rust/compiler/rustc_ast_lowering/src/index.rs
Takayuki Maeda 8fe936099a separate definitions and HIR owners
fix a ui test

use `into`

fix clippy ui test

fix a run-make-fulldeps test

implement `IntoQueryParam<DefId>` for `OwnerId`

use `OwnerId` for more queries

change the type of `ParentOwnerIterator::Item` to `(OwnerId, OwnerNode)`
2022-09-24 23:21:19 +09:00

358 lines
12 KiB
Rust

use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sorted_map::SortedMap;
use rustc_hir as hir;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::definitions;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::*;
use rustc_index::vec::{Idx, IndexVec};
use rustc_middle::span_bug;
use rustc_session::Session;
use rustc_span::source_map::SourceMap;
use rustc_span::{Span, DUMMY_SP};
/// A visitor that walks over the HIR and collects `Node`s into a HIR map.
pub(super) struct NodeCollector<'a, 'hir> {
/// Source map
source_map: &'a SourceMap,
bodies: &'a SortedMap<ItemLocalId, &'hir Body<'hir>>,
/// Outputs
nodes: IndexVec<ItemLocalId, Option<ParentedNode<'hir>>>,
parenting: FxHashMap<LocalDefId, ItemLocalId>,
/// The parent of this node
parent_node: hir::ItemLocalId,
owner: OwnerId,
definitions: &'a definitions::Definitions,
}
#[instrument(level = "debug", skip(sess, definitions, bodies))]
pub(super) fn index_hir<'hir>(
sess: &Session,
definitions: &definitions::Definitions,
item: hir::OwnerNode<'hir>,
bodies: &SortedMap<ItemLocalId, &'hir Body<'hir>>,
) -> (IndexVec<ItemLocalId, Option<ParentedNode<'hir>>>, FxHashMap<LocalDefId, ItemLocalId>) {
let mut nodes = IndexVec::new();
// This node's parent should never be accessed: the owner's parent is computed by the
// hir_owner_parent query. Make it invalid (= ItemLocalId::MAX) to force an ICE whenever it is
// used.
nodes.push(Some(ParentedNode { parent: ItemLocalId::INVALID, node: item.into() }));
let mut collector = NodeCollector {
source_map: sess.source_map(),
definitions,
owner: item.def_id(),
parent_node: ItemLocalId::new(0),
nodes,
bodies,
parenting: FxHashMap::default(),
};
match item {
OwnerNode::Crate(citem) => {
collector.visit_mod(&citem, citem.spans.inner_span, hir::CRATE_HIR_ID)
}
OwnerNode::Item(item) => collector.visit_item(item),
OwnerNode::TraitItem(item) => collector.visit_trait_item(item),
OwnerNode::ImplItem(item) => collector.visit_impl_item(item),
OwnerNode::ForeignItem(item) => collector.visit_foreign_item(item),
};
(collector.nodes, collector.parenting)
}
impl<'a, 'hir> NodeCollector<'a, 'hir> {
#[instrument(level = "debug", skip(self))]
fn insert(&mut self, span: Span, hir_id: HirId, node: Node<'hir>) {
debug_assert_eq!(self.owner, hir_id.owner);
debug_assert_ne!(hir_id.local_id.as_u32(), 0);
debug_assert_ne!(hir_id.local_id, self.parent_node);
// Make sure that the DepNode of some node coincides with the HirId
// owner of that node.
if cfg!(debug_assertions) {
if hir_id.owner != self.owner {
span_bug!(
span,
"inconsistent DepNode at `{:?}` for `{:?}`: \
current_dep_node_owner={} ({:?}), hir_id.owner={} ({:?})",
self.source_map.span_to_diagnostic_string(span),
node,
self.definitions.def_path(self.owner.def_id).to_string_no_crate_verbose(),
self.owner,
self.definitions.def_path(hir_id.owner.def_id).to_string_no_crate_verbose(),
hir_id.owner,
)
}
}
self.nodes.insert(hir_id.local_id, ParentedNode { parent: self.parent_node, node: node });
}
fn with_parent<F: FnOnce(&mut Self)>(&mut self, parent_node_id: HirId, f: F) {
debug_assert_eq!(parent_node_id.owner, self.owner);
let parent_node = self.parent_node;
self.parent_node = parent_node_id.local_id;
f(self);
self.parent_node = parent_node;
}
fn insert_nested(&mut self, item: LocalDefId) {
self.parenting.insert(item, self.parent_node);
}
}
impl<'a, 'hir> Visitor<'hir> for NodeCollector<'a, 'hir> {
/// Because we want to track parent items and so forth, enable
/// deep walking so that we walk nested items in the context of
/// their outer items.
fn visit_nested_item(&mut self, item: ItemId) {
debug!("visit_nested_item: {:?}", item);
self.insert_nested(item.def_id.def_id);
}
fn visit_nested_trait_item(&mut self, item_id: TraitItemId) {
self.insert_nested(item_id.def_id.def_id);
}
fn visit_nested_impl_item(&mut self, item_id: ImplItemId) {
self.insert_nested(item_id.def_id.def_id);
}
fn visit_nested_foreign_item(&mut self, foreign_id: ForeignItemId) {
self.insert_nested(foreign_id.def_id.def_id);
}
fn visit_nested_body(&mut self, id: BodyId) {
debug_assert_eq!(id.hir_id.owner, self.owner);
let body = self.bodies[&id.hir_id.local_id];
self.visit_body(body);
}
fn visit_param(&mut self, param: &'hir Param<'hir>) {
let node = Node::Param(param);
self.insert(param.pat.span, param.hir_id, node);
self.with_parent(param.hir_id, |this| {
intravisit::walk_param(this, param);
});
}
#[instrument(level = "debug", skip(self))]
fn visit_item(&mut self, i: &'hir Item<'hir>) {
debug_assert_eq!(i.def_id, self.owner);
self.with_parent(i.hir_id(), |this| {
if let ItemKind::Struct(ref struct_def, _) = i.kind {
// If this is a tuple or unit-like struct, register the constructor.
if let Some(ctor_hir_id) = struct_def.ctor_hir_id() {
this.insert(i.span, ctor_hir_id, Node::Ctor(struct_def));
}
}
intravisit::walk_item(this, i);
});
}
#[instrument(level = "debug", skip(self))]
fn visit_foreign_item(&mut self, fi: &'hir ForeignItem<'hir>) {
debug_assert_eq!(fi.def_id, self.owner);
self.with_parent(fi.hir_id(), |this| {
intravisit::walk_foreign_item(this, fi);
});
}
fn visit_generic_param(&mut self, param: &'hir GenericParam<'hir>) {
self.insert(param.span, param.hir_id, Node::GenericParam(param));
intravisit::walk_generic_param(self, param);
}
fn visit_const_param_default(&mut self, param: HirId, ct: &'hir AnonConst) {
self.with_parent(param, |this| {
intravisit::walk_const_param_default(this, ct);
})
}
#[instrument(level = "debug", skip(self))]
fn visit_trait_item(&mut self, ti: &'hir TraitItem<'hir>) {
debug_assert_eq!(ti.def_id, self.owner);
self.with_parent(ti.hir_id(), |this| {
intravisit::walk_trait_item(this, ti);
});
}
#[instrument(level = "debug", skip(self))]
fn visit_impl_item(&mut self, ii: &'hir ImplItem<'hir>) {
debug_assert_eq!(ii.def_id, self.owner);
self.with_parent(ii.hir_id(), |this| {
intravisit::walk_impl_item(this, ii);
});
}
fn visit_pat(&mut self, pat: &'hir Pat<'hir>) {
self.insert(pat.span, pat.hir_id, Node::Pat(pat));
self.with_parent(pat.hir_id, |this| {
intravisit::walk_pat(this, pat);
});
}
fn visit_pat_field(&mut self, field: &'hir PatField<'hir>) {
self.insert(field.span, field.hir_id, Node::PatField(field));
self.with_parent(field.hir_id, |this| {
intravisit::walk_pat_field(this, field);
});
}
fn visit_arm(&mut self, arm: &'hir Arm<'hir>) {
let node = Node::Arm(arm);
self.insert(arm.span, arm.hir_id, node);
self.with_parent(arm.hir_id, |this| {
intravisit::walk_arm(this, arm);
});
}
fn visit_anon_const(&mut self, constant: &'hir AnonConst) {
self.insert(DUMMY_SP, constant.hir_id, Node::AnonConst(constant));
self.with_parent(constant.hir_id, |this| {
intravisit::walk_anon_const(this, constant);
});
}
fn visit_expr(&mut self, expr: &'hir Expr<'hir>) {
self.insert(expr.span, expr.hir_id, Node::Expr(expr));
self.with_parent(expr.hir_id, |this| {
intravisit::walk_expr(this, expr);
});
}
fn visit_expr_field(&mut self, field: &'hir ExprField<'hir>) {
self.insert(field.span, field.hir_id, Node::ExprField(field));
self.with_parent(field.hir_id, |this| {
intravisit::walk_expr_field(this, field);
});
}
fn visit_stmt(&mut self, stmt: &'hir Stmt<'hir>) {
self.insert(stmt.span, stmt.hir_id, Node::Stmt(stmt));
self.with_parent(stmt.hir_id, |this| {
intravisit::walk_stmt(this, stmt);
});
}
fn visit_path_segment(&mut self, path_segment: &'hir PathSegment<'hir>) {
self.insert(path_segment.ident.span, path_segment.hir_id, Node::PathSegment(path_segment));
intravisit::walk_path_segment(self, path_segment);
}
fn visit_ty(&mut self, ty: &'hir Ty<'hir>) {
self.insert(ty.span, ty.hir_id, Node::Ty(ty));
self.with_parent(ty.hir_id, |this| {
intravisit::walk_ty(this, ty);
});
}
fn visit_infer(&mut self, inf: &'hir InferArg) {
self.insert(inf.span, inf.hir_id, Node::Infer(inf));
self.with_parent(inf.hir_id, |this| {
intravisit::walk_inf(this, inf);
});
}
fn visit_trait_ref(&mut self, tr: &'hir TraitRef<'hir>) {
self.insert(tr.path.span, tr.hir_ref_id, Node::TraitRef(tr));
self.with_parent(tr.hir_ref_id, |this| {
intravisit::walk_trait_ref(this, tr);
});
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'hir>,
fd: &'hir FnDecl<'hir>,
b: BodyId,
_: Span,
id: HirId,
) {
assert_eq!(self.owner, id.owner);
assert_eq!(self.parent_node, id.local_id);
intravisit::walk_fn(self, fk, fd, b, id);
}
fn visit_block(&mut self, block: &'hir Block<'hir>) {
self.insert(block.span, block.hir_id, Node::Block(block));
self.with_parent(block.hir_id, |this| {
intravisit::walk_block(this, block);
});
}
fn visit_local(&mut self, l: &'hir Local<'hir>) {
self.insert(l.span, l.hir_id, Node::Local(l));
self.with_parent(l.hir_id, |this| {
intravisit::walk_local(this, l);
})
}
fn visit_lifetime(&mut self, lifetime: &'hir Lifetime) {
self.insert(lifetime.span, lifetime.hir_id, Node::Lifetime(lifetime));
}
fn visit_variant(&mut self, v: &'hir Variant<'hir>) {
self.insert(v.span, v.id, Node::Variant(v));
self.with_parent(v.id, |this| {
// Register the constructor of this variant.
if let Some(ctor_hir_id) = v.data.ctor_hir_id() {
this.insert(v.span, ctor_hir_id, Node::Ctor(&v.data));
}
intravisit::walk_variant(this, v);
});
}
fn visit_field_def(&mut self, field: &'hir FieldDef<'hir>) {
self.insert(field.span, field.hir_id, Node::Field(field));
self.with_parent(field.hir_id, |this| {
intravisit::walk_field_def(this, field);
});
}
fn visit_assoc_type_binding(&mut self, type_binding: &'hir TypeBinding<'hir>) {
self.insert(type_binding.span, type_binding.hir_id, Node::TypeBinding(type_binding));
self.with_parent(type_binding.hir_id, |this| {
intravisit::walk_assoc_type_binding(this, type_binding)
})
}
fn visit_trait_item_ref(&mut self, ii: &'hir TraitItemRef) {
// Do not visit the duplicate information in TraitItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let TraitItemRef { id, ident: _, kind: _, span: _ } = *ii;
self.visit_nested_trait_item(id);
}
fn visit_impl_item_ref(&mut self, ii: &'hir ImplItemRef) {
// Do not visit the duplicate information in ImplItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let ImplItemRef { id, ident: _, kind: _, span: _, trait_item_def_id: _ } = *ii;
self.visit_nested_impl_item(id);
}
fn visit_foreign_item_ref(&mut self, fi: &'hir ForeignItemRef) {
// Do not visit the duplicate information in ForeignItemRef. We want to
// map the actual nodes, not the duplicate ones in the *Ref.
let ForeignItemRef { id, ident: _, span: _ } = *fi;
self.visit_nested_foreign_item(id);
}
}