_than_three(i: &int) -> bool { *i < 3 }
|
|
fn is_eighteen(i: &int) -> bool { *i == 18 }
|
|
|
|
assert!(position(~[], less_than_three).is_none());
|
|
|
|
let v1 = ~[5, 4, 3, 2, 1];
|
|
assert!(position(v1, less_than_three) == Some(3u));
|
|
assert!(position(v1, is_eighteen).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_position_between() {
|
|
assert!(position_between(~[], 0u, 0u, f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(position_between(v, 0u, 0u, f).is_none());
|
|
assert!(position_between(v, 0u, 1u, f).is_none());
|
|
assert!(position_between(v, 0u, 2u, f) == Some(1u));
|
|
assert!(position_between(v, 0u, 3u, f) == Some(1u));
|
|
assert!(position_between(v, 0u, 4u, f) == Some(1u));
|
|
|
|
assert!(position_between(v, 1u, 1u, f).is_none());
|
|
assert!(position_between(v, 1u, 2u, f) == Some(1u));
|
|
assert!(position_between(v, 1u, 3u, f) == Some(1u));
|
|
assert!(position_between(v, 1u, 4u, f) == Some(1u));
|
|
|
|
assert!(position_between(v, 2u, 2u, f).is_none());
|
|
assert!(position_between(v, 2u, 3u, f).is_none());
|
|
assert!(position_between(v, 2u, 4u, f) == Some(3u));
|
|
|
|
assert!(position_between(v, 3u, 3u, f).is_none());
|
|
assert!(position_between(v, 3u, 4u, f) == Some(3u));
|
|
|
|
assert!(position_between(v, 4u, 4u, f).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_find() {
|
|
assert!(find(~[], f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(find(v, f) == Some((1, 'b')));
|
|
assert!(find(v, g).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_find_between() {
|
|
assert!(find_between(~[], 0u, 0u, f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(find_between(v, 0u, 0u, f).is_none());
|
|
assert!(find_between(v, 0u, 1u, f).is_none());
|
|
assert!(find_between(v, 0u, 2u, f) == Some((1, 'b')));
|
|
assert!(find_between(v, 0u, 3u, f) == Some((1, 'b')));
|
|
assert!(find_between(v, 0u, 4u, f) == Some((1, 'b')));
|
|
|
|
assert!(find_between(v, 1u, 1u, f).is_none());
|
|
assert!(find_between(v, 1u, 2u, f) == Some((1, 'b')));
|
|
assert!(find_between(v, 1u, 3u, f) == Some((1, 'b')));
|
|
assert!(find_between(v, 1u, 4u, f) == Some((1, 'b')));
|
|
|
|
assert!(find_between(v, 2u, 2u, f).is_none());
|
|
assert!(find_between(v, 2u, 3u, f).is_none());
|
|
assert!(find_between(v, 2u, 4u, f) == Some((3, 'b')));
|
|
|
|
assert!(find_between(v, 3u, 3u, f).is_none());
|
|
assert!(find_between(v, 3u, 4u, f) == Some((3, 'b')));
|
|
|
|
assert!(find_between(v, 4u, 4u, f).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_rposition() {
|
|
assert!(find(~[], f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(position(v, f) == Some(1u));
|
|
assert!(position(v, g).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_rposition_between() {
|
|
assert!(rposition_between(~[], 0u, 0u, f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(rposition_between(v, 0u, 0u, f).is_none());
|
|
assert!(rposition_between(v, 0u, 1u, f).is_none());
|
|
assert!(rposition_between(v, 0u, 2u, f) == Some(1u));
|
|
assert!(rposition_between(v, 0u, 3u, f) == Some(1u));
|
|
assert!(rposition_between(v, 0u, 4u, f) == Some(3u));
|
|
|
|
assert!(rposition_between(v, 1u, 1u, f).is_none());
|
|
assert!(rposition_between(v, 1u, 2u, f) == Some(1u));
|
|
assert!(rposition_between(v, 1u, 3u, f) == Some(1u));
|
|
assert!(rposition_between(v, 1u, 4u, f) == Some(3u));
|
|
|
|
assert!(rposition_between(v, 2u, 2u, f).is_none());
|
|
assert!(rposition_between(v, 2u, 3u, f).is_none());
|
|
assert!(rposition_between(v, 2u, 4u, f) == Some(3u));
|
|
|
|
assert!(rposition_between(v, 3u, 3u, f).is_none());
|
|
assert!(rposition_between(v, 3u, 4u, f) == Some(3u));
|
|
|
|
assert!(rposition_between(v, 4u, 4u, f).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_rfind() {
|
|
assert!(rfind(~[], f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(rfind(v, f) == Some((3, 'b')));
|
|
assert!(rfind(v, g).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_rfind_between() {
|
|
assert!(rfind_between(~[], 0u, 0u, f).is_none());
|
|
|
|
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
|
|
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
|
|
|
|
assert!(rfind_between(v, 0u, 0u, f).is_none());
|
|
assert!(rfind_between(v, 0u, 1u, f).is_none());
|
|
assert!(rfind_between(v, 0u, 2u, f) == Some((1, 'b')));
|
|
assert!(rfind_between(v, 0u, 3u, f) == Some((1, 'b')));
|
|
assert!(rfind_between(v, 0u, 4u, f) == Some((3, 'b')));
|
|
|
|
assert!(rfind_between(v, 1u, 1u, f).is_none());
|
|
assert!(rfind_between(v, 1u, 2u, f) == Some((1, 'b')));
|
|
assert!(rfind_between(v, 1u, 3u, f) == Some((1, 'b')));
|
|
assert!(rfind_between(v, 1u, 4u, f) == Some((3, 'b')));
|
|
|
|
assert!(rfind_between(v, 2u, 2u, f).is_none());
|
|
assert!(rfind_between(v, 2u, 3u, f).is_none());
|
|
assert!(rfind_between(v, 2u, 4u, f) == Some((3, 'b')));
|
|
|
|
assert!(rfind_between(v, 3u, 3u, f).is_none());
|
|
assert!(rfind_between(v, 3u, 4u, f) == Some((3, 'b')));
|
|
|
|
assert!(rfind_between(v, 4u, 4u, f).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn test_bsearch_elem() {
|
|
assert!(bsearch_elem([1,2,3,4,5], &5) == Some(4));
|
|
assert!(bsearch_elem([1,2,3,4,5], &4) == Some(3));
|
|
assert!(bsearch_elem([1,2,3,4,5], &3) == Some(2));
|
|
assert!(bsearch_elem([1,2,3,4,5], &2) == Some(1));
|
|
assert!(bsearch_elem([1,2,3,4,5], &1) == Some(0));
|
|
|
|
assert!(bsearch_elem([2,4,6,8,10], &1) == None);
|
|
assert!(bsearch_elem([2,4,6,8,10], &5) == None);
|
|
assert!(bsearch_elem([2,4,6,8,10], &4) == Some(1));
|
|
assert!(bsearch_elem([2,4,6,8,10], &10) == Some(4));
|
|
|
|
assert!(bsearch_elem([2,4,6,8], &1) == None);
|
|
assert!(bsearch_elem([2,4,6,8], &5) == None);
|
|
assert!(bsearch_elem([2,4,6,8], &4) == Some(1));
|
|
assert!(bsearch_elem([2,4,6,8], &8) == Some(3));
|
|
|
|
assert!(bsearch_elem([2,4,6], &1) == None);
|
|
assert!(bsearch_elem([2,4,6], &5) == None);
|
|
assert!(bsearch_elem([2,4,6], &4) == Some(1));
|
|
assert!(bsearch_elem([2,4,6], &6) == Some(2));
|
|
|
|
assert!(bsearch_elem([2,4], &1) == None);
|
|
assert!(bsearch_elem([2,4], &5) == None);
|
|
assert!(bsearch_elem([2,4], &2) == Some(0));
|
|
assert!(bsearch_elem([2,4], &4) == Some(1));
|
|
|
|
assert!(bsearch_elem([2], &1) == None);
|
|
assert!(bsearch_elem([2], &5) == None);
|
|
assert!(bsearch_elem([2], &2) == Some(0));
|
|
|
|
assert!(bsearch_elem([], &1) == None);
|
|
assert!(bsearch_elem([], &5) == None);
|
|
|
|
assert!(bsearch_elem([1,1,1,1,1], &1) != None);
|
|
assert!(bsearch_elem([1,1,1,1,2], &1) != None);
|
|
assert!(bsearch_elem([1,1,1,2,2], &1) != None);
|
|
assert!(bsearch_elem([1,1,2,2,2], &1) != None);
|
|
assert!(bsearch_elem([1,2,2,2,2], &1) == Some(0));
|
|
|
|
assert!(bsearch_elem([1,2,3,4,5], &6) == None);
|
|
assert!(bsearch_elem([1,2,3,4,5], &0) == None);
|
|
}
|
|
|
|
#[test]
|
|
fn reverse_and_reversed() {
|
|
let mut v: ~[int] = ~[10, 20];
|
|
assert!(v[0] == 10);
|
|
assert!(v[1] == 20);
|
|
reverse(v);
|
|
assert!(v[0] == 20);
|
|
assert!(v[1] == 10);
|
|
let v2 = reversed::<int>(~[10, 20]);
|
|
assert!(v2[0] == 20);
|
|
assert!(v2[1] == 10);
|
|
v[0] = 30;
|
|
assert!(v2[0] == 20);
|
|
// Make sure they work with 0-length vectors too.
|
|
|
|
let v4 = reversed::<int>(~[]);
|
|
assert!(v4 == ~[]);
|
|
let mut v3: ~[int] = ~[];
|
|
reverse::<int>(v3);
|
|
}
|
|
|
|
#[test]
|
|
fn reversed_mut() {
|
|
let v2 = reversed::<int>(~[10, 20]);
|
|
assert!(v2[0] == 20);
|
|
assert!(v2[1] == 10);
|
|
}
|
|
|
|
#[test]
|
|
fn test_split() {
|
|
fn f(x: &int) -> bool { *x == 3 }
|
|
|
|
assert!(split(~[], f) == ~[]);
|
|
assert!(split(~[1, 2], f) == ~[~[1, 2]]);
|
|
assert!(split(~[3, 1, 2], f) == ~[~[], ~[1, 2]]);
|
|
assert!(split(~[1, 2, 3], f) == ~[~[1, 2], ~[]]);
|
|
assert!(split(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_splitn() {
|
|
fn f(x: &int) -> bool { *x == 3 }
|
|
|
|
assert!(splitn(~[], 1u, f) == ~[]);
|
|
assert!(splitn(~[1, 2], 1u, f) == ~[~[1, 2]]);
|
|
assert!(splitn(~[3, 1, 2], 1u, f) == ~[~[], ~[1, 2]]);
|
|
assert!(splitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]]);
|
|
assert!(splitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
|
|
~[~[1, 2], ~[4, 3, 5]]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsplit() {
|
|
fn f(x: &int) -> bool { *x == 3 }
|
|
|
|
assert!(rsplit(~[], f) == ~[]);
|
|
assert!(rsplit(~[1, 2], f) == ~[~[1, 2]]);
|
|
assert!(rsplit(~[1, 2, 3], f) == ~[~[1, 2], ~[]]);
|
|
assert!(rsplit(~[1, 2, 3, 4, 3, 5], f) ==
|
|
~[~[1, 2], ~[4], ~[5]]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rsplitn() {
|
|
fn f(x: &int) -> bool { *x == 3 }
|
|
|
|
assert!(rsplitn(~[], 1u, f) == ~[]);
|
|
assert!(rsplitn(~[1, 2], 1u, f) == ~[~[1, 2]]);
|
|
assert!(rsplitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]]);
|
|
assert!(rsplitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
|
|
~[~[1, 2, 3, 4], ~[5]]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_partition() {
|
|
// FIXME (#4355 maybe): using v.partition here crashes
|
|
assert!(partition(~[], |x: &int| *x < 3) == (~[], ~[]));
|
|
assert!(partition(~[1, 2, 3], |x: &int| *x < 4) ==
|
|
(~[1, 2, 3], ~[]));
|
|
assert!(partition(~[1, 2, 3], |x: &int| *x < 2) ==
|
|
(~[1], ~[2, 3]));
|
|
assert!(partition(~[1, 2, 3], |x: &int| *x < 0) ==
|
|
(~[], ~[1, 2, 3]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_partitioned() {
|
|
assert!((~[]).partitioned(|x: &int| *x < 3) == (~[], ~[]));
|
|
assert!((~[1, 2, 3]).partitioned(|x: &int| *x < 4) ==
|
|
(~[1, 2, 3], ~[]));
|
|
assert!((~[1, 2, 3]).partitioned(|x: &int| *x < 2) ==
|
|
(~[1], ~[2, 3]));
|
|
assert!((~[1, 2, 3]).partitioned(|x: &int| *x < 0) ==
|
|
(~[], ~[1, 2, 3]));
|
|
}
|
|
|
|
#[test]
|
|
fn test_concat() {
|
|
assert!(concat(~[~[1], ~[2,3]]) == ~[1, 2, 3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_connect() {
|
|
assert!(connect(~[], &0) == ~[]);
|
|
assert!(connect(~[~[1], ~[2, 3]], &0) == ~[1, 0, 2, 3]);
|
|
assert!(connect(~[~[1], ~[2], ~[3]], &0) == ~[1, 0, 2, 0, 3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_windowed () {
|
|
fn t(n: uint, expected: &[&[int]]) {
|
|
let mut i = 0;
|
|
for windowed(n, ~[1,2,3,4,5,6]) |v| {
|
|
assert_eq!(v, expected[i]);
|
|
i += 1;
|
|
}
|
|
|
|
// check that we actually iterated the right number of times
|
|
assert_eq!(i, expected.len());
|
|
}
|
|
t(3, &[&[1,2,3],&[2,3,4],&[3,4,5],&[4,5,6]]);
|
|
t(4, &[&[1,2,3,4],&[2,3,4,5],&[3,4,5,6]]);
|
|
t(7, &[]);
|
|
t(8, &[]);
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_windowed_() {
|
|
for windowed (0u, ~[1u,2u,3u,4u,5u,6u]) |_v| {}
|
|
}
|
|
|
|
#[test]
|
|
fn test_unshift() {
|
|
let mut x = ~[1, 2, 3];
|
|
x.unshift(0);
|
|
assert!(x == ~[0, 1, 2, 3]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_insert() {
|
|
let mut a = ~[1, 2, 4];
|
|
a.insert(2, 3);
|
|
assert!(a == ~[1, 2, 3, 4]);
|
|
|
|
let mut a = ~[1, 2, 3];
|
|
a.insert(0, 0);
|
|
assert!(a == ~[0, 1, 2, 3]);
|
|
|
|
let mut a = ~[1, 2, 3];
|
|
a.insert(3, 4);
|
|
assert!(a == ~[1, 2, 3, 4]);
|
|
|
|
let mut a = ~[];
|
|
a.insert(0, 1);
|
|
assert!(a == ~[1]);
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(cfg(windows))]
|
|
#[should_fail]
|
|
fn test_insert_oob() {
|
|
let mut a = ~[1, 2, 3];
|
|
a.insert(4, 5);
|
|
}
|
|
|
|
#[test]
|
|
fn test_remove() {
|
|
let mut a = ~[1, 2, 3, 4];
|
|
a.remove(2);
|
|
assert!(a == ~[1, 2, 4]);
|
|
|
|
let mut a = ~[1, 2, 3];
|
|
a.remove(0);
|
|
assert!(a == ~[2, 3]);
|
|
|
|
let mut a = ~[1];
|
|
a.remove(0);
|
|
assert!(a == ~[]);
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(cfg(windows))]
|
|
#[should_fail]
|
|
fn test_remove_oob() {
|
|
let mut a = ~[1, 2, 3];
|
|
a.remove(3);
|
|
}
|
|
|
|
#[test]
|
|
fn test_capacity() {
|
|
let mut v = ~[0u64];
|
|
reserve(&mut v, 10u);
|
|
assert!(capacity(&v) == 10u);
|
|
let mut v = ~[0u32];
|
|
reserve(&mut v, 10u);
|
|
assert!(capacity(&v) == 10u);
|
|
}
|
|
|
|
#[test]
|
|
fn test_slice_2() {
|
|
let v = ~[1, 2, 3, 4, 5];
|
|
let v = v.slice(1u, 3u);
|
|
assert!(v.len() == 2u);
|
|
assert!(v[0] == 2);
|
|
assert!(v[1] == 3);
|
|
}
|
|
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_from_fn_fail() {
|
|
do from_fn(100) |v| {
|
|
if v == 50 { fail!() }
|
|
(~0, @0)
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_build_fail() {
|
|
do build |push| {
|
|
push((~0, @0));
|
|
push((~0, @0));
|
|
push((~0, @0));
|
|
push((~0, @0));
|
|
fail!();
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_split_fail_ret_true() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do split(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_split_fail_ret_false() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do split(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_splitn_fail_ret_true() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do splitn(v, 100) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_splitn_fail_ret_false() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do split(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_rsplit_fail_ret_true() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do rsplit(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_rsplit_fail_ret_false() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do rsplit(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_rsplitn_fail_ret_true() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do rsplitn(v, 100) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_rsplitn_fail_ret_false() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do rsplitn(v, 100) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_consume_fail() {
|
|
let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do consume(v) |_i, _elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 1;
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_grow_fn_fail() {
|
|
let mut v = ~[];
|
|
do v.grow_fn(100) |i| {
|
|
if i == 50 {
|
|
fail!()
|
|
}
|
|
(~0, @0)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_map_fail() {
|
|
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do map(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
~[(~0, @0)]
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_map_consume_fail() {
|
|
let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do map_consume(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
~[(~0, @0)]
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_mapi_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do mapi(v) |_i, _elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
~[(~0, @0)]
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_flat_map_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do map(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
~[(~0, @0)]
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_map_zip_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do map_zip(v, v) |_elt1, _elt2| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
~[(~0, @0)]
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_filter_mapped_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do filter_mapped(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
Some((~0, @0))
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_filter_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do v.filtered |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_foldl_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do foldl((~0, @0), v) |_a, _b| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
(~0, @0)
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_foldr_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do foldr(v, (~0, @0)) |_a, _b| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
(~0, @0)
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_any_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do any(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_any2_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do any(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_all_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do all(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_alli_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do alli(v) |_i, _elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_all2_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do all2(v, v) |_elt1, _elt2| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
true
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_find_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do find(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_position_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do position(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_rposition_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do rposition(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
};
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_each_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do each(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_eachi_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
do eachi(v) |_i, _elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
false
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
#[allow(non_implicitly_copyable_typarams)]
|
|
fn test_permute_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
let mut i = 0;
|
|
for each_permutation(v) |_elt| {
|
|
if i == 2 {
|
|
fail!()
|
|
}
|
|
i += 0;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_as_imm_buf_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
do as_imm_buf(v) |_buf, _i| {
|
|
fail!()
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(windows)]
|
|
#[should_fail]
|
|
fn test_as_const_buf_fail() {
|
|
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
do as_const_buf(v) |_buf, _i| {
|
|
fail!()
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[ignore(cfg(windows))]
|
|
#[should_fail]
|
|
fn test_as_mut_buf_fail() {
|
|
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
|
|
do as_mut_buf(v) |_buf, _i| {
|
|
fail!()
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[should_fail]
|
|
#[ignore(cfg(windows))]
|
|
fn test_copy_memory_oob() {
|
|
unsafe {
|
|
let mut a = [1, 2, 3, 4];
|
|
let b = [1, 2, 3, 4, 5];
|
|
raw::copy_memory(a, b, 5);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_total_ord() {
|
|
[1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater;
|
|
[1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less;
|
|
[1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal;
|
|
[1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less;
|
|
[2, 2].cmp(& &[1, 2, 3, 4]) == Greater;
|
|
}
|
|
|
|
#[test]
|
|
fn test_iterator() {
|
|
use iterator::*;
|
|
let xs = [1, 2, 5, 10, 11];
|
|
let ys = [1, 2, 5, 10, 11, 19];
|
|
let mut it = xs.iter();
|
|
let mut i = 0;
|
|
for it.advance |&x| {
|
|
assert_eq!(x, ys[i]);
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|