rust/src/libcore/vec.rs
2013-04-28 22:31:39 -04:00

4649 lines
124 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Vectors
#[warn(non_camel_case_types)];
use cast::transmute;
use cast;
use container::{Container, Mutable};
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Less, Equal, Greater};
use clone::Clone;
use old_iter::BaseIter;
use old_iter;
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
use iterator::Iterator;
use kinds::Copy;
use libc;
use option::{None, Option, Some};
use unstable::intrinsics;
use ptr;
use ptr::addr_of;
use sys;
use uint;
use vec;
#[cfg(notest)] use cmp::Equiv;
pub mod rustrt {
use libc;
use sys;
use vec::raw;
#[abi = "cdecl"]
pub extern {
// These names are terrible. reserve_shared applies
// to ~[] and reserve_shared_actual applies to @[].
#[fast_ffi]
unsafe fn vec_reserve_shared(++t: *sys::TypeDesc,
++v: **raw::VecRepr,
++n: libc::size_t);
#[fast_ffi]
unsafe fn vec_reserve_shared_actual(++t: *sys::TypeDesc,
++v: **raw::VecRepr,
++n: libc::size_t);
}
}
/// Returns true if a vector contains no elements
pub fn is_empty<T>(v: &const [T]) -> bool {
as_const_buf(v, |_p, len| len == 0u)
}
/// Returns true if two vectors have the same length
pub fn same_length<T, U>(xs: &const [T], ys: &const [U]) -> bool {
xs.len() == ys.len()
}
/**
* Reserves capacity for exactly `n` elements in the given vector.
*
* If the capacity for `v` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * v - A vector
* * n - The number of elements to reserve space for
*/
#[inline]
pub fn reserve<T>(v: &mut ~[T], n: uint) {
// Only make the (slow) call into the runtime if we have to
use managed;
if capacity(v) < n {
unsafe {
let ptr: **raw::VecRepr = cast::transmute(v);
let td = sys::get_type_desc::<T>();
if ((**ptr).box_header.ref_count ==
managed::raw::RC_MANAGED_UNIQUE) {
rustrt::vec_reserve_shared_actual(td, ptr, n as libc::size_t);
} else {
rustrt::vec_reserve_shared(td, ptr, n as libc::size_t);
}
}
}
}
/**
* Reserves capacity for at least `n` elements in the given vector.
*
* This function will over-allocate in order to amortize the allocation costs
* in scenarios where the caller may need to repeatedly reserve additional
* space.
*
* If the capacity for `v` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * v - A vector
* * n - The number of elements to reserve space for
*/
pub fn reserve_at_least<T>(v: &mut ~[T], n: uint) {
reserve(v, uint::next_power_of_two(n));
}
/// Returns the number of elements the vector can hold without reallocating
#[inline(always)]
pub fn capacity<T>(v: &const ~[T]) -> uint {
unsafe {
let repr: **raw::VecRepr = ::cast::transmute(v);
(**repr).unboxed.alloc / sys::nonzero_size_of::<T>()
}
}
/// Returns the length of a vector
#[inline(always)]
pub fn len<T>(v: &const [T]) -> uint {
as_const_buf(v, |_p, len| len)
}
// A botch to tide us over until core and std are fully demuted.
pub fn uniq_len<T>(v: &const ~[T]) -> uint {
unsafe {
let v: &~[T] = ::cast::transmute(v);
as_const_buf(*v, |_p, len| len)
}
}
/**
* Creates and initializes an immutable vector.
*
* Creates an immutable vector of size `n_elts` and initializes the elements
* to the value returned by the function `op`.
*/
pub fn from_fn<T>(n_elts: uint, op: old_iter::InitOp<T>) -> ~[T] {
unsafe {
let mut v = with_capacity(n_elts);
do as_mut_buf(v) |p, _len| {
let mut i: uint = 0u;
while i < n_elts {
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i)),
op(i));
i += 1u;
}
}
raw::set_len(&mut v, n_elts);
v
}
}
/**
* Creates and initializes an immutable vector.
*
* Creates an immutable vector of size `n_elts` and initializes the elements
* to the value `t`.
*/
pub fn from_elem<T:Copy>(n_elts: uint, t: T) -> ~[T] {
from_fn(n_elts, |_i| copy t)
}
/// Creates a new unique vector with the same contents as the slice
pub fn from_slice<T:Copy>(t: &[T]) -> ~[T] {
from_fn(t.len(), |i| t[i])
}
/// Creates a new vector with a capacity of `capacity`
pub fn with_capacity<T>(capacity: uint) -> ~[T] {
let mut vec = ~[];
reserve(&mut vec, capacity);
vec
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* This version takes an initial capacity for the vector.
*
* # Arguments
*
* * size - An initial size of the vector to reserve
* * builder - A function that will construct the vector. It receives
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline(always)]
pub fn build_sized<A>(size: uint, builder: &fn(push: &fn(v: A))) -> ~[A] {
let mut vec = with_capacity(size);
builder(|x| vec.push(x));
vec
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
*
* # Arguments
*
* * builder - A function that will construct the vector. It receives
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline(always)]
pub fn build<A>(builder: &fn(push: &fn(v: A))) -> ~[A] {
build_sized(4, builder)
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* This version takes an initial size for the vector.
*
* # Arguments
*
* * size - An option, maybe containing initial size of the vector to reserve
* * builder - A function that will construct the vector. It recieves
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline(always)]
pub fn build_sized_opt<A>(size: Option<uint>,
builder: &fn(push: &fn(v: A)))
-> ~[A] {
build_sized(size.get_or_default(4), builder)
}
// Accessors
/// Returns the first element of a vector
pub fn head<'r,T>(v: &'r [T]) -> &'r T {
if v.len() == 0 { fail!(~"head: empty vector") }
&v[0]
}
/// Returns `Some(x)` where `x` is the first element of the slice `v`,
/// or `None` if the vector is empty.
pub fn head_opt<'r,T>(v: &'r [T]) -> Option<&'r T> {
if v.len() == 0 { None } else { Some(&v[0]) }
}
/// Returns a vector containing all but the first element of a slice
pub fn tail<'r,T>(v: &'r [T]) -> &'r [T] { slice(v, 1, v.len()) }
/// Returns a vector containing all but the first `n` elements of a slice
pub fn tailn<'r,T>(v: &'r [T], n: uint) -> &'r [T] { slice(v, n, v.len()) }
/// Returns a vector containing all but the last element of a slice
pub fn init<'r,T>(v: &'r [T]) -> &'r [T] { slice(v, 0, v.len() - 1) }
/// Returns a vector containing all but the last `n' elements of a slice
pub fn initn<'r,T>(v: &'r [T], n: uint) -> &'r [T] {
slice(v, 0, v.len() - n)
}
/// Returns the last element of the slice `v`, failing if the slice is empty.
pub fn last<'r,T>(v: &'r [T]) -> &'r T {
if v.len() == 0 { fail!(~"last: empty vector") }
&v[v.len() - 1]
}
/// Returns `Some(x)` where `x` is the last element of the slice `v`, or
/// `None` if the vector is empty.
pub fn last_opt<'r,T>(v: &'r [T]) -> Option<&'r T> {
if v.len() == 0 { None } else { Some(&v[v.len() - 1]) }
}
/// Return a slice that points into another slice.
#[inline(always)]
pub fn slice<'r,T>(v: &'r [T], start: uint, end: uint) -> &'r [T] {
assert!(start <= end);
assert!(end <= len(v));
do as_imm_buf(v) |p, _len| {
unsafe {
::cast::transmute(
(ptr::offset(p, start),
(end - start) * sys::nonzero_size_of::<T>()))
}
}
}
/// Return a slice that points into another slice.
#[inline(always)]
pub fn mut_slice<'r,T>(v: &'r mut [T], start: uint, end: uint)
-> &'r mut [T] {
assert!(start <= end);
assert!(end <= v.len());
do as_mut_buf(v) |p, _len| {
unsafe {
::cast::transmute(
(ptr::mut_offset(p, start),
(end - start) * sys::nonzero_size_of::<T>()))
}
}
}
/// Return a slice that points into another slice.
#[inline(always)]
pub fn const_slice<'r,T>(v: &'r const [T], start: uint, end: uint)
-> &'r const [T] {
assert!(start <= end);
assert!(end <= len(v));
do as_const_buf(v) |p, _len| {
unsafe {
::cast::transmute(
(ptr::const_offset(p, start),
(end - start) * sys::nonzero_size_of::<T>()))
}
}
}
/// Copies
/// Split the vector `v` by applying each element against the predicate `f`.
pub fn split<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0u) { return ~[] }
let mut start = 0u;
let mut result = ~[];
while start < ln {
match position_between(v, start, ln, f) {
None => break,
Some(i) => {
result.push(slice(v, start, i).to_vec());
start = i + 1u;
}
}
}
result.push(slice(v, start, ln).to_vec());
result
}
/**
* Split the vector `v` by applying each element against the predicate `f` up
* to `n` times.
*/
pub fn splitn<T:Copy>(v: &[T], n: uint, f: &fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0u) { return ~[] }
let mut start = 0u;
let mut count = n;
let mut result = ~[];
while start < ln && count > 0u {
match position_between(v, start, ln, f) {
None => break,
Some(i) => {
result.push(slice(v, start, i).to_vec());
// Make sure to skip the separator.
start = i + 1u;
count -= 1u;
}
}
}
result.push(slice(v, start, ln).to_vec());
result
}
/**
* Reverse split the vector `v` by applying each element against the predicate
* `f`.
*/
pub fn rsplit<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0) { return ~[] }
let mut end = ln;
let mut result = ~[];
while end > 0 {
match rposition_between(v, 0, end, f) {
None => break,
Some(i) => {
result.push(slice(v, i + 1, end).to_vec());
end = i;
}
}
}
result.push(slice(v, 0u, end).to_vec());
reverse(result);
result
}
/**
* Reverse split the vector `v` by applying each element against the predicate
* `f` up to `n times.
*/
pub fn rsplitn<T:Copy>(v: &[T], n: uint, f: &fn(t: &T) -> bool) -> ~[~[T]] {
let ln = len(v);
if (ln == 0u) { return ~[] }
let mut end = ln;
let mut count = n;
let mut result = ~[];
while end > 0u && count > 0u {
match rposition_between(v, 0u, end, f) {
None => break,
Some(i) => {
result.push(slice(v, i + 1u, end).to_vec());
// Make sure to skip the separator.
end = i;
count -= 1u;
}
}
}
result.push(slice(v, 0u, end).to_vec());
reverse(result);
result
}
/**
* Partitions a vector into two new vectors: those that satisfies the
* predicate, and those that do not.
*/
pub fn partition<T>(v: ~[T], f: &fn(&T) -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
// FIXME (#4355 maybe): using v.consume here crashes
// do v.consume |_, elt| {
do consume(v) |_, elt| {
if f(&elt) {
lefts.push(elt);
} else {
rights.push(elt);
}
}
(lefts, rights)
}
/**
* Partitions a vector into two new vectors: those that satisfies the
* predicate, and those that do not.
*/
pub fn partitioned<T:Copy>(v: &[T], f: &fn(&T) -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
for each(v) |elt| {
if f(elt) {
lefts.push(*elt);
} else {
rights.push(*elt);
}
}
(lefts, rights)
}
// Mutators
/// Removes the first element from a vector and return it
pub fn shift<T>(v: &mut ~[T]) -> T {
unsafe {
assert!(!v.is_empty());
if v.len() == 1 { return v.pop() }
if v.len() == 2 {
let last = v.pop();
let first = v.pop();
v.push(last);
return first;
}
let ln = v.len();
let next_ln = v.len() - 1;
// Save the last element. We're going to overwrite its position
let mut work_elt = v.pop();
// We still should have room to work where what last element was
assert!(capacity(v) >= ln);
// Pretend like we have the original length so we can use
// the vector copy_memory to overwrite the hole we just made
raw::set_len(&mut *v, ln);
// Memcopy the head element (the one we want) to the location we just
// popped. For the moment it unsafely exists at both the head and last
// positions
{
let first_slice = slice(*v, 0, 1);
let last_slice = slice(*v, next_ln, ln);
raw::copy_memory(::cast::transmute(last_slice), first_slice, 1);
}
// Memcopy everything to the left one element
{
let init_slice = slice(*v, 0, next_ln);
let tail_slice = slice(*v, 1, ln);
raw::copy_memory(::cast::transmute(init_slice),
tail_slice,
next_ln);
}
// Set the new length. Now the vector is back to normal
raw::set_len(&mut *v, next_ln);
// Swap out the element we want from the end
let vp = raw::to_mut_ptr(*v);
let vp = ptr::mut_offset(vp, next_ln - 1);
*vp <-> work_elt;
work_elt
}
}
/// Prepend an element to the vector
pub fn unshift<T>(v: &mut ~[T], x: T) {
let mut vv = ~[x];
*v <-> vv;
v.push_all_move(vv);
}
/// Insert an element at position i within v, shifting all
/// elements after position i one position to the right.
pub fn insert<T>(v: &mut ~[T], i: uint, x: T) {
let len = v.len();
assert!(i <= len);
v.push(x);
let mut j = len;
while j > i {
v[j] <-> v[j - 1];
j -= 1;
}
}
/// Remove and return the element at position i within v, shifting
/// all elements after position i one position to the left.
pub fn remove<T>(v: &mut ~[T], i: uint) -> T {
let len = v.len();
assert!(i < len);
let mut j = i;
while j < len - 1 {
v[j] <-> v[j + 1];
j += 1;
}
v.pop()
}
pub fn consume<T>(mut v: ~[T], f: &fn(uint, v: T)) {
unsafe {
do as_mut_buf(v) |p, ln| {
for uint::range(0, ln) |i| {
// NB: This unsafe operation counts on init writing 0s to the
// holes we create in the vector. That ensures that, if the
// iterator fails then we won't try to clean up the consumed
// elements during unwinding
let mut x = intrinsics::init();
let p = ptr::mut_offset(p, i);
x <-> *p;
f(i, x);
}
}
raw::set_len(&mut v, 0);
}
}
pub fn consume_reverse<T>(mut v: ~[T], f: &fn(uint, v: T)) {
unsafe {
do as_mut_buf(v) |p, ln| {
let mut i = ln;
while i > 0 {
i -= 1;
// NB: This unsafe operation counts on init writing 0s to the
// holes we create in the vector. That ensures that, if the
// iterator fails then we won't try to clean up the consumed
// elements during unwinding
let mut x = intrinsics::init();
let p = ptr::mut_offset(p, i);
x <-> *p;
f(i, x);
}
}
raw::set_len(&mut v, 0);
}
}
/// Remove the last element from a vector and return it
pub fn pop<T>(v: &mut ~[T]) -> T {
let ln = v.len();
if ln == 0 {
fail!(~"sorry, cannot vec::pop an empty vector")
}
let valptr = ptr::to_mut_unsafe_ptr(&mut v[ln - 1u]);
unsafe {
// FIXME #4204: Should be uninit() - we don't need this zeroed
let mut val = intrinsics::init();
val <-> *valptr;
raw::set_len(v, ln - 1u);
val
}
}
/**
* Remove an element from anywhere in the vector and return it, replacing it
* with the last element. This does not preserve ordering, but is O(1).
*
* Fails if index >= length.
*/
pub fn swap_remove<T>(v: &mut ~[T], index: uint) -> T {
let ln = v.len();
if index >= ln {
fail!(fmt!("vec::swap_remove - index %u >= length %u", index, ln));
}
if index < ln - 1 {
v[index] <-> v[ln - 1];
}
v.pop()
}
/// Append an element to a vector
#[inline(always)]
pub fn push<T>(v: &mut ~[T], initval: T) {
unsafe {
let repr: **raw::VecRepr = ::cast::transmute(&mut *v);
let fill = (**repr).unboxed.fill;
if (**repr).unboxed.alloc > fill {
push_fast(v, initval);
}
else {
push_slow(v, initval);
}
}
}
// This doesn't bother to make sure we have space.
#[inline(always)] // really pretty please
unsafe fn push_fast<T>(v: &mut ~[T], initval: T) {
let repr: **mut raw::VecRepr = ::cast::transmute(v);
let fill = (**repr).unboxed.fill;
(**repr).unboxed.fill += sys::nonzero_size_of::<T>();
let p = addr_of(&((**repr).unboxed.data));
let p = ptr::offset(p, fill) as *mut T;
intrinsics::move_val_init(&mut(*p), initval);
}
#[inline(never)]
fn push_slow<T>(v: &mut ~[T], initval: T) {
let new_len = v.len() + 1;
reserve_at_least(&mut *v, new_len);
unsafe { push_fast(v, initval) }
}
#[inline(always)]
pub fn push_all<T:Copy>(v: &mut ~[T], rhs: &const [T]) {
let new_len = v.len() + rhs.len();
reserve(&mut *v, new_len);
for uint::range(0u, rhs.len()) |i| {
push(&mut *v, unsafe { raw::get(rhs, i) })
}
}
#[inline(always)]
pub fn push_all_move<T>(v: &mut ~[T], mut rhs: ~[T]) {
let new_len = v.len() + rhs.len();
reserve(&mut *v, new_len);
unsafe {
do as_mut_buf(rhs) |p, len| {
for uint::range(0, len) |i| {
// FIXME #4204 Should be uninit() - don't need to zero
let mut x = intrinsics::init();
x <-> *ptr::mut_offset(p, i);
push(&mut *v, x);
}
}
raw::set_len(&mut rhs, 0);
}
}
/// Shorten a vector, dropping excess elements.
pub fn truncate<T>(v: &mut ~[T], newlen: uint) {
do as_mut_buf(*v) |p, oldlen| {
assert!(newlen <= oldlen);
unsafe {
// This loop is optimized out for non-drop types.
for uint::range(newlen, oldlen) |i| {
// FIXME #4204 Should be uninit() - don't need to zero
let mut dropped = intrinsics::init();
dropped <-> *ptr::mut_offset(p, i);
}
}
}
unsafe { raw::set_len(&mut *v, newlen); }
}
/**
* Remove consecutive repeated elements from a vector; if the vector is
* sorted, this removes all duplicates.
*/
pub fn dedup<T:Eq>(v: &mut ~[T]) {
unsafe {
if v.len() < 1 { return; }
let mut last_written = 0, next_to_read = 1;
do as_const_buf(*v) |p, ln| {
// We have a mutable reference to v, so we can make arbitrary
// changes. (cf. push and pop)
let p = p as *mut T;
// last_written < next_to_read <= ln
while next_to_read < ln {
// last_written < next_to_read < ln
if *ptr::mut_offset(p, next_to_read) ==
*ptr::mut_offset(p, last_written) {
// FIXME #4204 Should be uninit() - don't need to
// zero
let mut dropped = intrinsics::init();
dropped <-> *ptr::mut_offset(p, next_to_read);
} else {
last_written += 1;
// last_written <= next_to_read < ln
if next_to_read != last_written {
*ptr::mut_offset(p, last_written) <->
*ptr::mut_offset(p, next_to_read);
}
}
// last_written <= next_to_read < ln
next_to_read += 1;
// last_written < next_to_read <= ln
}
}
// last_written < next_to_read == ln
raw::set_len(v, last_written + 1);
}
}
// Appending
#[inline(always)]
pub fn append<T:Copy>(lhs: ~[T], rhs: &const [T]) -> ~[T] {
let mut v = lhs;
v.push_all(rhs);
v
}
#[inline(always)]
pub fn append_one<T>(lhs: ~[T], x: T) -> ~[T] {
let mut v = lhs;
v.push(x);
v
}
/**
* Expands a vector in place, initializing the new elements to a given value
*
* # Arguments
*
* * v - The vector to grow
* * n - The number of elements to add
* * initval - The value for the new elements
*/
pub fn grow<T:Copy>(v: &mut ~[T], n: uint, initval: &T) {
let new_len = v.len() + n;
reserve_at_least(&mut *v, new_len);
let mut i: uint = 0u;
while i < n {
v.push(*initval);
i += 1u;
}
}
/**
* Expands a vector in place, initializing the new elements to the result of
* a function
*
* Function `init_op` is called `n` times with the values [0..`n`)
*
* # Arguments
*
* * v - The vector to grow
* * n - The number of elements to add
* * init_op - A function to call to retreive each appended element's
* value
*/
pub fn grow_fn<T>(v: &mut ~[T], n: uint, op: old_iter::InitOp<T>) {
let new_len = v.len() + n;
reserve_at_least(&mut *v, new_len);
let mut i: uint = 0u;
while i < n {
v.push(op(i));
i += 1u;
}
}
/**
* Sets the value of a vector element at a given index, growing the vector as
* needed
*
* Sets the element at position `index` to `val`. If `index` is past the end
* of the vector, expands the vector by replicating `initval` to fill the
* intervening space.
*/
pub fn grow_set<T:Copy>(v: &mut ~[T], index: uint, initval: &T, val: T) {
let l = v.len();
if index >= l { grow(&mut *v, index - l + 1u, initval); }
v[index] = val;
}
// Functional utilities
/// Apply a function to each element of a vector and return the results
pub fn map<T, U>(v: &[T], f: &fn(t: &T) -> U) -> ~[U] {
let mut result = with_capacity(len(v));
for each(v) |elem| {
result.push(f(elem));
}
result
}
pub fn map_consume<T, U>(v: ~[T], f: &fn(v: T) -> U) -> ~[U] {
let mut result = ~[];
do consume(v) |_i, x| {
result.push(f(x));
}
result
}
/// Apply a function to each element of a vector and return the results
pub fn mapi<T, U>(v: &[T], f: &fn(uint, t: &T) -> U) -> ~[U] {
let mut i = 0;
do map(v) |e| {
i += 1;
f(i - 1, e)
}
}
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
pub fn flat_map<T, U>(v: &[T], f: &fn(t: &T) -> ~[U]) -> ~[U] {
let mut result = ~[];
for each(v) |elem| { result.push_all_move(f(elem)); }
result
}
/**
* Apply a function to each pair of elements and return the results.
* Equivalent to `map(zip(v0, v1), f)`.
*/
pub fn map_zip<T:Copy,U:Copy,V>(v0: &[T], v1: &[U],
f: &fn(t: &T, v: &U) -> V) -> ~[V] {
let v0_len = len(v0);
if v0_len != len(v1) { fail!(); }
let mut u: ~[V] = ~[];
let mut i = 0u;
while i < v0_len {
u.push(f(&v0[i], &v1[i]));
i += 1u;
}
u
}
pub fn filter_map<T, U>(
v: ~[T],
f: &fn(t: T) -> Option<U>) -> ~[U]
{
/*!
*
* Apply a function to each element of a vector and return the results.
* Consumes the input vector. If function `f` returns `None` then that
* element is excluded from the resulting vector.
*/
let mut result = ~[];
do consume(v) |_, elem| {
match f(elem) {
None => {}
Some(result_elem) => { result.push(result_elem); }
}
}
result
}
pub fn filter_mapped<T, U: Copy>(
v: &[T],
f: &fn(t: &T) -> Option<U>) -> ~[U]
{
/*!
*
* Like `filter_map()`, but operates on a borrowed slice
* and does not consume the input.
*/
let mut result = ~[];
for each(v) |elem| {
match f(elem) {
None => {/* no-op */ }
Some(result_elem) => { result.push(result_elem); }
}
}
result
}
/**
* Construct a new vector from the elements of a vector for which some
* predicate holds.
*
* Apply function `f` to each element of `v` and return a vector containing
* only those elements for which `f` returned true.
*/
pub fn filter<T>(v: ~[T], f: &fn(t: &T) -> bool) -> ~[T] {
let mut result = ~[];
// FIXME (#4355 maybe): using v.consume here crashes
// do v.consume |_, elem| {
do consume(v) |_, elem| {
if f(&elem) { result.push(elem); }
}
result
}
/**
* Construct a new vector from the elements of a vector for which some
* predicate holds.
*
* Apply function `f` to each element of `v` and return a vector containing
* only those elements for which `f` returned true.
*/
pub fn filtered<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> ~[T] {
let mut result = ~[];
for each(v) |elem| {
if f(elem) { result.push(*elem); }
}
result
}
/**
* Like `filter()`, but in place. Preserves order of `v`. Linear time.
*/
pub fn retain<T>(v: &mut ~[T], f: &fn(t: &T) -> bool) {
let len = v.len();
let mut deleted: uint = 0;
for uint::range(0, len) |i| {
if !f(&v[i]) {
deleted += 1;
} else if deleted > 0 {
v[i - deleted] <-> v[i];
}
}
if deleted > 0 {
v.truncate(len - deleted);
}
}
/**
* Concatenate a vector of vectors.
*
* Flattens a vector of vectors of T into a single vector of T.
*/
pub fn concat<T:Copy>(v: &[~[T]]) -> ~[T] {
let mut r = ~[];
for each(v) |inner| { r.push_all(*inner); }
r
}
/// Concatenate a vector of vectors, placing a given separator between each
pub fn connect<T:Copy>(v: &[~[T]], sep: &T) -> ~[T] {
let mut r: ~[T] = ~[];
let mut first = true;
for each(v) |inner| {
if first { first = false; } else { r.push(*sep); }
r.push_all(*inner);
}
r
}
/**
* Reduces a vector from left to right.
*
* # Arguments
* * `z` - initial accumulator value
* * `v` - vector to iterate over
* * `p` - a closure to operate on vector elements
*
* # Examples
*
* Sum all values in the vector [1, 2, 3]:
*
* ~~~
* vec::foldl(0, [1, 2, 3], |a, b| a + *b);
* ~~~
*
*/
pub fn foldl<T, U>(z: T, v: &[U], p: &fn(t: T, u: &U) -> T) -> T {
let mut accum = z;
let mut i = 0;
let l = v.len();
while i < l {
// Use a while loop so that liveness analysis can handle moving
// the accumulator.
accum = p(accum, &v[i]);
i += 1;
}
accum
}
/**
* Reduces a vector from right to left. Note that the argument order is
* reversed compared to `foldl` to reflect the order they are provided to
* the closure.
*
* # Arguments
* * `v` - vector to iterate over
* * `z` - initial accumulator value
* * `p` - a closure to do operate on vector elements
*
* # Examples
*
* Sum all values in the vector [1, 2, 3]:
*
* ~~~
* vec::foldr([1, 2, 3], 0, |a, b| a + *b);
* ~~~
*
*/
pub fn foldr<T, U: Copy>(v: &[T], z: U, p: &fn(t: &T, u: U) -> U) -> U {
let mut accum = z;
for v.each_reverse |elt| {
accum = p(elt, accum);
}
accum
}
/**
* Return true if a predicate matches any elements
*
* If the vector contains no elements then false is returned.
*/
pub fn any<T>(v: &[T], f: &fn(t: &T) -> bool) -> bool {
for each(v) |elem| { if f(elem) { return true; } }
false
}
/**
* Return true if a predicate matches any elements in both vectors.
*
* If the vectors contains no elements then false is returned.
*/
pub fn any2<T, U>(v0: &[T], v1: &[U],
f: &fn(a: &T, b: &U) -> bool) -> bool {
let v0_len = len(v0);
let v1_len = len(v1);
let mut i = 0u;
while i < v0_len && i < v1_len {
if f(&v0[i], &v1[i]) { return true; };
i += 1u;
}
false
}
/**
* Return true if a predicate matches all elements
*
* If the vector contains no elements then true is returned.
*/
pub fn all<T>(v: &[T], f: &fn(t: &T) -> bool) -> bool {
for each(v) |elem| { if !f(elem) { return false; } }
true
}
/**
* Return true if a predicate matches all elements
*
* If the vector contains no elements then true is returned.
*/
pub fn alli<T>(v: &[T], f: &fn(uint, t: &T) -> bool) -> bool {
for eachi(v) |i, elem| { if !f(i, elem) { return false; } }
true
}
/**
* Return true if a predicate matches all elements in both vectors.
*
* If the vectors are not the same size then false is returned.
*/
pub fn all2<T, U>(v0: &[T], v1: &[U],
f: &fn(t: &T, u: &U) -> bool) -> bool {
let v0_len = len(v0);
if v0_len != len(v1) { return false; }
let mut i = 0u;
while i < v0_len { if !f(&v0[i], &v1[i]) { return false; }; i += 1u; }
true
}
/// Return true if a vector contains an element with the given value
pub fn contains<T:Eq>(v: &[T], x: &T) -> bool {
for each(v) |elt| { if *x == *elt { return true; } }
false
}
/// Returns the number of elements that are equal to a given value
pub fn count<T:Eq>(v: &[T], x: &T) -> uint {
let mut cnt = 0u;
for each(v) |elt| { if *x == *elt { cnt += 1u; } }
cnt
}
/**
* Search for the first element that matches a given predicate
*
* Apply function `f` to each element of `v`, starting from the first.
* When function `f` returns true then an option containing the element
* is returned. If `f` matches no elements then none is returned.
*/
pub fn find<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> Option<T> {
find_between(v, 0u, len(v), f)
}
/**
* Search for the first element that matches a given predicate within a range
*
* Apply function `f` to each element of `v` within the range
* [`start`, `end`). When function `f` returns true then an option containing
* the element is returned. If `f` matches no elements then none is returned.
*/
pub fn find_between<T:Copy>(v: &[T], start: uint, end: uint,
f: &fn(t: &T) -> bool) -> Option<T> {
position_between(v, start, end, f).map(|i| v[*i])
}
/**
* Search for the last element that matches a given predicate
*
* Apply function `f` to each element of `v` in reverse order. When function
* `f` returns true then an option containing the element is returned. If `f`
* matches no elements then none is returned.
*/
pub fn rfind<T:Copy>(v: &[T], f: &fn(t: &T) -> bool) -> Option<T> {
rfind_between(v, 0u, len(v), f)
}
/**
* Search for the last element that matches a given predicate within a range
*
* Apply function `f` to each element of `v` in reverse order within the range
* [`start`, `end`). When function `f` returns true then an option containing
* the element is returned. If `f` matches no elements then none is return.
*/
pub fn rfind_between<T:Copy>(v: &[T],
start: uint,
end: uint,
f: &fn(t: &T) -> bool)
-> Option<T> {
rposition_between(v, start, end, f).map(|i| v[*i])
}
/// Find the first index containing a matching value
pub fn position_elem<T:Eq>(v: &[T], x: &T) -> Option<uint> {
position(v, |y| *x == *y)
}
/**
* Find the first index matching some predicate
*
* Apply function `f` to each element of `v`. When function `f` returns true
* then an option containing the index is returned. If `f` matches no elements
* then none is returned.
*/
pub fn position<T>(v: &[T], f: &fn(t: &T) -> bool) -> Option<uint> {
position_between(v, 0u, len(v), f)
}
/**
* Find the first index matching some predicate within a range
*
* Apply function `f` to each element of `v` between the range
* [`start`, `end`). When function `f` returns true then an option containing
* the index is returned. If `f` matches no elements then none is returned.
*/
pub fn position_between<T>(v: &[T],
start: uint,
end: uint,
f: &fn(t: &T) -> bool)
-> Option<uint> {
assert!(start <= end);
assert!(end <= len(v));
let mut i = start;
while i < end { if f(&v[i]) { return Some::<uint>(i); } i += 1u; }
None
}
/// Find the last index containing a matching value
pub fn rposition_elem<T:Eq>(v: &[T], x: &T) -> Option<uint> {
rposition(v, |y| *x == *y)
}
/**
* Find the last index matching some predicate
*
* Apply function `f` to each element of `v` in reverse order. When function
* `f` returns true then an option containing the index is returned. If `f`
* matches no elements then none is returned.
*/
pub fn rposition<T>(v: &[T], f: &fn(t: &T) -> bool) -> Option<uint> {
rposition_between(v, 0u, len(v), f)
}
/**
* Find the last index matching some predicate within a range
*
* Apply function `f` to each element of `v` in reverse order between the
* range [`start`, `end`). When function `f` returns true then an option
* containing the index is returned. If `f` matches no elements then none is
* returned.
*/
pub fn rposition_between<T>(v: &[T], start: uint, end: uint,
f: &fn(t: &T) -> bool) -> Option<uint> {
assert!(start <= end);
assert!(end <= len(v));
let mut i = end;
while i > start {
if f(&v[i - 1u]) { return Some::<uint>(i - 1u); }
i -= 1u;
}
None
}
/**
* Binary search a sorted vector with a comparator function.
*
* The comparator should implement an order consistent with the sort
* order of the underlying vector, returning an order code that indicates
* whether its argument is `Less`, `Equal` or `Greater` the desired target.
*
* Returns the index where the comparator returned `Equal`, or `None` if
* not found.
*/
pub fn bsearch<T>(v: &[T], f: &fn(&T) -> Ordering) -> Option<uint> {
let mut base : uint = 0;
let mut lim : uint = v.len();
while lim != 0 {
let ix = base + (lim >> 1);
match f(&v[ix]) {
Equal => return Some(ix),
Less => {
base = ix + 1;
lim -= 1;
}
Greater => ()
}
lim >>= 1;
}
return None;
}
/**
* Binary search a sorted vector for a given element.
*
* Returns the index of the element or None if not found.
*/
pub fn bsearch_elem<T:TotalOrd>(v: &[T], x: &T) -> Option<uint> {
bsearch(v, |p| p.cmp(x))
}
// FIXME: if issue #586 gets implemented, could have a postcondition
// saying the two result lists have the same length -- or, could
// return a nominal record with a constraint saying that, instead of
// returning a tuple (contingent on issue #869)
/**
* Convert a vector of pairs into a pair of vectors, by reference. As unzip().
*/
pub fn unzip_slice<T:Copy,U:Copy>(v: &[(T, U)]) -> (~[T], ~[U]) {
let mut ts = ~[], us = ~[];
for each(v) |p| {
let (t, u) = *p;
ts.push(t);
us.push(u);
}
(ts, us)
}
/**
* Convert a vector of pairs into a pair of vectors.
*
* Returns a tuple containing two vectors where the i-th element of the first
* vector contains the first element of the i-th tuple of the input vector,
* and the i-th element of the second vector contains the second element
* of the i-th tuple of the input vector.
*/
pub fn unzip<T,U>(v: ~[(T, U)]) -> (~[T], ~[U]) {
let mut ts = ~[], us = ~[];
do consume(v) |_i, p| {
let (t, u) = p;
ts.push(t);
us.push(u);
}
(ts, us)
}
/**
* Convert two vectors to a vector of pairs, by reference. As zip().
*/
pub fn zip_slice<T:Copy,U:Copy>(v: &const [T], u: &const [U])
-> ~[(T, U)] {
let mut zipped = ~[];
let sz = len(v);
let mut i = 0u;
assert!(sz == len(u));
while i < sz {
zipped.push((v[i], u[i]));
i += 1u;
}
zipped
}
/**
* Convert two vectors to a vector of pairs.
*
* Returns a vector of tuples, where the i-th tuple contains contains the
* i-th elements from each of the input vectors.
*/
pub fn zip<T, U>(mut v: ~[T], mut u: ~[U]) -> ~[(T, U)] {
let mut i = len(v);
assert!(i == len(u));
let mut w = with_capacity(i);
while i > 0 {
w.push((v.pop(),u.pop()));
i -= 1;
}
reverse(w);
w
}
/**
* Swaps two elements in a vector
*
* # Arguments
*
* * v The input vector
* * a - The index of the first element
* * b - The index of the second element
*/
pub fn swap<T>(v: &mut [T], a: uint, b: uint) {
v[a] <-> v[b];
}
/// Reverse the order of elements in a vector, in place
pub fn reverse<T>(v: &mut [T]) {
let mut i: uint = 0;
let ln = len::<T>(v);
while i < ln / 2 { v[i] <-> v[ln - i - 1]; i += 1; }
}
/// Returns a vector with the order of elements reversed
pub fn reversed<T:Copy>(v: &const [T]) -> ~[T] {
let mut rs: ~[T] = ~[];
let mut i = len::<T>(v);
if i == 0 { return (rs); } else { i -= 1; }
while i != 0 { rs.push(v[i]); i -= 1; }
rs.push(v[0]);
rs
}
/**
* Iterates over a vector, yielding each element to a closure.
*
* # Arguments
*
* * `v` - A vector, to be iterated over
* * `f` - A closure to do the iterating. Within this closure, return true to
* * continue iterating, false to break.
*
* # Examples
* ~~~
* [1,2,3].each(|&i| {
* io::println(int::str(i));
* true
* });
* ~~~
*
* ~~~
* [1,2,3,4,5].each(|&i| {
* if i < 4 {
* io::println(int::str(i));
* true
* }
* else {
* false
* }
* });
* ~~~
*
* You probably will want to use each with a `for`/`do` expression, depending
* on your iteration needs:
*
* ~~~
* for [1,2,3].each |&i| {
* io::println(int::str(i));
* }
* ~~~
*/
#[inline(always)]
pub fn each<'r,T>(v: &'r [T], f: &fn(&'r T) -> bool) {
// ^^^^
// NB---this CANNOT be &const [T]! The reason
// is that you are passing it to `f()` using
// an immutable.
do vec::as_imm_buf(v) |p, n| {
let mut n = n;
let mut p = p;
while n > 0u {
unsafe {
let q = cast::copy_lifetime_vec(v, &*p);
if !f(q) { break; }
p = ptr::offset(p, 1u);
}
n -= 1u;
}
}
}
/// Like `each()`, but for the case where you have
/// a vector with mutable contents and you would like
/// to mutate the contents as you iterate.
#[inline(always)]
pub fn each_mut<'r,T>(v: &'r mut [T], f: &fn(elem: &'r mut T) -> bool) {
do vec::as_mut_buf(v) |p, n| {
let mut n = n;
let mut p = p;
while n > 0 {
unsafe {
let q: &'r mut T = cast::transmute_mut_region(&mut *p);
if !f(q) {
break;
}
p = p.offset(1);
}
n -= 1;
}
}
}
/// Like `each()`, but for the case where you have a vector that *may or may
/// not* have mutable contents.
#[inline(always)]
pub fn each_const<T>(v: &const [T], f: &fn(elem: &const T) -> bool) {
let mut i = 0;
let n = v.len();
while i < n {
if !f(&const v[i]) {
return;
}
i += 1;
}
}
/**
* Iterates over a vector's elements and indices
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub fn eachi<'r,T>(v: &'r [T], f: &fn(uint, v: &'r T) -> bool) {
let mut i = 0;
for each(v) |p| {
if !f(i, p) { return; }
i += 1;
}
}
/**
* Iterates over a mutable vector's elements and indices
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub fn eachi_mut<'r,T>(v: &'r mut [T], f: &fn(uint, v: &'r mut T) -> bool) {
let mut i = 0;
for each_mut(v) |p| {
if !f(i, p) {
return;
}
i += 1;
}
}
/**
* Iterates over a vector's elements in reverse
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub fn each_reverse<'r,T>(v: &'r [T], blk: &fn(v: &'r T) -> bool) {
eachi_reverse(v, |_i, v| blk(v))
}
/**
* Iterates over a vector's elements and indices in reverse
*
* Return true to continue, false to break.
*/
#[inline(always)]
pub fn eachi_reverse<'r,T>(v: &'r [T], blk: &fn(i: uint, v: &'r T) -> bool) {
let mut i = v.len();
while i > 0 {
i -= 1;
if !blk(i, &v[i]) {
return;
}
}
}
/**
* Iterates over two vectors simultaneously
*
* # Failure
*
* Both vectors must have the same length
*/
#[inline]
pub fn each2<U, T>(v1: &[U], v2: &[T], f: &fn(u: &U, t: &T) -> bool) {
assert!(len(v1) == len(v2));
for uint::range(0u, len(v1)) |i| {
if !f(&v1[i], &v2[i]) {
return;
}
}
}
/**
* Iterate over all permutations of vector `v`.
*
* Permutations are produced in lexicographic order with respect to the order
* of elements in `v` (so if `v` is sorted then the permutations are
* lexicographically sorted).
*
* The total number of permutations produced is `len(v)!`. If `v` contains
* repeated elements, then some permutations are repeated.
*/
pub fn each_permutation<T:Copy>(v: &[T], put: &fn(ts: &[T]) -> bool) {
let ln = len(v);
if ln <= 1 {
put(v);
} else {
// This does not seem like the most efficient implementation. You
// could make far fewer copies if you put your mind to it.
let mut i = 0u;
while i < ln {
let elt = v[i];
let mut rest = slice(v, 0u, i).to_vec();
rest.push_all(const_slice(v, i+1u, ln));
for each_permutation(rest) |permutation| {
if !put(append(~[elt], permutation)) {
return;
}
}
i += 1u;
}
}
}
// see doc below
#[cfg(stage0)] // XXX: lifetimes!
pub fn windowed<T>(n: uint, v: &[T], it: &fn(&[T]) -> bool) {
assert!(1u <= n);
if n > v.len() { return; }
for uint::range(0, v.len() - n + 1) |i| {
if !it(v.slice(i, i+n)) { return }
}
}
/**
* Iterate over all contiguous windows of length `n` of the vector `v`.
*
* # Example
*
* Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`, `[3,4]`)
*
* ~~~
* for windowed(2, &[1,2,3,4]) |v| {
* io::println(fmt!("%?", v));
* }
* ~~~
*
*/
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
pub fn windowed<'r, T>(n: uint, v: &'r [T], it: &fn(&'r [T]) -> bool) {
assert!(1u <= n);
if n > v.len() { return; }
for uint::range(0, v.len() - n + 1) |i| {
if !it(v.slice(i, i + n)) { return }
}
}
/**
* Work with the buffer of a vector.
*
* Allows for unsafe manipulation of vector contents, which is useful for
* foreign interop.
*/
#[inline(always)]
pub fn as_imm_buf<T,U>(s: &[T],
/* NB---this CANNOT be const, see below */
f: &fn(*T, uint) -> U) -> U {
// NB---Do not change the type of s to `&const [T]`. This is
// unsound. The reason is that we are going to create immutable pointers
// into `s` and pass them to `f()`, but in fact they are potentially
// pointing at *mutable memory*. Use `as_const_buf` or `as_mut_buf`
// instead!
unsafe {
let v : *(*T,uint) =
::cast::transmute(addr_of(&s));
let (buf,len) = *v;
f(buf, len / sys::nonzero_size_of::<T>())
}
}
/// Similar to `as_imm_buf` but passing a `*const T`
#[inline(always)]
pub fn as_const_buf<T,U>(s: &const [T], f: &fn(*const T, uint) -> U) -> U {
unsafe {
let v : *(*const T,uint) =
::cast::transmute(addr_of(&s));
let (buf,len) = *v;
f(buf, len / sys::nonzero_size_of::<T>())
}
}
/// Similar to `as_imm_buf` but passing a `*mut T`
#[inline(always)]
pub fn as_mut_buf<T,U>(s: &mut [T], f: &fn(*mut T, uint) -> U) -> U {
unsafe {
let v : *(*mut T,uint) =
::cast::transmute(addr_of(&s));
let (buf,len) = *v;
f(buf, len / sys::nonzero_size_of::<T>())
}
}
// Equality
fn eq<T: Eq>(a: &[T], b: &[T]) -> bool {
let (a_len, b_len) = (a.len(), b.len());
if a_len != b_len { return false; }
let mut i = 0;
while i < a_len {
if a[i] != b[i] { return false; }
i += 1;
}
true
}
fn equals<T: TotalEq>(a: &[T], b: &[T]) -> bool {
let (a_len, b_len) = (a.len(), b.len());
if a_len != b_len { return false; }
let mut i = 0;
while i < a_len {
if !a[i].equals(&b[i]) { return false; }
i += 1;
}
true
}
#[cfg(notest)]
impl<'self,T:Eq> Eq for &'self [T] {
#[inline(always)]
fn eq(&self, other: & &'self [T]) -> bool { eq(*self, *other) }
#[inline(always)]
fn ne(&self, other: & &'self [T]) -> bool { !self.eq(other) }
}
#[cfg(notest)]
impl<T:Eq> Eq for ~[T] {
#[inline(always)]
fn eq(&self, other: &~[T]) -> bool { eq(*self, *other) }
#[inline(always)]
fn ne(&self, other: &~[T]) -> bool { !self.eq(other) }
}
#[cfg(notest)]
impl<T:Eq> Eq for @[T] {
#[inline(always)]
fn eq(&self, other: &@[T]) -> bool { eq(*self, *other) }
#[inline(always)]
fn ne(&self, other: &@[T]) -> bool { !self.eq(other) }
}
#[cfg(notest)]
impl<'self,T:TotalEq> TotalEq for &'self [T] {
#[inline(always)]
fn equals(&self, other: & &'self [T]) -> bool { equals(*self, *other) }
}
#[cfg(notest)]
impl<T:TotalEq> TotalEq for ~[T] {
#[inline(always)]
fn equals(&self, other: &~[T]) -> bool { equals(*self, *other) }
}
#[cfg(notest)]
impl<T:TotalEq> TotalEq for @[T] {
#[inline(always)]
fn equals(&self, other: &@[T]) -> bool { equals(*self, *other) }
}
#[cfg(notest)]
impl<'self,T:Eq> Equiv<~[T]> for &'self [T] {
#[inline(always)]
fn equiv(&self, other: &~[T]) -> bool { eq(*self, *other) }
}
// Lexicographical comparison
fn cmp<T: TotalOrd>(a: &[T], b: &[T]) -> Ordering {
let low = uint::min(a.len(), b.len());
for uint::range(0, low) |idx| {
match a[idx].cmp(&b[idx]) {
Greater => return Greater,
Less => return Less,
Equal => ()
}
}
a.len().cmp(&b.len())
}
#[cfg(notest)]
impl<'self,T:TotalOrd> TotalOrd for &'self [T] {
#[inline(always)]
fn cmp(&self, other: & &'self [T]) -> Ordering { cmp(*self, *other) }
}
#[cfg(notest)]
impl<T: TotalOrd> TotalOrd for ~[T] {
#[inline(always)]
fn cmp(&self, other: &~[T]) -> Ordering { cmp(*self, *other) }
}
#[cfg(notest)]
impl<T: TotalOrd> TotalOrd for @[T] {
#[inline(always)]
fn cmp(&self, other: &@[T]) -> Ordering { cmp(*self, *other) }
}
fn lt<T:Ord>(a: &[T], b: &[T]) -> bool {
let (a_len, b_len) = (a.len(), b.len());
let end = uint::min(a_len, b_len);
let mut i = 0;
while i < end {
let (c_a, c_b) = (&a[i], &b[i]);
if *c_a < *c_b { return true; }
if *c_a > *c_b { return false; }
i += 1;
}
a_len < b_len
}
fn le<T:Ord>(a: &[T], b: &[T]) -> bool { !lt(b, a) }
fn ge<T:Ord>(a: &[T], b: &[T]) -> bool { !lt(a, b) }
fn gt<T:Ord>(a: &[T], b: &[T]) -> bool { lt(b, a) }
#[cfg(notest)]
impl<'self,T:Ord> Ord for &'self [T] {
#[inline(always)]
fn lt(&self, other: & &'self [T]) -> bool { lt((*self), (*other)) }
#[inline(always)]
fn le(&self, other: & &'self [T]) -> bool { le((*self), (*other)) }
#[inline(always)]
fn ge(&self, other: & &'self [T]) -> bool { ge((*self), (*other)) }
#[inline(always)]
fn gt(&self, other: & &'self [T]) -> bool { gt((*self), (*other)) }
}
#[cfg(notest)]
impl<T:Ord> Ord for ~[T] {
#[inline(always)]
fn lt(&self, other: &~[T]) -> bool { lt((*self), (*other)) }
#[inline(always)]
fn le(&self, other: &~[T]) -> bool { le((*self), (*other)) }
#[inline(always)]
fn ge(&self, other: &~[T]) -> bool { ge((*self), (*other)) }
#[inline(always)]
fn gt(&self, other: &~[T]) -> bool { gt((*self), (*other)) }
}
#[cfg(notest)]
impl<T:Ord> Ord for @[T] {
#[inline(always)]
fn lt(&self, other: &@[T]) -> bool { lt((*self), (*other)) }
#[inline(always)]
fn le(&self, other: &@[T]) -> bool { le((*self), (*other)) }
#[inline(always)]
fn ge(&self, other: &@[T]) -> bool { ge((*self), (*other)) }
#[inline(always)]
fn gt(&self, other: &@[T]) -> bool { gt((*self), (*other)) }
}
#[cfg(notest)]
pub mod traits {
use kinds::Copy;
use ops::Add;
use vec::append;
impl<'self,T:Copy> Add<&'self const [T],~[T]> for ~[T] {
#[inline(always)]
fn add(&self, rhs: & &'self const [T]) -> ~[T] {
append(copy *self, (*rhs))
}
}
}
impl<'self,T> Container for &'self const [T] {
/// Returns true if a vector contains no elements
#[inline]
fn is_empty(&const self) -> bool { is_empty(*self) }
/// Returns the length of a vector
#[inline]
fn len(&const self) -> uint { len(*self) }
}
pub trait CopyableVector<T> {
fn to_owned(&self) -> ~[T];
}
/// Extension methods for vectors
impl<'self,T:Copy> CopyableVector<T> for &'self const [T] {
/// Returns a copy of `v`.
#[inline]
fn to_owned(&self) -> ~[T] {
let mut result = ~[];
// FIXME: #4568
unsafe {
reserve(&mut result, self.len());
for self.each |e| {
result.push(copy *e);
}
}
result
}
}
#[cfg(stage0)]
pub trait ImmutableVector<T> {
fn slice(&self, start: uint, end: uint) -> &'self [T];
fn head(&self) -> &'self T;
fn head_opt(&self) -> Option<&'self T>;
fn tail(&self) -> &'self [T];
fn tailn(&self, n: uint) -> &'self [T];
fn init(&self) -> &'self [T];
fn initn(&self, n: uint) -> &'self [T];
fn last(&self) -> &'self T;
fn last_opt(&self) -> Option<&'self T>;
fn each_reverse(&self, blk: &fn(&T) -> bool);
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool);
fn foldr<U: Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U;
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U];
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U];
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U];
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool;
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U];
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U];
unsafe fn unsafe_ref(&self, index: uint) -> *T;
}
/// Extension methods for vectors
#[cfg(stage0)]
impl<'self,T> ImmutableVector<T> for &'self [T] {
/// Return a slice that points into another slice.
#[inline]
fn slice(&self, start: uint, end: uint) -> &'self [T] {
slice(*self, start, end)
}
/// Returns the first element of a vector, failing if the vector is empty.
#[inline]
fn head(&self) -> &'self T { head(*self) }
/// Returns the first element of a vector
#[inline]
fn head_opt(&self) -> Option<&'self T> { head_opt(*self) }
/// Returns all but the first element of a vector
#[inline]
fn tail(&self) -> &'self [T] { tail(*self) }
/// Returns all but the first `n' elements of a vector
#[inline]
fn tailn(&self, n: uint) -> &'self [T] { tailn(*self, n) }
/// Returns all but the last elemnt of a vector
#[inline]
fn init(&self) -> &'self [T] { init(*self) }
/// Returns all but the last `n' elemnts of a vector
#[inline]
fn initn(&self, n: uint) -> &'self [T] { initn(*self, n) }
/// Returns the last element of a `v`, failing if the vector is empty.
#[inline]
fn last(&self) -> &'self T { last(*self) }
/// Returns the last element of a `v`, failing if the vector is empty.
#[inline]
fn last_opt(&self) -> Option<&'self T> { last_opt(*self) }
/// Iterates over a vector's elements in reverse.
#[inline]
fn each_reverse(&self, blk: &fn(&T) -> bool) {
each_reverse(*self, blk)
}
/// Iterates over a vector's elements and indices in reverse.
#[inline]
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool) {
eachi_reverse(*self, blk)
}
/// Reduce a vector from right to left
#[inline]
fn foldr<U:Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U {
foldr(*self, z, p)
}
/// Apply a function to each element of a vector and return the results
#[inline]
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U] { map(*self, f) }
/**
* Apply a function to the index and value of each element in the vector
* and return the results
*/
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U] {
mapi(*self, f)
}
#[inline]
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U] {
let mut r = ~[];
let mut i = 0;
while i < self.len() {
r.push(f(&self[i]));
i += 1;
}
r
}
/**
* Returns true if the function returns true for all elements.
*
* If the vector is empty, true is returned.
*/
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool {
alli(*self, f)
}
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
#[inline]
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U] {
flat_map(*self, f)
}
/**
* Apply a function to each element of a vector and return the results
*
* If function `f` returns `none` then that element is excluded from
* the resulting vector.
*/
#[inline]
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U] {
filter_mapped(*self, f)
}
/// Returns a pointer to the element at the given index, without doing
/// bounds checking.
#[inline(always)]
unsafe fn unsafe_ref(&self, index: uint) -> *T {
let (ptr, _): (*T, uint) = transmute(*self);
ptr.offset(index)
}
}
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
pub trait ImmutableVector<'self, T> {
fn slice(&self, start: uint, end: uint) -> &'self [T];
fn iter(self) -> VecIterator<'self, T>;
fn head(&self) -> &'self T;
fn head_opt(&self) -> Option<&'self T>;
fn tail(&self) -> &'self [T];
fn tailn(&self, n: uint) -> &'self [T];
fn init(&self) -> &'self [T];
fn initn(&self, n: uint) -> &'self [T];
fn last(&self) -> &'self T;
fn last_opt(&self) -> Option<&'self T>;
fn each_reverse(&self, blk: &fn(&T) -> bool);
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool);
fn foldr<U: Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U;
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U];
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U];
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U];
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool;
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U];
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U];
unsafe fn unsafe_ref(&self, index: uint) -> *T;
}
/// Extension methods for vectors
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<'self,T> ImmutableVector<'self, T> for &'self [T] {
/// Return a slice that points into another slice.
#[inline]
fn slice(&self, start: uint, end: uint) -> &'self [T] {
slice(*self, start, end)
}
#[inline]
fn iter(self) -> VecIterator<'self, T> {
unsafe {
let p = vec::raw::to_ptr(self);
VecIterator{ptr: p, end: p.offset(self.len()),
lifetime: cast::transmute(p)}
}
}
/// Returns the first element of a vector, failing if the vector is empty.
#[inline]
fn head(&self) -> &'self T { head(*self) }
/// Returns the first element of a vector
#[inline]
fn head_opt(&self) -> Option<&'self T> { head_opt(*self) }
/// Returns all but the first element of a vector
#[inline]
fn tail(&self) -> &'self [T] { tail(*self) }
/// Returns all but the first `n' elements of a vector
#[inline]
fn tailn(&self, n: uint) -> &'self [T] { tailn(*self, n) }
/// Returns all but the last elemnt of a vector
#[inline]
fn init(&self) -> &'self [T] { init(*self) }
/// Returns all but the last `n' elemnts of a vector
#[inline]
fn initn(&self, n: uint) -> &'self [T] { initn(*self, n) }
/// Returns the last element of a `v`, failing if the vector is empty.
#[inline]
fn last(&self) -> &'self T { last(*self) }
/// Returns the last element of a `v`, failing if the vector is empty.
#[inline]
fn last_opt(&self) -> Option<&'self T> { last_opt(*self) }
/// Iterates over a vector's elements in reverse.
#[inline]
fn each_reverse(&self, blk: &fn(&T) -> bool) {
each_reverse(*self, blk)
}
/// Iterates over a vector's elements and indices in reverse.
#[inline]
fn eachi_reverse(&self, blk: &fn(uint, &T) -> bool) {
eachi_reverse(*self, blk)
}
/// Reduce a vector from right to left
#[inline]
fn foldr<U:Copy>(&self, z: U, p: &fn(t: &T, u: U) -> U) -> U {
foldr(*self, z, p)
}
/// Apply a function to each element of a vector and return the results
#[inline]
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U] { map(*self, f) }
/**
* Apply a function to the index and value of each element in the vector
* and return the results
*/
fn mapi<U>(&self, f: &fn(uint, t: &T) -> U) -> ~[U] {
mapi(*self, f)
}
#[inline]
fn map_r<U>(&self, f: &fn(x: &T) -> U) -> ~[U] {
let mut r = ~[];
let mut i = 0;
while i < self.len() {
r.push(f(&self[i]));
i += 1;
}
r
}
/**
* Returns true if the function returns true for all elements.
*
* If the vector is empty, true is returned.
*/
fn alli(&self, f: &fn(uint, t: &T) -> bool) -> bool {
alli(*self, f)
}
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
#[inline]
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U] {
flat_map(*self, f)
}
/**
* Apply a function to each element of a vector and return the results
*
* If function `f` returns `none` then that element is excluded from
* the resulting vector.
*/
#[inline]
fn filter_mapped<U:Copy>(&self, f: &fn(t: &T) -> Option<U>) -> ~[U] {
filter_mapped(*self, f)
}
/// Returns a pointer to the element at the given index, without doing
/// bounds checking.
#[inline(always)]
unsafe fn unsafe_ref(&self, index: uint) -> *T {
let (ptr, _): (*T, uint) = transmute(*self);
ptr.offset(index)
}
}
pub trait ImmutableEqVector<T:Eq> {
fn position(&self, f: &fn(t: &T) -> bool) -> Option<uint>;
fn position_elem(&self, t: &T) -> Option<uint>;
fn rposition(&self, f: &fn(t: &T) -> bool) -> Option<uint>;
fn rposition_elem(&self, t: &T) -> Option<uint>;
}
impl<'self,T:Eq> ImmutableEqVector<T> for &'self [T] {
/**
* Find the first index matching some predicate
*
* Apply function `f` to each element of `v`. When function `f` returns
* true then an option containing the index is returned. If `f` matches no
* elements then none is returned.
*/
#[inline]
fn position(&self, f: &fn(t: &T) -> bool) -> Option<uint> {
position(*self, f)
}
/// Find the first index containing a matching value
#[inline]
fn position_elem(&self, x: &T) -> Option<uint> {
position_elem(*self, x)
}
/**
* Find the last index matching some predicate
*
* Apply function `f` to each element of `v` in reverse order. When
* function `f` returns true then an option containing the index is
* returned. If `f` matches no elements then none is returned.
*/
#[inline]
fn rposition(&self, f: &fn(t: &T) -> bool) -> Option<uint> {
rposition(*self, f)
}
/// Find the last index containing a matching value
#[inline]
fn rposition_elem(&self, t: &T) -> Option<uint> {
rposition_elem(*self, t)
}
}
pub trait ImmutableCopyableVector<T> {
fn filtered(&self, f: &fn(&T) -> bool) -> ~[T];
fn rfind(&self, f: &fn(t: &T) -> bool) -> Option<T>;
fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]);
unsafe fn unsafe_get(&self, elem: uint) -> T;
}
/// Extension methods for vectors
impl<'self,T:Copy> ImmutableCopyableVector<T> for &'self [T] {
/**
* Construct a new vector from the elements of a vector for which some
* predicate holds.
*
* Apply function `f` to each element of `v` and return a vector
* containing only those elements for which `f` returned true.
*/
#[inline]
fn filtered(&self, f: &fn(t: &T) -> bool) -> ~[T] {
filtered(*self, f)
}
/**
* Search for the last element that matches a given predicate
*
* Apply function `f` to each element of `v` in reverse order. When
* function `f` returns true then an option containing the element is
* returned. If `f` matches no elements then none is returned.
*/
#[inline]
fn rfind(&self, f: &fn(t: &T) -> bool) -> Option<T> {
rfind(*self, f)
}
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
#[inline]
fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]) {
partitioned(*self, f)
}
/// Returns the element at the given index, without doing bounds checking.
#[inline(always)]
unsafe fn unsafe_get(&self, index: uint) -> T {
*self.unsafe_ref(index)
}
}
pub trait OwnedVector<T> {
fn push(&mut self, t: T);
fn push_all_move(&mut self, rhs: ~[T]);
fn pop(&mut self) -> T;
fn shift(&mut self) -> T;
fn unshift(&mut self, x: T);
fn insert(&mut self, i: uint, x:T);
fn remove(&mut self, i: uint) -> T;
fn swap_remove(&mut self, index: uint) -> T;
fn truncate(&mut self, newlen: uint);
fn retain(&mut self, f: &fn(t: &T) -> bool);
fn consume(self, f: &fn(uint, v: T));
fn consume_reverse(self, f: &fn(uint, v: T));
fn filter(self, f: &fn(t: &T) -> bool) -> ~[T];
fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]);
fn grow_fn(&mut self, n: uint, op: old_iter::InitOp<T>);
}
impl<T> OwnedVector<T> for ~[T] {
#[inline]
fn push(&mut self, t: T) {
push(self, t);
}
#[inline]
fn push_all_move(&mut self, rhs: ~[T]) {
push_all_move(self, rhs);
}
#[inline]
fn pop(&mut self) -> T {
pop(self)
}
#[inline]
fn shift(&mut self) -> T {
shift(self)
}
#[inline]
fn unshift(&mut self, x: T) {
unshift(self, x)
}
#[inline]
fn insert(&mut self, i: uint, x:T) {
insert(self, i, x)
}
#[inline]
fn remove(&mut self, i: uint) -> T {
remove(self, i)
}
#[inline]
fn swap_remove(&mut self, index: uint) -> T {
swap_remove(self, index)
}
#[inline]
fn truncate(&mut self, newlen: uint) {
truncate(self, newlen);
}
#[inline]
fn retain(&mut self, f: &fn(t: &T) -> bool) {
retain(self, f);
}
#[inline]
fn consume(self, f: &fn(uint, v: T)) {
consume(self, f)
}
#[inline]
fn consume_reverse(self, f: &fn(uint, v: T)) {
consume_reverse(self, f)
}
#[inline]
fn filter(self, f: &fn(&T) -> bool) -> ~[T] {
filter(self, f)
}
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
#[inline]
fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]) {
partition(self, f)
}
#[inline]
fn grow_fn(&mut self, n: uint, op: old_iter::InitOp<T>) {
grow_fn(self, n, op);
}
}
impl<T> Mutable for ~[T] {
/// Clear the vector, removing all values.
fn clear(&mut self) { self.truncate(0) }
}
pub trait OwnedCopyableVector<T:Copy> {
fn push_all(&mut self, rhs: &const [T]);
fn grow(&mut self, n: uint, initval: &T);
fn grow_set(&mut self, index: uint, initval: &T, val: T);
}
impl<T:Copy> OwnedCopyableVector<T> for ~[T] {
#[inline]
fn push_all(&mut self, rhs: &const [T]) {
push_all(self, rhs);
}
#[inline]
fn grow(&mut self, n: uint, initval: &T) {
grow(self, n, initval);
}
#[inline]
fn grow_set(&mut self, index: uint, initval: &T, val: T) {
grow_set(self, index, initval, val);
}
}
trait OwnedEqVector<T:Eq> {
fn dedup(&mut self);
}
impl<T:Eq> OwnedEqVector<T> for ~[T] {
#[inline]
fn dedup(&mut self) {
dedup(self)
}
}
pub trait MutableVector<T> {
unsafe fn unsafe_mut_ref(&self, index: uint) -> *mut T;
unsafe fn unsafe_set(&self, index: uint, val: T);
}
impl<'self,T> MutableVector<T> for &'self mut [T] {
#[inline(always)]
unsafe fn unsafe_mut_ref(&self, index: uint) -> *mut T {
let pair_ptr: &(*mut T, uint) = transmute(self);
let (ptr, _) = *pair_ptr;
ptr.offset(index)
}
#[inline(always)]
unsafe fn unsafe_set(&self, index: uint, val: T) {
*self.unsafe_mut_ref(index) = val;
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb
pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
raw::from_buf_raw(ptr, elts)
}
/// The internal 'unboxed' representation of a vector
pub struct UnboxedVecRepr {
fill: uint,
alloc: uint,
data: u8
}
/// Unsafe operations
pub mod raw {
use kinds::Copy;
use managed;
use option::{None, Some};
use unstable::intrinsics;
use ptr::addr_of;
use ptr;
use sys;
use vec::{UnboxedVecRepr, as_const_buf, as_mut_buf, len, with_capacity};
/// The internal representation of a (boxed) vector
pub struct VecRepr {
box_header: managed::raw::BoxHeaderRepr,
unboxed: UnboxedVecRepr
}
pub struct SliceRepr {
data: *u8,
len: uint
}
/**
* Sets the length of a vector
*
* This will explicitly set the size of the vector, without actually
* modifing its buffers, so it is up to the caller to ensure that
* the vector is actually the specified size.
*/
#[inline(always)]
pub unsafe fn set_len<T>(v: &mut ~[T], new_len: uint) {
let repr: **mut VecRepr = ::cast::transmute(v);
(**repr).unboxed.fill = new_len * sys::nonzero_size_of::<T>();
}
/**
* Returns an unsafe pointer to the vector's buffer
*
* The caller must ensure that the vector outlives the pointer this
* function returns, or else it will end up pointing to garbage.
*
* Modifying the vector may cause its buffer to be reallocated, which
* would also make any pointers to it invalid.
*/
#[inline(always)]
pub unsafe fn to_ptr<T>(v: &[T]) -> *T {
let repr: **SliceRepr = ::cast::transmute(&v);
::cast::transmute(addr_of(&((**repr).data)))
}
/** see `to_ptr()` */
#[inline(always)]
pub unsafe fn to_const_ptr<T>(v: &const [T]) -> *const T {
let repr: **SliceRepr = ::cast::transmute(&v);
::cast::transmute(addr_of(&((**repr).data)))
}
/** see `to_ptr()` */
#[inline(always)]
pub unsafe fn to_mut_ptr<T>(v: &mut [T]) -> *mut T {
let repr: **SliceRepr = ::cast::transmute(&v);
::cast::transmute(addr_of(&((**repr).data)))
}
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline(always)]
pub unsafe fn buf_as_slice<T,U>(p: *T,
len: uint,
f: &fn(v: &[T]) -> U) -> U {
let pair = (p, len * sys::nonzero_size_of::<T>());
let v : *(&'blk [T]) =
::cast::transmute(addr_of(&pair));
f(*v)
}
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline(always)]
pub unsafe fn mut_buf_as_slice<T,U>(p: *mut T,
len: uint,
f: &fn(v: &mut [T]) -> U) -> U {
let pair = (p, len * sys::nonzero_size_of::<T>());
let v : *(&'blk mut [T]) =
::cast::transmute(addr_of(&pair));
f(*v)
}
/**
* Unchecked vector indexing.
*/
#[inline(always)]
pub unsafe fn get<T:Copy>(v: &const [T], i: uint) -> T {
as_const_buf(v, |p, _len| *ptr::const_offset(p, i))
}
/**
* Unchecked vector index assignment. Does not drop the
* old value and hence is only suitable when the vector
* is newly allocated.
*/
#[inline(always)]
pub unsafe fn init_elem<T>(v: &mut [T], i: uint, val: T) {
let mut box = Some(val);
do as_mut_buf(v) |p, _len| {
let mut box2 = None;
box2 <-> box;
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i)),
box2.unwrap());
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Was in raw, but needs to be called by net_tcp::on_tcp_read_cb
#[inline(always)]
pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] {
let mut dst = with_capacity(elts);
set_len(&mut dst, elts);
as_mut_buf(dst, |p_dst, _len_dst| ptr::copy_memory(p_dst, ptr, elts));
dst
}
/**
* Copies data from one vector to another.
*
* Copies `count` bytes from `src` to `dst`. The source and destination
* may overlap.
*/
#[inline(always)]
pub unsafe fn copy_memory<T>(dst: &mut [T], src: &const [T],
count: uint) {
assert!(dst.len() >= count);
assert!(src.len() >= count);
do as_mut_buf(dst) |p_dst, _len_dst| {
do as_const_buf(src) |p_src, _len_src| {
ptr::copy_memory(p_dst, p_src, count)
}
}
}
}
/// Operations on `[u8]`
pub mod bytes {
use libc;
use uint;
use vec::raw;
use vec;
/// Bytewise string comparison
pub fn memcmp(a: &~[u8], b: &~[u8]) -> int {
let a_len = a.len();
let b_len = b.len();
let n = uint::min(a_len, b_len) as libc::size_t;
let r = unsafe {
libc::memcmp(raw::to_ptr(*a) as *libc::c_void,
raw::to_ptr(*b) as *libc::c_void, n) as int
};
if r != 0 { r } else {
if a_len == b_len {
0
} else if a_len < b_len {
-1
} else {
1
}
}
}
/// Bytewise less than or equal
pub fn lt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) < 0 }
/// Bytewise less than or equal
pub fn le(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) <= 0 }
/// Bytewise equality
pub fn eq(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) == 0 }
/// Bytewise inequality
pub fn ne(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) != 0 }
/// Bytewise greater than or equal
pub fn ge(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) >= 0 }
/// Bytewise greater than
pub fn gt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) > 0 }
/**
* Copies data from one vector to another.
*
* Copies `count` bytes from `src` to `dst`. The source and destination
* may overlap.
*/
#[inline(always)]
pub fn copy_memory(dst: &mut [u8], src: &const [u8], count: uint) {
// Bound checks are done at vec::raw::copy_memory.
unsafe { vec::raw::copy_memory(dst, src, count) }
}
}
// ___________________________________________________________________________
// ITERATION TRAIT METHODS
#[cfg(stage0)]
impl<'self,A> old_iter::BaseIter<A> for &'self [A] {
#[inline(always)]
fn each(&self, blk: &fn(v: &'self A) -> bool) { each(*self, blk) }
#[inline(always)]
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
}
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<'self,A> old_iter::BaseIter<A> for &'self [A] {
#[inline(always)]
fn each<'a>(&'a self, blk: &fn(v: &'a A) -> bool) { each(*self, blk) }
#[inline(always)]
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
}
// FIXME(#4148): This should be redundant
#[cfg(stage0)]
impl<A> old_iter::BaseIter<A> for ~[A] {
#[inline(always)]
fn each(&self, blk: &fn(v: &'self A) -> bool) { each(*self, blk) }
#[inline(always)]
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
}
// FIXME(#4148): This should be redundant
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<A> old_iter::BaseIter<A> for ~[A] {
#[inline(always)]
fn each<'a>(&'a self, blk: &fn(v: &'a A) -> bool) { each(*self, blk) }
#[inline(always)]
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
}
// FIXME(#4148): This should be redundant
#[cfg(stage0)]
impl<A> old_iter::BaseIter<A> for @[A] {
#[inline(always)]
fn each(&self, blk: &fn(v: &'self A) -> bool) { each(*self, blk) }
#[inline(always)]
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
}
// FIXME(#4148): This should be redundant
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<A> old_iter::BaseIter<A> for @[A] {
#[inline(always)]
fn each<'a>(&'a self, blk: &fn(v: &'a A) -> bool) { each(*self, blk) }
#[inline(always)]
fn size_hint(&self) -> Option<uint> { Some(self.len()) }
}
#[cfg(stage0)]
impl<'self,A> old_iter::MutableIter<A> for &'self mut [A] {
#[inline(always)]
fn each_mut(&mut self, blk: &fn(v: &'self mut A) -> bool) {
each_mut(*self, blk)
}
}
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<'self,A> old_iter::MutableIter<A> for &'self mut [A] {
#[inline(always)]
fn each_mut<'a>(&'a mut self, blk: &fn(v: &'a mut A) -> bool) {
each_mut(*self, blk)
}
}
// FIXME(#4148): This should be redundant
#[cfg(stage0)]
impl<A> old_iter::MutableIter<A> for ~[A] {
#[inline(always)]
fn each_mut(&mut self, blk: &fn(v: &'self mut A) -> bool) {
each_mut(*self, blk)
}
}
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<A> old_iter::MutableIter<A> for ~[A] {
#[inline(always)]
fn each_mut<'a>(&'a mut self, blk: &fn(v: &'a mut A) -> bool) {
each_mut(*self, blk)
}
}
// FIXME(#4148): This should be redundant
impl<A> old_iter::MutableIter<A> for @mut [A] {
#[inline(always)]
fn each_mut(&mut self, blk: &fn(v: &mut A) -> bool) {
each_mut(*self, blk)
}
}
impl<'self,A> old_iter::ExtendedIter<A> for &'self [A] {
pub fn eachi(&self, blk: &fn(uint, v: &A) -> bool) {
old_iter::eachi(self, blk)
}
pub fn all(&self, blk: &fn(&A) -> bool) -> bool {
old_iter::all(self, blk)
}
pub fn any(&self, blk: &fn(&A) -> bool) -> bool {
old_iter::any(self, blk)
}
pub fn foldl<B>(&self, b0: B, blk: &fn(&B, &A) -> B) -> B {
old_iter::foldl(self, b0, blk)
}
pub fn position(&self, f: &fn(&A) -> bool) -> Option<uint> {
old_iter::position(self, f)
}
fn map_to_vec<B>(&self, op: &fn(&A) -> B) -> ~[B] {
old_iter::map_to_vec(self, op)
}
fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: &fn(&A) -> IB)
-> ~[B] {
old_iter::flat_map_to_vec(self, op)
}
}
impl<'self,A> old_iter::ExtendedMutableIter<A> for &'self mut [A] {
#[inline(always)]
pub fn eachi_mut(&mut self, blk: &fn(uint, v: &mut A) -> bool) {
eachi_mut(*self, blk)
}
}
// FIXME(#4148): This should be redundant
impl<A> old_iter::ExtendedIter<A> for ~[A] {
pub fn eachi(&self, blk: &fn(uint, v: &A) -> bool) {
old_iter::eachi(self, blk)
}
pub fn all(&self, blk: &fn(&A) -> bool) -> bool {
old_iter::all(self, blk)
}
pub fn any(&self, blk: &fn(&A) -> bool) -> bool {
old_iter::any(self, blk)
}
pub fn foldl<B>(&self, b0: B, blk: &fn(&B, &A) -> B) -> B {
old_iter::foldl(self, b0, blk)
}
pub fn position(&self, f: &fn(&A) -> bool) -> Option<uint> {
old_iter::position(self, f)
}
fn map_to_vec<B>(&self, op: &fn(&A) -> B) -> ~[B] {
old_iter::map_to_vec(self, op)
}
fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: &fn(&A) -> IB)
-> ~[B] {
old_iter::flat_map_to_vec(self, op)
}
}
// FIXME(#4148): This should be redundant
impl<A> old_iter::ExtendedIter<A> for @[A] {
pub fn eachi(&self, blk: &fn(uint, v: &A) -> bool) {
old_iter::eachi(self, blk)
}
pub fn all(&self, blk: &fn(&A) -> bool) -> bool {
old_iter::all(self, blk)
}
pub fn any(&self, blk: &fn(&A) -> bool) -> bool {
old_iter::any(self, blk)
}
pub fn foldl<B>(&self, b0: B, blk: &fn(&B, &A) -> B) -> B {
old_iter::foldl(self, b0, blk)
}
pub fn position(&self, f: &fn(&A) -> bool) -> Option<uint> {
old_iter::position(self, f)
}
fn map_to_vec<B>(&self, op: &fn(&A) -> B) -> ~[B] {
old_iter::map_to_vec(self, op)
}
fn flat_map_to_vec<B,IB:BaseIter<B>>(&self, op: &fn(&A) -> IB)
-> ~[B] {
old_iter::flat_map_to_vec(self, op)
}
}
impl<'self,A:Eq> old_iter::EqIter<A> for &'self [A] {
pub fn contains(&self, x: &A) -> bool { old_iter::contains(self, x) }
pub fn count(&self, x: &A) -> uint { old_iter::count(self, x) }
}
// FIXME(#4148): This should be redundant
impl<A:Eq> old_iter::EqIter<A> for ~[A] {
pub fn contains(&self, x: &A) -> bool { old_iter::contains(self, x) }
pub fn count(&self, x: &A) -> uint { old_iter::count(self, x) }
}
// FIXME(#4148): This should be redundant
impl<A:Eq> old_iter::EqIter<A> for @[A] {
pub fn contains(&self, x: &A) -> bool { old_iter::contains(self, x) }
pub fn count(&self, x: &A) -> uint { old_iter::count(self, x) }
}
impl<'self,A:Copy> old_iter::CopyableIter<A> for &'self [A] {
fn filter_to_vec(&self, pred: &fn(&A) -> bool) -> ~[A] {
old_iter::filter_to_vec(self, pred)
}
fn to_vec(&self) -> ~[A] { old_iter::to_vec(self) }
pub fn find(&self, f: &fn(&A) -> bool) -> Option<A> {
old_iter::find(self, f)
}
}
// FIXME(#4148): This should be redundant
impl<A:Copy> old_iter::CopyableIter<A> for ~[A] {
fn filter_to_vec(&self, pred: &fn(&A) -> bool) -> ~[A] {
old_iter::filter_to_vec(self, pred)
}
fn to_vec(&self) -> ~[A] { old_iter::to_vec(self) }
pub fn find(&self, f: &fn(&A) -> bool) -> Option<A> {
old_iter::find(self, f)
}
}
// FIXME(#4148): This should be redundant
impl<A:Copy> old_iter::CopyableIter<A> for @[A] {
fn filter_to_vec(&self, pred: &fn(&A) -> bool) -> ~[A] {
old_iter::filter_to_vec(self, pred)
}
fn to_vec(&self) -> ~[A] { old_iter::to_vec(self) }
pub fn find(&self, f: &fn(&A) -> bool) -> Option<A> {
old_iter::find(self, f)
}
}
impl<'self,A:Copy + Ord> old_iter::CopyableOrderedIter<A> for &'self [A] {
fn min(&self) -> A { old_iter::min(self) }
fn max(&self) -> A { old_iter::max(self) }
}
// FIXME(#4148): This should be redundant
impl<A:Copy + Ord> old_iter::CopyableOrderedIter<A> for ~[A] {
fn min(&self) -> A { old_iter::min(self) }
fn max(&self) -> A { old_iter::max(self) }
}
// FIXME(#4148): This should be redundant
impl<A:Copy + Ord> old_iter::CopyableOrderedIter<A> for @[A] {
fn min(&self) -> A { old_iter::min(self) }
fn max(&self) -> A { old_iter::max(self) }
}
impl<'self,A:Copy> old_iter::CopyableNonstrictIter<A> for &'self [A] {
fn each_val(&const self, f: &fn(A) -> bool) {
let mut i = 0;
while i < self.len() {
if !f(copy self[i]) { break; }
i += 1;
}
}
}
// FIXME(#4148): This should be redundant
impl<A:Copy> old_iter::CopyableNonstrictIter<A> for ~[A] {
fn each_val(&const self, f: &fn(A) -> bool) {
let mut i = 0;
while i < uniq_len(self) {
if !f(copy self[i]) { break; }
i += 1;
}
}
}
// FIXME(#4148): This should be redundant
impl<A:Copy> old_iter::CopyableNonstrictIter<A> for @[A] {
fn each_val(&const self, f: &fn(A) -> bool) {
let mut i = 0;
while i < self.len() {
if !f(copy self[i]) { break; }
i += 1;
}
}
}
impl<A:Clone> Clone for ~[A] {
#[inline]
fn clone(&self) -> ~[A] {
self.map(|item| item.clone())
}
}
// could be implemented with &[T] with .slice(), but this avoids bounds checks
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
pub struct VecIterator<'self, T> {
priv ptr: *T,
priv end: *T,
priv lifetime: &'self T // FIXME: #5922
}
#[cfg(stage1)]
#[cfg(stage2)]
#[cfg(stage3)]
impl<'self, T> Iterator<&'self T> for VecIterator<'self, T> {
#[inline]
fn next(&mut self) -> Option<&'self T> {
unsafe {
if self.ptr == self.end {
None
} else {
let old = self.ptr;
self.ptr = self.ptr.offset(1);
Some(cast::transmute(old))
}
}
}
}
#[cfg(test)]
mod tests {
use option::{None, Option, Some};
use sys;
use vec::*;
use cmp::*;
fn square(n: uint) -> uint { n * n }
fn square_ref(n: &uint) -> uint { square(*n) }
fn is_three(n: &uint) -> bool { *n == 3u }
fn is_odd(n: &uint) -> bool { *n % 2u == 1u }
fn is_equal(x: &uint, y:&uint) -> bool { *x == *y }
fn square_if_odd_r(n: &uint) -> Option<uint> {
if *n % 2u == 1u { Some(*n * *n) } else { None }
}
fn square_if_odd_v(n: uint) -> Option<uint> {
if n % 2u == 1u { Some(n * n) } else { None }
}
fn add(x: uint, y: &uint) -> uint { x + *y }
#[test]
fn test_unsafe_ptrs() {
unsafe {
// Test on-stack copy-from-buf.
let a = ~[1, 2, 3];
let mut ptr = raw::to_ptr(a);
let b = from_buf(ptr, 3u);
assert!(b.len() == 3u);
assert!(b[0] == 1);
assert!(b[1] == 2);
assert!(b[2] == 3);
// Test on-heap copy-from-buf.
let c = ~[1, 2, 3, 4, 5];
ptr = raw::to_ptr(c);
let d = from_buf(ptr, 5u);
assert!(d.len() == 5u);
assert!(d[0] == 1);
assert!(d[1] == 2);
assert!(d[2] == 3);
assert!(d[3] == 4);
assert!(d[4] == 5);
}
}
#[test]
fn test_from_fn() {
// Test on-stack from_fn.
let mut v = from_fn(3u, square);
assert!(v.len() == 3u);
assert!(v[0] == 0u);
assert!(v[1] == 1u);
assert!(v[2] == 4u);
// Test on-heap from_fn.
v = from_fn(5u, square);
assert!(v.len() == 5u);
assert!(v[0] == 0u);
assert!(v[1] == 1u);
assert!(v[2] == 4u);
assert!(v[3] == 9u);
assert!(v[4] == 16u);
}
#[test]
fn test_from_elem() {
// Test on-stack from_elem.
let mut v = from_elem(2u, 10u);
assert!(v.len() == 2u);
assert!(v[0] == 10u);
assert!(v[1] == 10u);
// Test on-heap from_elem.
v = from_elem(6u, 20u);
assert!(v[0] == 20u);
assert!(v[1] == 20u);
assert!(v[2] == 20u);
assert!(v[3] == 20u);
assert!(v[4] == 20u);
assert!(v[5] == 20u);
}
#[test]
fn test_is_empty() {
assert!(is_empty::<int>(~[]));
assert!(!is_empty(~[0]));
}
#[test]
fn test_len_divzero() {
type Z = [i8, ..0];
let v0 : &[Z] = &[];
let v1 : &[Z] = &[[]];
let v2 : &[Z] = &[[], []];
assert!(sys::size_of::<Z>() == 0);
assert!(v0.len() == 0);
assert!(v1.len() == 1);
assert!(v2.len() == 2);
}
#[test]
fn test_head() {
let mut a = ~[11];
assert!(a.head() == &11);
a = ~[11, 12];
assert!(a.head() == &11);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_head_empty() {
let a: ~[int] = ~[];
a.head();
}
#[test]
fn test_head_opt() {
let mut a = ~[];
assert!(a.head_opt() == None);
a = ~[11];
assert!(a.head_opt().unwrap() == &11);
a = ~[11, 12];
assert!(a.head_opt().unwrap() == &11);
}
#[test]
fn test_tail() {
let mut a = ~[11];
assert!(a.tail() == &[]);
a = ~[11, 12];
assert!(a.tail() == &[12]);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_tail_empty() {
let a: ~[int] = ~[];
a.tail();
}
#[test]
fn test_tailn() {
let mut a = ~[11, 12, 13];
assert!(a.tailn(0) == &[11, 12, 13]);
a = ~[11, 12, 13];
assert!(a.tailn(2) == &[13]);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_tailn_empty() {
let a: ~[int] = ~[];
a.tailn(2);
}
#[test]
fn test_init() {
let mut a = ~[11];
assert!(a.init() == &[]);
a = ~[11, 12];
assert!(a.init() == &[11]);
}
#[init]
#[should_fail]
#[ignore(cfg(windows))]
fn test_init_empty() {
let a: ~[int] = ~[];
a.init();
}
#[test]
fn test_initn() {
let mut a = ~[11, 12, 13];
assert!(a.initn(0) == &[11, 12, 13]);
a = ~[11, 12, 13];
assert!(a.initn(2) == &[11]);
}
#[init]
#[should_fail]
#[ignore(cfg(windows))]
fn test_initn_empty() {
let a: ~[int] = ~[];
a.initn(2);
}
#[test]
fn test_last() {
let mut a = ~[11];
assert!(a.last() == &11);
a = ~[11, 12];
assert!(a.last() == &12);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_last_empty() {
let a: ~[int] = ~[];
a.last();
}
#[test]
fn test_last_opt() {
let mut a = ~[];
assert!(a.last_opt() == None);
a = ~[11];
assert!(a.last_opt().unwrap() == &11);
a = ~[11, 12];
assert!(a.last_opt().unwrap() == &12);
}
#[test]
fn test_slice() {
// Test fixed length vector.
let vec_fixed = [1, 2, 3, 4];
let v_a = slice(vec_fixed, 1u, vec_fixed.len()).to_vec();
assert!(v_a.len() == 3u);
assert!(v_a[0] == 2);
assert!(v_a[1] == 3);
assert!(v_a[2] == 4);
// Test on stack.
let vec_stack = &[1, 2, 3];
let v_b = slice(vec_stack, 1u, 3u).to_vec();
assert!(v_b.len() == 2u);
assert!(v_b[0] == 2);
assert!(v_b[1] == 3);
// Test on managed heap.
let vec_managed = @[1, 2, 3, 4, 5];
let v_c = slice(vec_managed, 0u, 3u).to_vec();
assert!(v_c.len() == 3u);
assert!(v_c[0] == 1);
assert!(v_c[1] == 2);
assert!(v_c[2] == 3);
// Test on exchange heap.
let vec_unique = ~[1, 2, 3, 4, 5, 6];
let v_d = slice(vec_unique, 1u, 6u).to_vec();
assert!(v_d.len() == 5u);
assert!(v_d[0] == 2);
assert!(v_d[1] == 3);
assert!(v_d[2] == 4);
assert!(v_d[3] == 5);
assert!(v_d[4] == 6);
}
#[test]
fn test_pop() {
// Test on-heap pop.
let mut v = ~[1, 2, 3, 4, 5];
let e = v.pop();
assert!(v.len() == 4u);
assert!(v[0] == 1);
assert!(v[1] == 2);
assert!(v[2] == 3);
assert!(v[3] == 4);
assert!(e == 5);
}
#[test]
fn test_swap_remove() {
let mut v = ~[1, 2, 3, 4, 5];
let mut e = v.swap_remove(0);
assert!(v.len() == 4);
assert!(e == 1);
assert!(v[0] == 5);
e = v.swap_remove(3);
assert!(v.len() == 3);
assert!(e == 4);
assert!(v[0] == 5);
assert!(v[1] == 2);
assert!(v[2] == 3);
}
#[test]
fn test_swap_remove_noncopyable() {
// Tests that we don't accidentally run destructors twice.
let mut v = ~[::unstable::exclusive(()), ::unstable::exclusive(()),
::unstable::exclusive(())];
let mut _e = v.swap_remove(0);
assert!(v.len() == 2);
_e = v.swap_remove(1);
assert!(v.len() == 1);
_e = v.swap_remove(0);
assert!(v.len() == 0);
}
#[test]
fn test_push() {
// Test on-stack push().
let mut v = ~[];
v.push(1);
assert!(v.len() == 1u);
assert!(v[0] == 1);
// Test on-heap push().
v.push(2);
assert!(v.len() == 2u);
assert!(v[0] == 1);
assert!(v[1] == 2);
}
#[test]
fn test_grow() {
// Test on-stack grow().
let mut v = ~[];
v.grow(2u, &1);
assert!(v.len() == 2u);
assert!(v[0] == 1);
assert!(v[1] == 1);
// Test on-heap grow().
v.grow(3u, &2);
assert!(v.len() == 5u);
assert!(v[0] == 1);
assert!(v[1] == 1);
assert!(v[2] == 2);
assert!(v[3] == 2);
assert!(v[4] == 2);
}
#[test]
fn test_grow_fn() {
let mut v = ~[];
v.grow_fn(3u, square);
assert!(v.len() == 3u);
assert!(v[0] == 0u);
assert!(v[1] == 1u);
assert!(v[2] == 4u);
}
#[test]
fn test_grow_set() {
let mut v = ~[1, 2, 3];
v.grow_set(4u, &4, 5);
assert!(v.len() == 5u);
assert!(v[0] == 1);
assert!(v[1] == 2);
assert!(v[2] == 3);
assert!(v[3] == 4);
assert!(v[4] == 5);
}
#[test]
fn test_truncate() {
let mut v = ~[@6,@5,@4];
v.truncate(1);
assert!(v.len() == 1);
assert!(*(v[0]) == 6);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_clear() {
let mut v = ~[@6,@5,@4];
v.clear();
assert!(v.len() == 0);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_dedup() {
fn case(a: ~[uint], b: ~[uint]) {
let mut v = a;
v.dedup();
assert!(v == b);
}
case(~[], ~[]);
case(~[1], ~[1]);
case(~[1,1], ~[1]);
case(~[1,2,3], ~[1,2,3]);
case(~[1,1,2,3], ~[1,2,3]);
case(~[1,2,2,3], ~[1,2,3]);
case(~[1,2,3,3], ~[1,2,3]);
case(~[1,1,2,2,2,3,3], ~[1,2,3]);
}
#[test]
fn test_dedup_unique() {
let mut v0 = ~[~1, ~1, ~2, ~3];
v0.dedup();
let mut v1 = ~[~1, ~2, ~2, ~3];
v1.dedup();
let mut v2 = ~[~1, ~2, ~3, ~3];
v2.dedup();
/*
* If the ~pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_dedup_shared() {
let mut v0 = ~[@1, @1, @2, @3];
v0.dedup();
let mut v1 = ~[@1, @2, @2, @3];
v1.dedup();
let mut v2 = ~[@1, @2, @3, @3];
v2.dedup();
/*
* If the @pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_map() {
// Test on-stack map.
let mut v = ~[1u, 2u, 3u];
let mut w = map(v, square_ref);
assert!(w.len() == 3u);
assert!(w[0] == 1u);
assert!(w[1] == 4u);
assert!(w[2] == 9u);
// Test on-heap map.
v = ~[1u, 2u, 3u, 4u, 5u];
w = map(v, square_ref);
assert!(w.len() == 5u);
assert!(w[0] == 1u);
assert!(w[1] == 4u);
assert!(w[2] == 9u);
assert!(w[3] == 16u);
assert!(w[4] == 25u);
}
#[test]
fn test_map_zip() {
fn times(x: &int, y: &int) -> int { *x * *y }
let f = times;
let v0 = ~[1, 2, 3, 4, 5];
let v1 = ~[5, 4, 3, 2, 1];
let u = map_zip::<int, int, int>(v0, v1, f);
let mut i = 0;
while i < 5 { assert!(v0[i] * v1[i] == u[i]); i += 1; }
}
#[test]
fn test_filter_mapped() {
// Test on-stack filter-map.
let mut v = ~[1u, 2u, 3u];
let mut w = filter_mapped(v, square_if_odd_r);
assert!(w.len() == 2u);
assert!(w[0] == 1u);
assert!(w[1] == 9u);
// Test on-heap filter-map.
v = ~[1u, 2u, 3u, 4u, 5u];
w = filter_mapped(v, square_if_odd_r);
assert!(w.len() == 3u);
assert!(w[0] == 1u);
assert!(w[1] == 9u);
assert!(w[2] == 25u);
fn halve(i: &int) -> Option<int> {
if *i % 2 == 0 {
Some::<int>(*i / 2)
} else {
None::<int>
}
}
fn halve_for_sure(i: &int) -> int { *i / 2 }
let all_even: ~[int] = ~[0, 2, 8, 6];
let all_odd1: ~[int] = ~[1, 7, 3];
let all_odd2: ~[int] = ~[];
let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
let mix_dest: ~[int] = ~[1, 3, 0, 0];
assert!(filter_mapped(all_even, halve) ==
map(all_even, halve_for_sure));
assert!(filter_mapped(all_odd1, halve) == ~[]);
assert!(filter_mapped(all_odd2, halve) == ~[]);
assert!(filter_mapped(mix, halve) == mix_dest);
}
#[test]
fn test_filter_map() {
// Test on-stack filter-map.
let mut v = ~[1u, 2u, 3u];
let mut w = filter_map(v, square_if_odd_v);
assert!(w.len() == 2u);
assert!(w[0] == 1u);
assert!(w[1] == 9u);
// Test on-heap filter-map.
v = ~[1u, 2u, 3u, 4u, 5u];
w = filter_map(v, square_if_odd_v);
assert!(w.len() == 3u);
assert!(w[0] == 1u);
assert!(w[1] == 9u);
assert!(w[2] == 25u);
fn halve(i: int) -> Option<int> {
if i % 2 == 0 {
Some::<int>(i / 2)
} else {
None::<int>
}
}
fn halve_for_sure(i: &int) -> int { *i / 2 }
let all_even: ~[int] = ~[0, 2, 8, 6];
let all_even0: ~[int] = copy all_even;
let all_odd1: ~[int] = ~[1, 7, 3];
let all_odd2: ~[int] = ~[];
let mix: ~[int] = ~[9, 2, 6, 7, 1, 0, 0, 3];
let mix_dest: ~[int] = ~[1, 3, 0, 0];
assert!(filter_map(all_even, halve) ==
map(all_even0, halve_for_sure));
assert!(filter_map(all_odd1, halve) == ~[]);
assert!(filter_map(all_odd2, halve) == ~[]);
assert!(filter_map(mix, halve) == mix_dest);
}
#[test]
fn test_filter() {
assert!(filter(~[1u, 2u, 3u], is_odd) == ~[1u, 3u]);
assert!(filter(~[1u, 2u, 4u, 8u, 16u], is_three) == ~[]);
}
#[test]
fn test_retain() {
let mut v = ~[1, 2, 3, 4, 5];
v.retain(is_odd);
assert!(v == ~[1, 3, 5]);
}
#[test]
fn test_foldl() {
// Test on-stack fold.
let mut v = ~[1u, 2u, 3u];
let mut sum = foldl(0u, v, add);
assert!(sum == 6u);
// Test on-heap fold.
v = ~[1u, 2u, 3u, 4u, 5u];
sum = foldl(0u, v, add);
assert!(sum == 15u);
}
#[test]
fn test_foldl2() {
fn sub(a: int, b: &int) -> int {
a - *b
}
let mut v = ~[1, 2, 3, 4];
let sum = foldl(0, v, sub);
assert!(sum == -10);
}
#[test]
fn test_foldr() {
fn sub(a: &int, b: int) -> int {
*a - b
}
let mut v = ~[1, 2, 3, 4];
let sum = foldr(v, 0, sub);
assert!(sum == -2);
}
#[test]
fn test_each_empty() {
for each::<int>(~[]) |_v| {
fail!(); // should never be executed
}
}
#[test]
fn test_iter_nonempty() {
let mut i = 0;
for each(~[1, 2, 3]) |v| {
i += *v;
}
assert!(i == 6);
}
#[test]
fn test_iteri() {
let mut i = 0;
for eachi(~[1, 2, 3]) |j, v| {
if i == 0 { assert!(*v == 1); }
assert!(j + 1u == *v as uint);
i += *v;
}
assert!(i == 6);
}
#[test]
fn test_each_reverse_empty() {
let v: ~[int] = ~[];
for v.each_reverse |_v| {
fail!(); // should never execute
}
}
#[test]
fn test_each_reverse_nonempty() {
let mut i = 0;
for each_reverse(~[1, 2, 3]) |v| {
if i == 0 { assert!(*v == 3); }
i += *v
}
assert!(i == 6);
}
#[test]
fn test_eachi_reverse() {
let mut i = 0;
for eachi_reverse(~[0, 1, 2]) |j, v| {
if i == 0 { assert!(*v == 2); }
assert!(j == *v as uint);
i += *v;
}
assert!(i == 3);
}
#[test]
fn test_eachi_reverse_empty() {
let v: ~[int] = ~[];
for v.eachi_reverse |_i, _v| {
fail!(); // should never execute
}
}
#[test]
fn test_each_permutation() {
let mut results: ~[~[int]];
results = ~[];
for each_permutation(~[]) |v| { results.push(from_slice(v)); }
assert!(results == ~[~[]]);
results = ~[];
for each_permutation(~[7]) |v| { results.push(from_slice(v)); }
assert!(results == ~[~[7]]);
results = ~[];
for each_permutation(~[1,1]) |v| { results.push(from_slice(v)); }
assert!(results == ~[~[1,1],~[1,1]]);
results = ~[];
for each_permutation(~[5,2,0]) |v| { results.push(from_slice(v)); }
assert!(results ==
~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]]);
}
#[test]
fn test_any_and_all() {
assert!(any(~[1u, 2u, 3u], is_three));
assert!(!any(~[0u, 1u, 2u], is_three));
assert!(any(~[1u, 2u, 3u, 4u, 5u], is_three));
assert!(!any(~[1u, 2u, 4u, 5u, 6u], is_three));
assert!(all(~[3u, 3u, 3u], is_three));
assert!(!all(~[3u, 3u, 2u], is_three));
assert!(all(~[3u, 3u, 3u, 3u, 3u], is_three));
assert!(!all(~[3u, 3u, 0u, 1u, 2u], is_three));
}
#[test]
fn test_any2_and_all2() {
assert!(any2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
assert!(any2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
assert!(!any2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
assert!(any2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
assert!(all2(~[2u, 4u, 6u], ~[2u, 4u, 6u], is_equal));
assert!(!all2(~[1u, 2u, 3u], ~[4u, 5u, 3u], is_equal));
assert!(!all2(~[1u, 2u, 3u], ~[4u, 5u, 6u], is_equal));
assert!(!all2(~[2u, 4u, 6u], ~[2u, 4u], is_equal));
}
#[test]
fn test_zip_unzip() {
let v1 = ~[1, 2, 3];
let v2 = ~[4, 5, 6];
let z1 = zip(v1, v2);
assert!((1, 4) == z1[0]);
assert!((2, 5) == z1[1]);
assert!((3, 6) == z1[2]);
let (left, right) = unzip(z1);
assert!((1, 4) == (left[0], right[0]));
assert!((2, 5) == (left[1], right[1]));
assert!((3, 6) == (left[2], right[2]));
}
#[test]
fn test_position_elem() {
assert!(position_elem(~[], &1).is_none());
let v1 = ~[1, 2, 3, 3, 2, 5];
assert!(position_elem(v1, &1) == Some(0u));
assert!(position_elem(v1, &2) == Some(1u));
assert!(position_elem(v1, &5) == Some(5u));
assert!(position_elem(v1, &4).is_none());
}
#[test]
fn test_position() {
fn less_than_three(i: &int) -> bool { *i < 3 }
fn is_eighteen(i: &int) -> bool { *i == 18 }
assert!(position(~[], less_than_three).is_none());
let v1 = ~[5, 4, 3, 2, 1];
assert!(position(v1, less_than_three) == Some(3u));
assert!(position(v1, is_eighteen).is_none());
}
#[test]
fn test_position_between() {
assert!(position_between(~[], 0u, 0u, f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(position_between(v, 0u, 0u, f).is_none());
assert!(position_between(v, 0u, 1u, f).is_none());
assert!(position_between(v, 0u, 2u, f) == Some(1u));
assert!(position_between(v, 0u, 3u, f) == Some(1u));
assert!(position_between(v, 0u, 4u, f) == Some(1u));
assert!(position_between(v, 1u, 1u, f).is_none());
assert!(position_between(v, 1u, 2u, f) == Some(1u));
assert!(position_between(v, 1u, 3u, f) == Some(1u));
assert!(position_between(v, 1u, 4u, f) == Some(1u));
assert!(position_between(v, 2u, 2u, f).is_none());
assert!(position_between(v, 2u, 3u, f).is_none());
assert!(position_between(v, 2u, 4u, f) == Some(3u));
assert!(position_between(v, 3u, 3u, f).is_none());
assert!(position_between(v, 3u, 4u, f) == Some(3u));
assert!(position_between(v, 4u, 4u, f).is_none());
}
#[test]
fn test_find() {
assert!(find(~[], f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(find(v, f) == Some((1, 'b')));
assert!(find(v, g).is_none());
}
#[test]
fn test_find_between() {
assert!(find_between(~[], 0u, 0u, f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(find_between(v, 0u, 0u, f).is_none());
assert!(find_between(v, 0u, 1u, f).is_none());
assert!(find_between(v, 0u, 2u, f) == Some((1, 'b')));
assert!(find_between(v, 0u, 3u, f) == Some((1, 'b')));
assert!(find_between(v, 0u, 4u, f) == Some((1, 'b')));
assert!(find_between(v, 1u, 1u, f).is_none());
assert!(find_between(v, 1u, 2u, f) == Some((1, 'b')));
assert!(find_between(v, 1u, 3u, f) == Some((1, 'b')));
assert!(find_between(v, 1u, 4u, f) == Some((1, 'b')));
assert!(find_between(v, 2u, 2u, f).is_none());
assert!(find_between(v, 2u, 3u, f).is_none());
assert!(find_between(v, 2u, 4u, f) == Some((3, 'b')));
assert!(find_between(v, 3u, 3u, f).is_none());
assert!(find_between(v, 3u, 4u, f) == Some((3, 'b')));
assert!(find_between(v, 4u, 4u, f).is_none());
}
#[test]
fn test_rposition() {
assert!(find(~[], f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(position(v, f) == Some(1u));
assert!(position(v, g).is_none());
}
#[test]
fn test_rposition_between() {
assert!(rposition_between(~[], 0u, 0u, f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(rposition_between(v, 0u, 0u, f).is_none());
assert!(rposition_between(v, 0u, 1u, f).is_none());
assert!(rposition_between(v, 0u, 2u, f) == Some(1u));
assert!(rposition_between(v, 0u, 3u, f) == Some(1u));
assert!(rposition_between(v, 0u, 4u, f) == Some(3u));
assert!(rposition_between(v, 1u, 1u, f).is_none());
assert!(rposition_between(v, 1u, 2u, f) == Some(1u));
assert!(rposition_between(v, 1u, 3u, f) == Some(1u));
assert!(rposition_between(v, 1u, 4u, f) == Some(3u));
assert!(rposition_between(v, 2u, 2u, f).is_none());
assert!(rposition_between(v, 2u, 3u, f).is_none());
assert!(rposition_between(v, 2u, 4u, f) == Some(3u));
assert!(rposition_between(v, 3u, 3u, f).is_none());
assert!(rposition_between(v, 3u, 4u, f) == Some(3u));
assert!(rposition_between(v, 4u, 4u, f).is_none());
}
#[test]
fn test_rfind() {
assert!(rfind(~[], f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(rfind(v, f) == Some((3, 'b')));
assert!(rfind(v, g).is_none());
}
#[test]
fn test_rfind_between() {
assert!(rfind_between(~[], 0u, 0u, f).is_none());
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
let mut v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert!(rfind_between(v, 0u, 0u, f).is_none());
assert!(rfind_between(v, 0u, 1u, f).is_none());
assert!(rfind_between(v, 0u, 2u, f) == Some((1, 'b')));
assert!(rfind_between(v, 0u, 3u, f) == Some((1, 'b')));
assert!(rfind_between(v, 0u, 4u, f) == Some((3, 'b')));
assert!(rfind_between(v, 1u, 1u, f).is_none());
assert!(rfind_between(v, 1u, 2u, f) == Some((1, 'b')));
assert!(rfind_between(v, 1u, 3u, f) == Some((1, 'b')));
assert!(rfind_between(v, 1u, 4u, f) == Some((3, 'b')));
assert!(rfind_between(v, 2u, 2u, f).is_none());
assert!(rfind_between(v, 2u, 3u, f).is_none());
assert!(rfind_between(v, 2u, 4u, f) == Some((3, 'b')));
assert!(rfind_between(v, 3u, 3u, f).is_none());
assert!(rfind_between(v, 3u, 4u, f) == Some((3, 'b')));
assert!(rfind_between(v, 4u, 4u, f).is_none());
}
#[test]
fn test_bsearch_elem() {
assert!(bsearch_elem([1,2,3,4,5], &5) == Some(4));
assert!(bsearch_elem([1,2,3,4,5], &4) == Some(3));
assert!(bsearch_elem([1,2,3,4,5], &3) == Some(2));
assert!(bsearch_elem([1,2,3,4,5], &2) == Some(1));
assert!(bsearch_elem([1,2,3,4,5], &1) == Some(0));
assert!(bsearch_elem([2,4,6,8,10], &1) == None);
assert!(bsearch_elem([2,4,6,8,10], &5) == None);
assert!(bsearch_elem([2,4,6,8,10], &4) == Some(1));
assert!(bsearch_elem([2,4,6,8,10], &10) == Some(4));
assert!(bsearch_elem([2,4,6,8], &1) == None);
assert!(bsearch_elem([2,4,6,8], &5) == None);
assert!(bsearch_elem([2,4,6,8], &4) == Some(1));
assert!(bsearch_elem([2,4,6,8], &8) == Some(3));
assert!(bsearch_elem([2,4,6], &1) == None);
assert!(bsearch_elem([2,4,6], &5) == None);
assert!(bsearch_elem([2,4,6], &4) == Some(1));
assert!(bsearch_elem([2,4,6], &6) == Some(2));
assert!(bsearch_elem([2,4], &1) == None);
assert!(bsearch_elem([2,4], &5) == None);
assert!(bsearch_elem([2,4], &2) == Some(0));
assert!(bsearch_elem([2,4], &4) == Some(1));
assert!(bsearch_elem([2], &1) == None);
assert!(bsearch_elem([2], &5) == None);
assert!(bsearch_elem([2], &2) == Some(0));
assert!(bsearch_elem([], &1) == None);
assert!(bsearch_elem([], &5) == None);
assert!(bsearch_elem([1,1,1,1,1], &1) != None);
assert!(bsearch_elem([1,1,1,1,2], &1) != None);
assert!(bsearch_elem([1,1,1,2,2], &1) != None);
assert!(bsearch_elem([1,1,2,2,2], &1) != None);
assert!(bsearch_elem([1,2,2,2,2], &1) == Some(0));
assert!(bsearch_elem([1,2,3,4,5], &6) == None);
assert!(bsearch_elem([1,2,3,4,5], &0) == None);
}
#[test]
fn reverse_and_reversed() {
let mut v: ~[int] = ~[10, 20];
assert!(v[0] == 10);
assert!(v[1] == 20);
reverse(v);
assert!(v[0] == 20);
assert!(v[1] == 10);
let v2 = reversed::<int>(~[10, 20]);
assert!(v2[0] == 20);
assert!(v2[1] == 10);
v[0] = 30;
assert!(v2[0] == 20);
// Make sure they work with 0-length vectors too.
let v4 = reversed::<int>(~[]);
assert!(v4 == ~[]);
let mut v3: ~[int] = ~[];
reverse::<int>(v3);
}
#[test]
fn reversed_mut() {
let v2 = reversed::<int>(~[10, 20]);
assert!(v2[0] == 20);
assert!(v2[1] == 10);
}
#[test]
fn test_split() {
fn f(x: &int) -> bool { *x == 3 }
assert!(split(~[], f) == ~[]);
assert!(split(~[1, 2], f) == ~[~[1, 2]]);
assert!(split(~[3, 1, 2], f) == ~[~[], ~[1, 2]]);
assert!(split(~[1, 2, 3], f) == ~[~[1, 2], ~[]]);
assert!(split(~[1, 2, 3, 4, 3, 5], f) == ~[~[1, 2], ~[4], ~[5]]);
}
#[test]
fn test_splitn() {
fn f(x: &int) -> bool { *x == 3 }
assert!(splitn(~[], 1u, f) == ~[]);
assert!(splitn(~[1, 2], 1u, f) == ~[~[1, 2]]);
assert!(splitn(~[3, 1, 2], 1u, f) == ~[~[], ~[1, 2]]);
assert!(splitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]]);
assert!(splitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
~[~[1, 2], ~[4, 3, 5]]);
}
#[test]
fn test_rsplit() {
fn f(x: &int) -> bool { *x == 3 }
assert!(rsplit(~[], f) == ~[]);
assert!(rsplit(~[1, 2], f) == ~[~[1, 2]]);
assert!(rsplit(~[1, 2, 3], f) == ~[~[1, 2], ~[]]);
assert!(rsplit(~[1, 2, 3, 4, 3, 5], f) ==
~[~[1, 2], ~[4], ~[5]]);
}
#[test]
fn test_rsplitn() {
fn f(x: &int) -> bool { *x == 3 }
assert!(rsplitn(~[], 1u, f) == ~[]);
assert!(rsplitn(~[1, 2], 1u, f) == ~[~[1, 2]]);
assert!(rsplitn(~[1, 2, 3], 1u, f) == ~[~[1, 2], ~[]]);
assert!(rsplitn(~[1, 2, 3, 4, 3, 5], 1u, f) ==
~[~[1, 2, 3, 4], ~[5]]);
}
#[test]
fn test_partition() {
// FIXME (#4355 maybe): using v.partition here crashes
assert!(partition(~[], |x: &int| *x < 3) == (~[], ~[]));
assert!(partition(~[1, 2, 3], |x: &int| *x < 4) ==
(~[1, 2, 3], ~[]));
assert!(partition(~[1, 2, 3], |x: &int| *x < 2) ==
(~[1], ~[2, 3]));
assert!(partition(~[1, 2, 3], |x: &int| *x < 0) ==
(~[], ~[1, 2, 3]));
}
#[test]
fn test_partitioned() {
assert!((~[]).partitioned(|x: &int| *x < 3) == (~[], ~[]));
assert!((~[1, 2, 3]).partitioned(|x: &int| *x < 4) ==
(~[1, 2, 3], ~[]));
assert!((~[1, 2, 3]).partitioned(|x: &int| *x < 2) ==
(~[1], ~[2, 3]));
assert!((~[1, 2, 3]).partitioned(|x: &int| *x < 0) ==
(~[], ~[1, 2, 3]));
}
#[test]
fn test_concat() {
assert!(concat(~[~[1], ~[2,3]]) == ~[1, 2, 3]);
}
#[test]
fn test_connect() {
assert!(connect(~[], &0) == ~[]);
assert!(connect(~[~[1], ~[2, 3]], &0) == ~[1, 0, 2, 3]);
assert!(connect(~[~[1], ~[2], ~[3]], &0) == ~[1, 0, 2, 0, 3]);
}
#[test]
fn test_windowed () {
fn t(n: uint, expected: &[&[int]]) {
let mut i = 0;
for windowed(n, ~[1,2,3,4,5,6]) |v| {
assert_eq!(v, expected[i]);
i += 1;
}
// check that we actually iterated the right number of times
assert_eq!(i, expected.len());
}
t(3, &[&[1,2,3],&[2,3,4],&[3,4,5],&[4,5,6]]);
t(4, &[&[1,2,3,4],&[2,3,4,5],&[3,4,5,6]]);
t(7, &[]);
t(8, &[]);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_windowed_() {
for windowed (0u, ~[1u,2u,3u,4u,5u,6u]) |_v| {}
}
#[test]
fn test_unshift() {
let mut x = ~[1, 2, 3];
x.unshift(0);
assert!(x == ~[0, 1, 2, 3]);
}
#[test]
fn test_insert() {
let mut a = ~[1, 2, 4];
a.insert(2, 3);
assert!(a == ~[1, 2, 3, 4]);
let mut a = ~[1, 2, 3];
a.insert(0, 0);
assert!(a == ~[0, 1, 2, 3]);
let mut a = ~[1, 2, 3];
a.insert(3, 4);
assert!(a == ~[1, 2, 3, 4]);
let mut a = ~[];
a.insert(0, 1);
assert!(a == ~[1]);
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_insert_oob() {
let mut a = ~[1, 2, 3];
a.insert(4, 5);
}
#[test]
fn test_remove() {
let mut a = ~[1, 2, 3, 4];
a.remove(2);
assert!(a == ~[1, 2, 4]);
let mut a = ~[1, 2, 3];
a.remove(0);
assert!(a == ~[2, 3]);
let mut a = ~[1];
a.remove(0);
assert!(a == ~[]);
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_remove_oob() {
let mut a = ~[1, 2, 3];
a.remove(3);
}
#[test]
fn test_capacity() {
let mut v = ~[0u64];
reserve(&mut v, 10u);
assert!(capacity(&v) == 10u);
let mut v = ~[0u32];
reserve(&mut v, 10u);
assert!(capacity(&v) == 10u);
}
#[test]
fn test_slice_2() {
let v = ~[1, 2, 3, 4, 5];
let v = v.slice(1u, 3u);
assert!(v.len() == 2u);
assert!(v[0] == 2);
assert!(v[1] == 3);
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_from_fn_fail() {
do from_fn(100) |v| {
if v == 50 { fail!() }
(~0, @0)
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_build_fail() {
do build |push| {
push((~0, @0));
push((~0, @0));
push((~0, @0));
push((~0, @0));
fail!();
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_split_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do split(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_split_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do split(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_splitn_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do splitn(v, 100) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_splitn_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do split(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplit_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplit(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplit_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplit(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplitn_fail_ret_true() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplitn(v, 100) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_rsplitn_fail_ret_false() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rsplitn(v, 100) |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_consume_fail() {
let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do consume(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 1;
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_grow_fn_fail() {
let mut v = ~[];
do v.grow_fn(100) |i| {
if i == 50 {
fail!()
}
(~0, @0)
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_map_fail() {
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_map_consume_fail() {
let v = ~[(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map_consume(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_mapi_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do mapi(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_flat_map_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_map_zip_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do map_zip(v, v) |_elt1, _elt2| {
if i == 2 {
fail!()
}
i += 0;
~[(~0, @0)]
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_filter_mapped_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do filter_mapped(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
Some((~0, @0))
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_filter_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do v.filtered |_elt| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_foldl_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do foldl((~0, @0), v) |_a, _b| {
if i == 2 {
fail!()
}
i += 0;
(~0, @0)
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_foldr_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do foldr(v, (~0, @0)) |_a, _b| {
if i == 2 {
fail!()
}
i += 0;
(~0, @0)
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_any_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do any(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_any2_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do any(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_all_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do all(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_alli_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do alli(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_all2_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do all2(v, v) |_elt1, _elt2| {
if i == 2 {
fail!()
}
i += 0;
true
};
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_find_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do find(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_position_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do position(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_rposition_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do rposition(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
};
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_each_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do each(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
false
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_eachi_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do eachi(v) |_i, _elt| {
if i == 2 {
fail!()
}
i += 0;
false
}
}
#[test]
#[ignore(windows)]
#[should_fail]
#[allow(non_implicitly_copyable_typarams)]
fn test_permute_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
for each_permutation(v) |_elt| {
if i == 2 {
fail!()
}
i += 0;
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_as_imm_buf_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do as_imm_buf(v) |_buf, _i| {
fail!()
}
}
#[test]
#[ignore(windows)]
#[should_fail]
fn test_as_const_buf_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do as_const_buf(v) |_buf, _i| {
fail!()
}
}
#[test]
#[ignore(cfg(windows))]
#[should_fail]
fn test_as_mut_buf_fail() {
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do as_mut_buf(v) |_buf, _i| {
fail!()
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_copy_memory_oob() {
unsafe {
let mut a = [1, 2, 3, 4];
let b = [1, 2, 3, 4, 5];
raw::copy_memory(a, b, 5);
}
}
#[test]
fn test_total_ord() {
[1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater;
[1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less;
[1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal;
[1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less;
[2, 2].cmp(& &[1, 2, 3, 4]) == Greater;
}
#[test]
fn test_iterator() {
use iterator::*;
let xs = [1, 2, 5, 10, 11];
let ys = [1, 2, 5, 10, 11, 19];
let mut it = xs.iter();
let mut i = 0;
for it.advance |&x| {
assert_eq!(x, ys[i]);
i += 1;
}
}
}