2023-03-01 10:20:45 +01:00

690 lines
21 KiB
Rust

use crate::sip128::SipHasher128;
use rustc_index::bit_set;
use rustc_index::vec;
use smallvec::SmallVec;
use std::hash::{BuildHasher, Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
#[cfg(test)]
mod tests;
/// When hashing something that ends up affecting properties like symbol names,
/// we want these symbol names to be calculated independently of other factors
/// like what architecture you're compiling *from*.
///
/// To that end we always convert integers to little-endian format before
/// hashing and the architecture dependent `isize` and `usize` types are
/// extended to 64 bits if needed.
pub struct StableHasher {
state: SipHasher128,
}
impl ::std::fmt::Debug for StableHasher {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{:?}", self.state)
}
}
pub trait StableHasherResult: Sized {
fn finish(hasher: StableHasher) -> Self;
}
impl StableHasher {
#[inline]
pub fn new() -> Self {
StableHasher { state: SipHasher128::new_with_keys(0, 0) }
}
#[inline]
pub fn finish<W: StableHasherResult>(self) -> W {
W::finish(self)
}
}
impl StableHasherResult for u128 {
#[inline]
fn finish(hasher: StableHasher) -> Self {
let (_0, _1) = hasher.finalize();
u128::from(_0) | (u128::from(_1) << 64)
}
}
impl StableHasherResult for u64 {
#[inline]
fn finish(hasher: StableHasher) -> Self {
hasher.finalize().0
}
}
impl StableHasher {
#[inline]
pub fn finalize(self) -> (u64, u64) {
self.state.finish128()
}
}
impl Hasher for StableHasher {
fn finish(&self) -> u64 {
panic!("use StableHasher::finalize instead");
}
#[inline]
fn write(&mut self, bytes: &[u8]) {
self.state.write(bytes);
}
#[inline]
fn write_str(&mut self, s: &str) {
self.state.write_str(s);
}
#[inline]
fn write_length_prefix(&mut self, len: usize) {
// Our impl for `usize` will extend it if needed.
self.write_usize(len);
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.state.write_u8(i);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.state.short_write(i.to_le_bytes());
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.state.short_write(i.to_le_bytes());
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.state.short_write(i.to_le_bytes());
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.state.write(&i.to_le_bytes());
}
#[inline]
fn write_usize(&mut self, i: usize) {
// Always treat usize as u64 so we get the same results on 32 and 64 bit
// platforms. This is important for symbol hashes when cross compiling,
// for example.
self.state.short_write((i as u64).to_le_bytes());
}
#[inline]
fn write_i8(&mut self, i: i8) {
self.state.write_i8(i);
}
#[inline]
fn write_i16(&mut self, i: i16) {
self.state.short_write((i as u16).to_le_bytes());
}
#[inline]
fn write_i32(&mut self, i: i32) {
self.state.short_write((i as u32).to_le_bytes());
}
#[inline]
fn write_i64(&mut self, i: i64) {
self.state.short_write((i as u64).to_le_bytes());
}
#[inline]
fn write_i128(&mut self, i: i128) {
self.state.write(&(i as u128).to_le_bytes());
}
#[inline]
fn write_isize(&mut self, i: isize) {
// Always treat isize as a 64-bit number so we get the same results on 32 and 64 bit
// platforms. This is important for symbol hashes when cross compiling,
// for example. Sign extending here is preferable as it means that the
// same negative number hashes the same on both 32 and 64 bit platforms.
let value = i as u64;
// Cold path
#[cold]
#[inline(never)]
fn hash_value(state: &mut SipHasher128, value: u64) {
state.write_u8(0xFF);
state.short_write(value.to_le_bytes());
}
// `isize` values often seem to have a small (positive) numeric value in practice.
// To exploit this, if the value is small, we will hash a smaller amount of bytes.
// However, we cannot just skip the leading zero bytes, as that would produce the same hash
// e.g. if you hash two values that have the same bit pattern when they are swapped.
// See https://github.com/rust-lang/rust/pull/93014 for context.
//
// Therefore, we employ the following strategy:
// 1) When we encounter a value that fits within a single byte (the most common case), we
// hash just that byte. This is the most common case that is being optimized. However, we do
// not do this for the value 0xFF, as that is a reserved prefix (a bit like in UTF-8).
// 2) When we encounter a larger value, we hash a "marker" 0xFF and then the corresponding
// 8 bytes. Since this prefix cannot occur when we hash a single byte, when we hash two
// `isize`s that fit within a different amount of bytes, they should always produce a different
// byte stream for the hasher.
if value < 0xFF {
self.state.write_u8(value as u8);
} else {
hash_value(&mut self.state, value);
}
}
}
/// Something that implements `HashStable<CTX>` can be hashed in a way that is
/// stable across multiple compilation sessions.
///
/// Note that `HashStable` imposes rather more strict requirements than usual
/// hash functions:
///
/// - Stable hashes are sometimes used as identifiers. Therefore they must
/// conform to the corresponding `PartialEq` implementations:
///
/// - `x == y` implies `hash_stable(x) == hash_stable(y)`, and
/// - `x != y` implies `hash_stable(x) != hash_stable(y)`.
///
/// That second condition is usually not required for hash functions
/// (e.g. `Hash`). In practice this means that `hash_stable` must feed any
/// information into the hasher that a `PartialEq` comparison takes into
/// account. See [#49300](https://github.com/rust-lang/rust/issues/49300)
/// for an example where violating this invariant has caused trouble in the
/// past.
///
/// - `hash_stable()` must be independent of the current
/// compilation session. E.g. they must not hash memory addresses or other
/// things that are "randomly" assigned per compilation session.
///
/// - `hash_stable()` must be independent of the host architecture. The
/// `StableHasher` takes care of endianness and `isize`/`usize` platform
/// differences.
pub trait HashStable<CTX> {
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher);
}
/// Implement this for types that can be turned into stable keys like, for
/// example, for DefId that can be converted to a DefPathHash. This is used for
/// bringing maps into a predictable order before hashing them.
pub trait ToStableHashKey<HCX> {
type KeyType: Ord + Sized + HashStable<HCX>;
fn to_stable_hash_key(&self, hcx: &HCX) -> Self::KeyType;
}
/// Trait for marking a type as having a sort order that is
/// stable across compilation session boundaries. More formally:
///
/// ```txt
/// Ord::cmp(a1, b1) == Ord::cmp(a2, b2)
/// where a2 = decode(encode(a1, context1), context2)
/// b2 = decode(encode(b1, context1), context2)
/// ```
///
/// i.e. the result of `Ord::cmp` is not influenced by encoding
/// the values in one session and then decoding them in another
/// session.
///
/// This is trivially true for types where encoding and decoding
/// don't change the bytes of the values that are used during
/// comparison and comparison only depends on these bytes (as
/// opposed to some non-local state). Examples are u32, String,
/// Path, etc.
///
/// But it is not true for:
/// - `*const T` and `*mut T` because the values of these pointers
/// will change between sessions.
/// - `DefIndex`, `CrateNum`, `LocalDefId`, because their concrete
/// values depend on state that might be different between
/// compilation sessions.
pub unsafe trait StableOrd: Ord {}
/// Implement HashStable by just calling `Hash::hash()`. Also implement `StableOrd` for the type since
/// that has the same requirements.
///
/// **WARNING** This is only valid for types that *really* don't need any context for fingerprinting.
/// But it is easy to misuse this macro (see [#96013](https://github.com/rust-lang/rust/issues/96013)
/// for examples). Therefore this macro is not exported and should only be used in the limited cases
/// here in this module.
///
/// Use `#[derive(HashStable_Generic)]` instead.
macro_rules! impl_stable_traits_for_trivial_type {
($t:ty) => {
impl<CTX> $crate::stable_hasher::HashStable<CTX> for $t {
#[inline]
fn hash_stable(&self, _: &mut CTX, hasher: &mut $crate::stable_hasher::StableHasher) {
::std::hash::Hash::hash(self, hasher);
}
}
unsafe impl $crate::stable_hasher::StableOrd for $t {}
};
}
impl_stable_traits_for_trivial_type!(i8);
impl_stable_traits_for_trivial_type!(i16);
impl_stable_traits_for_trivial_type!(i32);
impl_stable_traits_for_trivial_type!(i64);
impl_stable_traits_for_trivial_type!(isize);
impl_stable_traits_for_trivial_type!(u8);
impl_stable_traits_for_trivial_type!(u16);
impl_stable_traits_for_trivial_type!(u32);
impl_stable_traits_for_trivial_type!(u64);
impl_stable_traits_for_trivial_type!(usize);
impl_stable_traits_for_trivial_type!(u128);
impl_stable_traits_for_trivial_type!(i128);
impl_stable_traits_for_trivial_type!(char);
impl_stable_traits_for_trivial_type!(());
impl<CTX> HashStable<CTX> for ! {
fn hash_stable(&self, _ctx: &mut CTX, _hasher: &mut StableHasher) {
unreachable!()
}
}
impl<CTX, T> HashStable<CTX> for PhantomData<T> {
fn hash_stable(&self, _ctx: &mut CTX, _hasher: &mut StableHasher) {}
}
impl<CTX> HashStable<CTX> for ::std::num::NonZeroU32 {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.get().hash_stable(ctx, hasher)
}
}
impl<CTX> HashStable<CTX> for ::std::num::NonZeroUsize {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.get().hash_stable(ctx, hasher)
}
}
impl<CTX> HashStable<CTX> for f32 {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
let val: u32 = unsafe { ::std::mem::transmute(*self) };
val.hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for f64 {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
let val: u64 = unsafe { ::std::mem::transmute(*self) };
val.hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for ::std::cmp::Ordering {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
(*self as i8).hash_stable(ctx, hasher);
}
}
impl<T1: HashStable<CTX>, CTX> HashStable<CTX> for (T1,) {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
let (ref _0,) = *self;
_0.hash_stable(ctx, hasher);
}
}
impl<T1: HashStable<CTX>, T2: HashStable<CTX>, CTX> HashStable<CTX> for (T1, T2) {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
let (ref _0, ref _1) = *self;
_0.hash_stable(ctx, hasher);
_1.hash_stable(ctx, hasher);
}
}
impl<T1, T2, T3, CTX> HashStable<CTX> for (T1, T2, T3)
where
T1: HashStable<CTX>,
T2: HashStable<CTX>,
T3: HashStable<CTX>,
{
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
let (ref _0, ref _1, ref _2) = *self;
_0.hash_stable(ctx, hasher);
_1.hash_stable(ctx, hasher);
_2.hash_stable(ctx, hasher);
}
}
impl<T1, T2, T3, T4, CTX> HashStable<CTX> for (T1, T2, T3, T4)
where
T1: HashStable<CTX>,
T2: HashStable<CTX>,
T3: HashStable<CTX>,
T4: HashStable<CTX>,
{
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
let (ref _0, ref _1, ref _2, ref _3) = *self;
_0.hash_stable(ctx, hasher);
_1.hash_stable(ctx, hasher);
_2.hash_stable(ctx, hasher);
_3.hash_stable(ctx, hasher);
}
}
impl<T: HashStable<CTX>, CTX> HashStable<CTX> for [T] {
default fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.len().hash_stable(ctx, hasher);
for item in self {
item.hash_stable(ctx, hasher);
}
}
}
impl<CTX> HashStable<CTX> for [u8] {
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.len().hash_stable(ctx, hasher);
hasher.write(self);
}
}
impl<T: HashStable<CTX>, CTX> HashStable<CTX> for Vec<T> {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self[..].hash_stable(ctx, hasher);
}
}
impl<K, V, R, CTX> HashStable<CTX> for indexmap::IndexMap<K, V, R>
where
K: HashStable<CTX> + Eq + Hash,
V: HashStable<CTX>,
R: BuildHasher,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.len().hash_stable(ctx, hasher);
for kv in self {
kv.hash_stable(ctx, hasher);
}
}
}
impl<K, R, CTX> HashStable<CTX> for indexmap::IndexSet<K, R>
where
K: HashStable<CTX> + Eq + Hash,
R: BuildHasher,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.len().hash_stable(ctx, hasher);
for key in self {
key.hash_stable(ctx, hasher);
}
}
}
impl<A, const N: usize, CTX> HashStable<CTX> for SmallVec<[A; N]>
where
A: HashStable<CTX>,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self[..].hash_stable(ctx, hasher);
}
}
impl<T: ?Sized + HashStable<CTX>, CTX> HashStable<CTX> for Box<T> {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
(**self).hash_stable(ctx, hasher);
}
}
impl<T: ?Sized + HashStable<CTX>, CTX> HashStable<CTX> for ::std::rc::Rc<T> {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
(**self).hash_stable(ctx, hasher);
}
}
impl<T: ?Sized + HashStable<CTX>, CTX> HashStable<CTX> for ::std::sync::Arc<T> {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
(**self).hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for str {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.as_bytes().hash_stable(ctx, hasher);
}
}
impl<CTX> HashStable<CTX> for String {
#[inline]
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
self[..].hash_stable(hcx, hasher);
}
}
// Safety: String comparison only depends on their contents and the
// contents are not changed by (de-)serialization.
unsafe impl StableOrd for String {}
impl<HCX> ToStableHashKey<HCX> for String {
type KeyType = String;
#[inline]
fn to_stable_hash_key(&self, _: &HCX) -> Self::KeyType {
self.clone()
}
}
impl<HCX, T1: ToStableHashKey<HCX>, T2: ToStableHashKey<HCX>> ToStableHashKey<HCX> for (T1, T2) {
type KeyType = (T1::KeyType, T2::KeyType);
#[inline]
fn to_stable_hash_key(&self, hcx: &HCX) -> Self::KeyType {
(self.0.to_stable_hash_key(hcx), self.1.to_stable_hash_key(hcx))
}
}
impl<CTX> HashStable<CTX> for bool {
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
(if *self { 1u8 } else { 0u8 }).hash_stable(ctx, hasher);
}
}
// Safety: sort order of bools is not changed by (de-)serialization.
unsafe impl StableOrd for bool {}
impl<T, CTX> HashStable<CTX> for Option<T>
where
T: HashStable<CTX>,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
if let Some(ref value) = *self {
1u8.hash_stable(ctx, hasher);
value.hash_stable(ctx, hasher);
} else {
0u8.hash_stable(ctx, hasher);
}
}
}
// Safety: the Option wrapper does not add instability to comparison.
unsafe impl<T: StableOrd> StableOrd for Option<T> {}
impl<T1, T2, CTX> HashStable<CTX> for Result<T1, T2>
where
T1: HashStable<CTX>,
T2: HashStable<CTX>,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
mem::discriminant(self).hash_stable(ctx, hasher);
match *self {
Ok(ref x) => x.hash_stable(ctx, hasher),
Err(ref x) => x.hash_stable(ctx, hasher),
}
}
}
impl<'a, T, CTX> HashStable<CTX> for &'a T
where
T: HashStable<CTX> + ?Sized,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
(**self).hash_stable(ctx, hasher);
}
}
impl<T, CTX> HashStable<CTX> for ::std::mem::Discriminant<T> {
#[inline]
fn hash_stable(&self, _: &mut CTX, hasher: &mut StableHasher) {
::std::hash::Hash::hash(self, hasher);
}
}
impl<T, CTX> HashStable<CTX> for ::std::ops::RangeInclusive<T>
where
T: HashStable<CTX>,
{
#[inline]
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.start().hash_stable(ctx, hasher);
self.end().hash_stable(ctx, hasher);
}
}
impl<I: vec::Idx, T, CTX> HashStable<CTX> for vec::IndexVec<I, T>
where
T: HashStable<CTX>,
{
fn hash_stable(&self, ctx: &mut CTX, hasher: &mut StableHasher) {
self.len().hash_stable(ctx, hasher);
for v in &self.raw {
v.hash_stable(ctx, hasher);
}
}
}
impl<I: vec::Idx, CTX> HashStable<CTX> for bit_set::BitSet<I> {
fn hash_stable(&self, _ctx: &mut CTX, hasher: &mut StableHasher) {
::std::hash::Hash::hash(self, hasher);
}
}
impl<R: vec::Idx, C: vec::Idx, CTX> HashStable<CTX> for bit_set::BitMatrix<R, C> {
fn hash_stable(&self, _ctx: &mut CTX, hasher: &mut StableHasher) {
::std::hash::Hash::hash(self, hasher);
}
}
impl<T, CTX> HashStable<CTX> for bit_set::FiniteBitSet<T>
where
T: HashStable<CTX> + bit_set::FiniteBitSetTy,
{
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
self.0.hash_stable(hcx, hasher);
}
}
impl_stable_traits_for_trivial_type!(::std::path::Path);
impl_stable_traits_for_trivial_type!(::std::path::PathBuf);
impl<K, V, R, HCX> HashStable<HCX> for ::std::collections::HashMap<K, V, R>
where
K: ToStableHashKey<HCX> + Eq,
V: HashStable<HCX>,
R: BuildHasher,
{
#[inline]
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
stable_hash_reduce(hcx, hasher, self.iter(), self.len(), |hasher, hcx, (key, value)| {
let key = key.to_stable_hash_key(hcx);
key.hash_stable(hcx, hasher);
value.hash_stable(hcx, hasher);
});
}
}
// It is not safe to implement HashStable for HashSet or any other collection type
// with unstable but observable iteration order.
// See https://github.com/rust-lang/compiler-team/issues/533 for further information.
impl<V, HCX> !HashStable<HCX> for std::collections::HashSet<V> {}
impl<K, V, HCX> HashStable<HCX> for ::std::collections::BTreeMap<K, V>
where
K: HashStable<HCX> + StableOrd,
V: HashStable<HCX>,
{
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
self.len().hash_stable(hcx, hasher);
for entry in self.iter() {
entry.hash_stable(hcx, hasher);
}
}
}
impl<K, HCX> HashStable<HCX> for ::std::collections::BTreeSet<K>
where
K: HashStable<HCX> + StableOrd,
{
fn hash_stable(&self, hcx: &mut HCX, hasher: &mut StableHasher) {
self.len().hash_stable(hcx, hasher);
for entry in self.iter() {
entry.hash_stable(hcx, hasher);
}
}
}
fn stable_hash_reduce<HCX, I, C, F>(
hcx: &mut HCX,
hasher: &mut StableHasher,
mut collection: C,
length: usize,
hash_function: F,
) where
C: Iterator<Item = I>,
F: Fn(&mut StableHasher, &mut HCX, I),
{
length.hash_stable(hcx, hasher);
match length {
1 => {
hash_function(hasher, hcx, collection.next().unwrap());
}
_ => {
let hash = collection
.map(|value| {
let mut hasher = StableHasher::new();
hash_function(&mut hasher, hcx, value);
hasher.finish::<u128>()
})
.reduce(|accum, value| accum.wrapping_add(value));
hash.hash_stable(hcx, hasher);
}
}
}
/// Controls what data we do or do not hash.
/// Whenever a `HashStable` implementation caches its
/// result, it needs to include `HashingControls` as part
/// of the key, to ensure that it does not produce an incorrect
/// result (for example, using a `Fingerprint` produced while
/// hashing `Span`s when a `Fingerprint` without `Span`s is
/// being requested)
#[derive(Clone, Hash, Eq, PartialEq, Debug)]
pub struct HashingControls {
pub hash_spans: bool,
}