9faea2364d
It improves compile time in `--release` mode quite a bit, it doesn't really slow things down and, conceptually, it seems closer to what we want the physical architecture to look like (we don't want to monomorphise EVERYTHING in a single leaf crate).
694 lines
26 KiB
Rust
694 lines
26 KiB
Rust
//! Type inference, i.e. the process of walking through the code and determining
|
|
//! the type of each expression and pattern.
|
|
//!
|
|
//! For type inference, compare the implementations in rustc (the various
|
|
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
|
|
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
|
|
//! inference here is the `infer` function, which infers the types of all
|
|
//! expressions in a given function.
|
|
//!
|
|
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
|
|
//! which represent currently unknown types; as we walk through the expressions,
|
|
//! we might determine that certain variables need to be equal to each other, or
|
|
//! to certain types. To record this, we use the union-find implementation from
|
|
//! the `ena` crate, which is extracted from rustc.
|
|
|
|
use std::borrow::Cow;
|
|
use std::mem;
|
|
use std::ops::Index;
|
|
use std::sync::Arc;
|
|
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use hir_def::{
|
|
body::Body,
|
|
data::{ConstData, FunctionData},
|
|
expr::{BindingAnnotation, ExprId, PatId},
|
|
lang_item::LangItemTarget,
|
|
path::{path, Path},
|
|
resolver::{HasResolver, Resolver, TypeNs},
|
|
type_ref::{Mutability, TypeRef},
|
|
AdtId, AssocItemId, DefWithBodyId, FunctionId, StructFieldId, TraitId, TypeAliasId, VariantId,
|
|
};
|
|
use hir_expand::{diagnostics::DiagnosticSink, name::name};
|
|
use ra_arena::map::ArenaMap;
|
|
use ra_prof::profile;
|
|
use ra_syntax::SmolStr;
|
|
|
|
use super::{
|
|
primitive::{FloatTy, IntTy},
|
|
traits::{Guidance, Obligation, ProjectionPredicate, Solution},
|
|
ApplicationTy, GenericPredicate, InEnvironment, ProjectionTy, Substs, TraitEnvironment,
|
|
TraitRef, Ty, TypeCtor, TypeWalk, Uncertain,
|
|
};
|
|
use crate::{
|
|
db::HirDatabase, infer::diagnostics::InferenceDiagnostic, lower::ImplTraitLoweringMode,
|
|
};
|
|
|
|
pub(crate) use unify::unify;
|
|
|
|
macro_rules! ty_app {
|
|
($ctor:pat, $param:pat) => {
|
|
crate::Ty::Apply(crate::ApplicationTy { ctor: $ctor, parameters: $param })
|
|
};
|
|
($ctor:pat) => {
|
|
ty_app!($ctor, _)
|
|
};
|
|
}
|
|
|
|
mod unify;
|
|
mod path;
|
|
mod expr;
|
|
mod pat;
|
|
mod coerce;
|
|
|
|
/// The entry point of type inference.
|
|
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
|
|
let _p = profile("infer_query");
|
|
let resolver = def.resolver(db.upcast());
|
|
let mut ctx = InferenceContext::new(db, def, resolver);
|
|
|
|
match def {
|
|
DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
|
|
DefWithBodyId::FunctionId(f) => ctx.collect_fn(&db.function_data(f)),
|
|
DefWithBodyId::StaticId(s) => ctx.collect_const(&db.static_data(s)),
|
|
}
|
|
|
|
ctx.infer_body();
|
|
|
|
Arc::new(ctx.resolve_all())
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
enum ExprOrPatId {
|
|
ExprId(ExprId),
|
|
PatId(PatId),
|
|
}
|
|
|
|
impl_froms!(ExprOrPatId: ExprId, PatId);
|
|
|
|
/// Binding modes inferred for patterns.
|
|
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
enum BindingMode {
|
|
Move,
|
|
Ref(Mutability),
|
|
}
|
|
|
|
impl BindingMode {
|
|
pub fn convert(annotation: BindingAnnotation) -> BindingMode {
|
|
match annotation {
|
|
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
|
|
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
|
|
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for BindingMode {
|
|
fn default() -> Self {
|
|
BindingMode::Move
|
|
}
|
|
}
|
|
|
|
/// A mismatch between an expected and an inferred type.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct TypeMismatch {
|
|
pub expected: Ty,
|
|
pub actual: Ty,
|
|
}
|
|
|
|
/// The result of type inference: A mapping from expressions and patterns to types.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Default)]
|
|
pub struct InferenceResult {
|
|
/// For each method call expr, records the function it resolves to.
|
|
method_resolutions: FxHashMap<ExprId, FunctionId>,
|
|
/// For each field access expr, records the field it resolves to.
|
|
field_resolutions: FxHashMap<ExprId, StructFieldId>,
|
|
/// For each field in record literal, records the field it resolves to.
|
|
record_field_resolutions: FxHashMap<ExprId, StructFieldId>,
|
|
/// For each struct literal, records the variant it resolves to.
|
|
variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
|
|
/// For each associated item record what it resolves to
|
|
assoc_resolutions: FxHashMap<ExprOrPatId, AssocItemId>,
|
|
diagnostics: Vec<InferenceDiagnostic>,
|
|
pub type_of_expr: ArenaMap<ExprId, Ty>,
|
|
pub type_of_pat: ArenaMap<PatId, Ty>,
|
|
pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
|
|
}
|
|
|
|
impl InferenceResult {
|
|
pub fn method_resolution(&self, expr: ExprId) -> Option<FunctionId> {
|
|
self.method_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
|
|
self.field_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructFieldId> {
|
|
self.record_field_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItemId> {
|
|
self.assoc_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItemId> {
|
|
self.assoc_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
|
|
self.type_mismatches.get(expr)
|
|
}
|
|
pub fn add_diagnostics(
|
|
&self,
|
|
db: &dyn HirDatabase,
|
|
owner: FunctionId,
|
|
sink: &mut DiagnosticSink,
|
|
) {
|
|
self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
|
|
}
|
|
}
|
|
|
|
impl Index<ExprId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, expr: ExprId) -> &Ty {
|
|
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
|
|
}
|
|
}
|
|
|
|
impl Index<PatId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, pat: PatId) -> &Ty {
|
|
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
|
|
}
|
|
}
|
|
|
|
/// The inference context contains all information needed during type inference.
|
|
#[derive(Clone, Debug)]
|
|
struct InferenceContext<'a> {
|
|
db: &'a dyn HirDatabase,
|
|
owner: DefWithBodyId,
|
|
body: Arc<Body>,
|
|
resolver: Resolver,
|
|
table: unify::InferenceTable,
|
|
trait_env: Arc<TraitEnvironment>,
|
|
obligations: Vec<Obligation>,
|
|
result: InferenceResult,
|
|
/// The return type of the function being inferred, or the closure if we're
|
|
/// currently within one.
|
|
///
|
|
/// We might consider using a nested inference context for checking
|
|
/// closures, but currently this is the only field that will change there,
|
|
/// so it doesn't make sense.
|
|
return_ty: Ty,
|
|
}
|
|
|
|
impl<'a> InferenceContext<'a> {
|
|
fn new(db: &'a dyn HirDatabase, owner: DefWithBodyId, resolver: Resolver) -> Self {
|
|
InferenceContext {
|
|
result: InferenceResult::default(),
|
|
table: unify::InferenceTable::new(),
|
|
obligations: Vec::default(),
|
|
return_ty: Ty::Unknown, // set in collect_fn_signature
|
|
trait_env: TraitEnvironment::lower(db, &resolver),
|
|
db,
|
|
owner,
|
|
body: db.body(owner),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
fn resolve_all(mut self) -> InferenceResult {
|
|
// FIXME resolve obligations as well (use Guidance if necessary)
|
|
let mut result = std::mem::take(&mut self.result);
|
|
for ty in result.type_of_expr.values_mut() {
|
|
let resolved = self.table.resolve_ty_completely(mem::replace(ty, Ty::Unknown));
|
|
*ty = resolved;
|
|
}
|
|
for ty in result.type_of_pat.values_mut() {
|
|
let resolved = self.table.resolve_ty_completely(mem::replace(ty, Ty::Unknown));
|
|
*ty = resolved;
|
|
}
|
|
result
|
|
}
|
|
|
|
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
|
|
self.result.type_of_expr.insert(expr, ty);
|
|
}
|
|
|
|
fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId) {
|
|
self.result.method_resolutions.insert(expr, func);
|
|
}
|
|
|
|
fn write_field_resolution(&mut self, expr: ExprId, field: StructFieldId) {
|
|
self.result.field_resolutions.insert(expr, field);
|
|
}
|
|
|
|
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
|
|
self.result.variant_resolutions.insert(id, variant);
|
|
}
|
|
|
|
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
|
|
self.result.assoc_resolutions.insert(id, item);
|
|
}
|
|
|
|
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
|
|
self.result.type_of_pat.insert(pat, ty);
|
|
}
|
|
|
|
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
|
|
self.result.diagnostics.push(diagnostic);
|
|
}
|
|
|
|
fn make_ty_with_mode(
|
|
&mut self,
|
|
type_ref: &TypeRef,
|
|
impl_trait_mode: ImplTraitLoweringMode,
|
|
) -> Ty {
|
|
// FIXME use right resolver for block
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
|
|
.with_impl_trait_mode(impl_trait_mode);
|
|
let ty = Ty::from_hir(&ctx, type_ref);
|
|
let ty = self.insert_type_vars(ty);
|
|
self.normalize_associated_types_in(ty)
|
|
}
|
|
|
|
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
|
|
self.make_ty_with_mode(type_ref, ImplTraitLoweringMode::Disallowed)
|
|
}
|
|
|
|
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
|
|
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
|
|
match ty {
|
|
Ty::Unknown => self.table.new_type_var(),
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
|
|
self.table.new_integer_var()
|
|
}
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
|
|
self.table.new_float_var()
|
|
}
|
|
_ => ty,
|
|
}
|
|
}
|
|
|
|
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
|
|
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
|
|
}
|
|
|
|
fn resolve_obligations_as_possible(&mut self) {
|
|
let obligations = mem::replace(&mut self.obligations, Vec::new());
|
|
for obligation in obligations {
|
|
let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
|
|
let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
|
|
let solution =
|
|
self.db.trait_solve(self.resolver.krate().unwrap(), canonicalized.value.clone());
|
|
|
|
match solution {
|
|
Some(Solution::Unique(substs)) => {
|
|
canonicalized.apply_solution(self, substs.0);
|
|
}
|
|
Some(Solution::Ambig(Guidance::Definite(substs))) => {
|
|
canonicalized.apply_solution(self, substs.0);
|
|
self.obligations.push(obligation);
|
|
}
|
|
Some(_) => {
|
|
// FIXME use this when trying to resolve everything at the end
|
|
self.obligations.push(obligation);
|
|
}
|
|
None => {
|
|
// FIXME obligation cannot be fulfilled => diagnostic
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
self.table.unify(ty1, ty2)
|
|
}
|
|
|
|
/// Resolves the type as far as currently possible, replacing type variables
|
|
/// by their known types. All types returned by the infer_* functions should
|
|
/// be resolved as far as possible, i.e. contain no type variables with
|
|
/// known type.
|
|
fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
|
|
self.resolve_obligations_as_possible();
|
|
|
|
self.table.resolve_ty_as_possible(ty)
|
|
}
|
|
|
|
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
|
|
self.table.resolve_ty_shallow(ty)
|
|
}
|
|
|
|
fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
|
|
self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
|
|
}
|
|
|
|
fn resolve_associated_type_with_params(
|
|
&mut self,
|
|
inner_ty: Ty,
|
|
assoc_ty: Option<TypeAliasId>,
|
|
params: &[Ty],
|
|
) -> Ty {
|
|
match assoc_ty {
|
|
Some(res_assoc_ty) => {
|
|
// FIXME:
|
|
// Check if inner_ty is is `impl Trait` and contained input TypeAlias id
|
|
// this is a workaround while Chalk assoc type projection doesn't always work yet,
|
|
// but once that is fixed I don't think we should keep this
|
|
// (we'll probably change how associated types are resolved anyway)
|
|
if let Ty::Opaque(ref predicates) = inner_ty {
|
|
for p in predicates.iter() {
|
|
if let GenericPredicate::Projection(projection) = p {
|
|
if projection.projection_ty.associated_ty == res_assoc_ty {
|
|
if let ty_app!(_, params) = &projection.ty {
|
|
if params.len() == 0 {
|
|
return projection.ty.clone();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let ty = self.table.new_type_var();
|
|
let builder = Substs::build_for_def(self.db, res_assoc_ty)
|
|
.push(inner_ty)
|
|
.fill(params.iter().cloned());
|
|
let projection = ProjectionPredicate {
|
|
ty: ty.clone(),
|
|
projection_ty: ProjectionTy {
|
|
associated_ty: res_assoc_ty,
|
|
parameters: builder.build(),
|
|
},
|
|
};
|
|
self.obligations.push(Obligation::Projection(projection));
|
|
self.resolve_ty_as_possible(ty)
|
|
}
|
|
None => Ty::Unknown,
|
|
}
|
|
}
|
|
|
|
/// Recurses through the given type, normalizing associated types mentioned
|
|
/// in it by replacing them by type variables and registering obligations to
|
|
/// resolve later. This should be done once for every type we get from some
|
|
/// type annotation (e.g. from a let type annotation, field type or function
|
|
/// call). `make_ty` handles this already, but e.g. for field types we need
|
|
/// to do it as well.
|
|
fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
|
|
let ty = self.resolve_ty_as_possible(ty);
|
|
ty.fold(&mut |ty| match ty {
|
|
Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
|
|
_ => ty,
|
|
})
|
|
}
|
|
|
|
fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
|
|
let var = self.table.new_type_var();
|
|
let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
|
|
let obligation = Obligation::Projection(predicate);
|
|
self.obligations.push(obligation);
|
|
var
|
|
}
|
|
|
|
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantId>) {
|
|
let path = match path {
|
|
Some(path) => path,
|
|
None => return (Ty::Unknown, None),
|
|
};
|
|
let resolver = &self.resolver;
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver);
|
|
// FIXME: this should resolve assoc items as well, see this example:
|
|
// https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
|
|
return match resolver.resolve_path_in_type_ns_fully(self.db.upcast(), path.mod_path()) {
|
|
Some(TypeNs::AdtId(AdtId::StructId(strukt))) => {
|
|
let substs = Ty::substs_from_path(&ctx, path, strukt.into());
|
|
let ty = self.db.ty(strukt.into());
|
|
let ty = self.insert_type_vars(ty.subst(&substs));
|
|
(ty, Some(strukt.into()))
|
|
}
|
|
Some(TypeNs::EnumVariantId(var)) => {
|
|
let substs = Ty::substs_from_path(&ctx, path, var.into());
|
|
let ty = self.db.ty(var.parent.into());
|
|
let ty = self.insert_type_vars(ty.subst(&substs));
|
|
(ty, Some(var.into()))
|
|
}
|
|
Some(TypeNs::SelfType(impl_id)) => {
|
|
let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
|
|
let substs = Substs::type_params_for_generics(&generics);
|
|
let ty = self.db.impl_self_ty(impl_id).subst(&substs);
|
|
let variant = ty_variant(&ty);
|
|
(ty, variant)
|
|
}
|
|
Some(TypeNs::TypeAliasId(it)) => {
|
|
let substs = Substs::build_for_def(self.db, it)
|
|
.fill(std::iter::repeat_with(|| self.table.new_type_var()))
|
|
.build();
|
|
let ty = self.db.ty(it.into()).subst(&substs);
|
|
let variant = ty_variant(&ty);
|
|
(ty, variant)
|
|
}
|
|
Some(_) | None => (Ty::Unknown, None),
|
|
};
|
|
|
|
fn ty_variant(ty: &Ty) -> Option<VariantId> {
|
|
ty.as_adt().and_then(|(adt_id, _)| match adt_id {
|
|
AdtId::StructId(s) => Some(VariantId::StructId(s)),
|
|
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
|
|
AdtId::EnumId(_) => {
|
|
// Error E0071, expected struct, variant or union type, found enum `Foo`
|
|
None
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
fn collect_const(&mut self, data: &ConstData) {
|
|
self.return_ty = self.make_ty(&data.type_ref);
|
|
}
|
|
|
|
fn collect_fn(&mut self, data: &FunctionData) {
|
|
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
|
|
.with_impl_trait_mode(ImplTraitLoweringMode::Param);
|
|
let param_tys =
|
|
data.params.iter().map(|type_ref| Ty::from_hir(&ctx, type_ref)).collect::<Vec<_>>();
|
|
for (ty, pat) in param_tys.into_iter().zip(body.params.iter()) {
|
|
let ty = self.insert_type_vars(ty);
|
|
let ty = self.normalize_associated_types_in(ty);
|
|
|
|
self.infer_pat(*pat, &ty, BindingMode::default());
|
|
}
|
|
let return_ty = self.make_ty_with_mode(&data.ret_type, ImplTraitLoweringMode::Disallowed); // FIXME implement RPIT
|
|
self.return_ty = return_ty;
|
|
}
|
|
|
|
fn infer_body(&mut self) {
|
|
self.infer_expr_coerce(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
|
|
}
|
|
|
|
fn resolve_lang_item(&self, name: &str) -> Option<LangItemTarget> {
|
|
let krate = self.resolver.krate()?;
|
|
let name = SmolStr::new_inline_from_ascii(name.len(), name.as_bytes());
|
|
self.db.lang_item(krate, name)
|
|
}
|
|
|
|
fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
|
|
let path = path![std::iter::IntoIterator];
|
|
let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Item])
|
|
}
|
|
|
|
fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
|
|
let path = path![std::ops::Try];
|
|
let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Ok])
|
|
}
|
|
|
|
fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_lang_item("neg")?.as_trait()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_lang_item("not")?.as_trait()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_lang_item("future_trait")?.as_trait()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_boxed_box(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item("owned_box")?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_full(&self) -> Option<AdtId> {
|
|
let path = path![std::ops::RangeFull];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range(&self) -> Option<AdtId> {
|
|
let path = path![std::ops::Range];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_inclusive(&self) -> Option<AdtId> {
|
|
let path = path![std::ops::RangeInclusive];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_from(&self) -> Option<AdtId> {
|
|
let path = path![std::ops::RangeFrom];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_to(&self) -> Option<AdtId> {
|
|
let path = path![std::ops::RangeTo];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
|
|
let path = path![std::ops::RangeToInclusive];
|
|
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_ops_index(&self) -> Option<TraitId> {
|
|
self.resolve_lang_item("index")?.as_trait()
|
|
}
|
|
|
|
fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
|
|
let trait_ = self.resolve_ops_index()?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
}
|
|
|
|
/// The kinds of placeholders we need during type inference. There's separate
|
|
/// values for general types, and for integer and float variables. The latter
|
|
/// two are used for inference of literal values (e.g. `100` could be one of
|
|
/// several integer types).
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
|
|
pub enum InferTy {
|
|
TypeVar(unify::TypeVarId),
|
|
IntVar(unify::TypeVarId),
|
|
FloatVar(unify::TypeVarId),
|
|
MaybeNeverTypeVar(unify::TypeVarId),
|
|
}
|
|
|
|
impl InferTy {
|
|
fn to_inner(self) -> unify::TypeVarId {
|
|
match self {
|
|
InferTy::TypeVar(ty)
|
|
| InferTy::IntVar(ty)
|
|
| InferTy::FloatVar(ty)
|
|
| InferTy::MaybeNeverTypeVar(ty) => ty,
|
|
}
|
|
}
|
|
|
|
fn fallback_value(self) -> Ty {
|
|
match self {
|
|
InferTy::TypeVar(..) => Ty::Unknown,
|
|
InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
|
|
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
|
|
InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inferring an expression, we propagate downward whatever type hint we
|
|
/// are able in the form of an `Expectation`.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
struct Expectation {
|
|
ty: Ty,
|
|
/// See the `rvalue_hint` method.
|
|
rvalue_hint: bool,
|
|
}
|
|
|
|
impl Expectation {
|
|
/// The expectation that the type of the expression needs to equal the given
|
|
/// type.
|
|
fn has_type(ty: Ty) -> Self {
|
|
Expectation { ty, rvalue_hint: false }
|
|
}
|
|
|
|
/// The following explanation is copied straight from rustc:
|
|
/// Provides an expectation for an rvalue expression given an *optional*
|
|
/// hint, which is not required for type safety (the resulting type might
|
|
/// be checked higher up, as is the case with `&expr` and `box expr`), but
|
|
/// is useful in determining the concrete type.
|
|
///
|
|
/// The primary use case is where the expected type is a fat pointer,
|
|
/// like `&[isize]`. For example, consider the following statement:
|
|
///
|
|
/// let x: &[isize] = &[1, 2, 3];
|
|
///
|
|
/// In this case, the expected type for the `&[1, 2, 3]` expression is
|
|
/// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
|
|
/// expectation `ExpectHasType([isize])`, that would be too strong --
|
|
/// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
|
|
/// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
|
|
/// to the type `&[isize]`. Therefore, we propagate this more limited hint,
|
|
/// which still is useful, because it informs integer literals and the like.
|
|
/// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
|
|
/// for examples of where this comes up,.
|
|
fn rvalue_hint(ty: Ty) -> Self {
|
|
Expectation { ty, rvalue_hint: true }
|
|
}
|
|
|
|
/// This expresses no expectation on the type.
|
|
fn none() -> Self {
|
|
Expectation { ty: Ty::Unknown, rvalue_hint: false }
|
|
}
|
|
|
|
fn coercion_target(&self) -> &Ty {
|
|
if self.rvalue_hint {
|
|
&Ty::Unknown
|
|
} else {
|
|
&self.ty
|
|
}
|
|
}
|
|
}
|
|
|
|
mod diagnostics {
|
|
use hir_def::{expr::ExprId, src::HasSource, FunctionId, Lookup};
|
|
use hir_expand::diagnostics::DiagnosticSink;
|
|
|
|
use crate::{db::HirDatabase, diagnostics::NoSuchField};
|
|
|
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
pub(super) enum InferenceDiagnostic {
|
|
NoSuchField { expr: ExprId, field: usize },
|
|
}
|
|
|
|
impl InferenceDiagnostic {
|
|
pub(super) fn add_to(
|
|
&self,
|
|
db: &dyn HirDatabase,
|
|
owner: FunctionId,
|
|
sink: &mut DiagnosticSink,
|
|
) {
|
|
match self {
|
|
InferenceDiagnostic::NoSuchField { expr, field } => {
|
|
let file = owner.lookup(db.upcast()).source(db.upcast()).file_id;
|
|
let (_, source_map) = db.body_with_source_map(owner.into());
|
|
let field = source_map.field_syntax(*expr, *field);
|
|
sink.push(NoSuchField { file, field })
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|