rust/src/step.rs
2017-02-10 03:28:17 -08:00

267 lines
10 KiB
Rust

//! This module contains the `EvalContext` methods for executing a single step of the interpreter.
//!
//! The main entry point is the `step` method.
use std::cell::Ref;
use rustc::hir::def_id::DefId;
use rustc::hir;
use rustc::mir::visit::{Visitor, LvalueContext};
use rustc::mir;
use rustc::ty::layout::Layout;
use rustc::ty::{subst, self};
use error::{EvalResult, EvalError};
use eval_context::{EvalContext, StackPopCleanup, MirRef};
use lvalue::{Global, GlobalId, Lvalue};
use syntax::codemap::Span;
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
pub fn inc_step_counter_and_check_limit(&mut self, n: u64) -> EvalResult<'tcx> {
self.steps_remaining = self.steps_remaining.saturating_sub(n);
if self.steps_remaining > 0 {
Ok(())
} else {
Err(EvalError::ExecutionTimeLimitReached)
}
}
/// Returns true as long as there are more things to do.
pub fn step(&mut self) -> EvalResult<'tcx, bool> {
// see docs on the `Memory::packed` field for why we do this
self.memory.clear_packed();
self.inc_step_counter_and_check_limit(1)?;
if self.stack.is_empty() {
return Ok(false);
}
let block = self.frame().block;
let stmt_id = self.frame().stmt;
let mir = self.mir();
let basic_block = &mir.basic_blocks()[block];
if let Some(stmt) = basic_block.statements.get(stmt_id) {
let mut new = Ok(0);
ConstantExtractor {
span: stmt.source_info.span,
substs: self.substs(),
def_id: self.frame().def_id,
ecx: self,
mir: Ref::clone(&mir),
new_constants: &mut new,
}.visit_statement(block, stmt, mir::Location { block, statement_index: stmt_id });
if new? == 0 {
self.statement(stmt)?;
}
// if ConstantExtractor added new frames, we don't execute anything here
// but await the next call to step
return Ok(true);
}
let terminator = basic_block.terminator();
let mut new = Ok(0);
ConstantExtractor {
span: terminator.source_info.span,
substs: self.substs(),
def_id: self.frame().def_id,
ecx: self,
mir: Ref::clone(&mir),
new_constants: &mut new,
}.visit_terminator(block, terminator, mir::Location { block, statement_index: stmt_id });
if new? == 0 {
self.terminator(terminator)?;
}
// if ConstantExtractor added new frames, we don't execute anything here
// but await the next call to step
Ok(true)
}
fn statement(&mut self, stmt: &mir::Statement<'tcx>) -> EvalResult<'tcx> {
trace!("{:?}", stmt);
use rustc::mir::StatementKind::*;
match stmt.kind {
Assign(ref lvalue, ref rvalue) => self.eval_rvalue_into_lvalue(rvalue, lvalue)?,
SetDiscriminant { ref lvalue, variant_index } => {
let dest = self.eval_lvalue(lvalue)?;
let dest_ty = self.lvalue_ty(lvalue);
let dest_layout = self.type_layout(dest_ty)?;
match *dest_layout {
Layout::General { discr, ref variants, .. } => {
let discr_size = discr.size().bytes();
let discr_offset = variants[variant_index].offsets[0].bytes();
// FIXME(solson)
let dest = self.force_allocation(dest)?;
let discr_dest = (dest.to_ptr()).offset(discr_offset);
self.memory.write_uint(discr_dest, variant_index as u128, discr_size)?;
}
Layout::RawNullablePointer { nndiscr, .. } => {
use value::PrimVal;
if variant_index as u64 != nndiscr {
self.write_primval(dest, PrimVal::Bytes(0), dest_ty)?;
}
}
_ => bug!("SetDiscriminant on {} represented as {:#?}", dest_ty, dest_layout),
}
}
// Miri can safely ignore these. Only translation needs it.
StorageLive(_) |
StorageDead(_) => {}
// Defined to do nothing. These are added by optimization passes, to avoid changing the
// size of MIR constantly.
Nop => {}
}
self.frame_mut().stmt += 1;
Ok(())
}
fn terminator(&mut self, terminator: &mir::Terminator<'tcx>) -> EvalResult<'tcx> {
trace!("{:?}", terminator.kind);
self.eval_terminator(terminator)?;
if !self.stack.is_empty() {
trace!("// {:?}", self.frame().block);
}
Ok(())
}
}
// WARNING: make sure that any methods implemented on this type don't ever access ecx.stack
// this includes any method that might access the stack
// basically don't call anything other than `load_mir`, `alloc_ptr`, `push_stack_frame`
// The reason for this is, that `push_stack_frame` modifies the stack out of obvious reasons
struct ConstantExtractor<'a, 'b: 'a, 'tcx: 'b> {
span: Span,
ecx: &'a mut EvalContext<'b, 'tcx>,
mir: MirRef<'tcx>,
def_id: DefId,
substs: &'tcx subst::Substs<'tcx>,
new_constants: &'a mut EvalResult<'tcx, u64>,
}
impl<'a, 'b, 'tcx> ConstantExtractor<'a, 'b, 'tcx> {
fn global_item(
&mut self,
def_id: DefId,
substs: &'tcx subst::Substs<'tcx>,
span: Span,
shared: bool,
) {
let (def_id, substs) = self.ecx.resolve_associated_const(def_id, substs);
let cid = GlobalId { def_id, substs, promoted: None };
if self.ecx.globals.contains_key(&cid) {
return;
}
self.try(|this| {
let mir = this.ecx.load_mir(def_id)?;
this.ecx.globals.insert(cid, Global::uninitialized(mir.return_ty));
let mutable = !shared || mir.return_ty.type_contents(this.ecx.tcx).interior_unsafe();
let cleanup = StackPopCleanup::MarkStatic(mutable);
let name = ty::tls::with(|tcx| tcx.item_path_str(def_id));
trace!("pushing stack frame for global: {}", name);
this.ecx.push_stack_frame(
def_id,
span,
mir,
substs,
Lvalue::Global(cid),
cleanup,
Vec::new(),
)
});
}
fn try<F: FnOnce(&mut Self) -> EvalResult<'tcx>>(&mut self, f: F) {
if let Ok(ref mut n) = *self.new_constants {
*n += 1;
} else {
return;
}
if let Err(e) = f(self) {
*self.new_constants = Err(e);
}
}
}
impl<'a, 'b, 'tcx> Visitor<'tcx> for ConstantExtractor<'a, 'b, 'tcx> {
fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: mir::Location) {
self.super_constant(constant, location);
match constant.literal {
// already computed by rustc
mir::Literal::Value { .. } => {}
mir::Literal::Item { def_id, substs } => {
if let ty::TyFnDef(..) = constant.ty.sty {
// No need to do anything here,
// because the type is the actual function, not the signature of the function.
// Thus we can simply create a zero sized allocation in `evaluate_operand`
} else {
self.global_item(def_id, substs, constant.span, true);
}
},
mir::Literal::Promoted { index } => {
let cid = GlobalId {
def_id: self.def_id,
substs: self.substs,
promoted: Some(index),
};
if self.ecx.globals.contains_key(&cid) {
return;
}
let mir = Ref::clone(&self.mir);
let mir = Ref::map(mir, |mir| &mir.promoted[index]);
self.try(|this| {
let ty = this.ecx.monomorphize(mir.return_ty, this.substs);
this.ecx.globals.insert(cid, Global::uninitialized(ty));
trace!("pushing stack frame for {:?}", index);
this.ecx.push_stack_frame(this.def_id,
constant.span,
mir,
this.substs,
Lvalue::Global(cid),
StackPopCleanup::MarkStatic(false),
Vec::new())
});
}
}
}
fn visit_lvalue(
&mut self,
lvalue: &mir::Lvalue<'tcx>,
context: LvalueContext<'tcx>,
location: mir::Location
) {
self.super_lvalue(lvalue, context, location);
if let mir::Lvalue::Static(def_id) = *lvalue {
let substs = self.ecx.tcx.intern_substs(&[]);
let span = self.span;
if let Some(node_item) = self.ecx.tcx.hir.get_if_local(def_id) {
if let hir::map::Node::NodeItem(&hir::Item { ref node, .. }) = node_item {
if let hir::ItemStatic(_, m, _) = *node {
self.global_item(def_id, substs, span, m == hir::MutImmutable);
return;
} else {
bug!("static def id doesn't point to static");
}
} else {
bug!("static def id doesn't point to item");
}
} else {
let def = self.ecx.tcx.sess.cstore.describe_def(def_id).expect("static not found");
if let hir::def::Def::Static(_, mutable) = def {
self.global_item(def_id, substs, span, !mutable);
} else {
bug!("static found but isn't a static: {:?}", def);
}
}
}
}
}