rust/src/librustc/middle/trans/cabi_x86_64.rs
2014-03-28 17:12:21 -07:00

374 lines
10 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The classification code for the x86_64 ABI is taken from the clay language
// https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp
#![allow(non_uppercase_pattern_statics)]
use lib::llvm::{llvm, Integer, Pointer, Float, Double};
use lib::llvm::{Struct, Array, Attribute};
use lib::llvm::{StructRetAttribute, ByValAttribute};
use middle::trans::cabi::*;
use middle::trans::context::CrateContext;
use middle::trans::type_::Type;
use std::cmp;
#[deriving(Clone, Eq)]
enum RegClass {
NoClass,
Int,
SSEFs,
SSEFv,
SSEDs,
SSEDv,
SSEInt,
SSEUp,
X87,
X87Up,
ComplexX87,
Memory
}
trait TypeMethods {
fn is_reg_ty(&self) -> bool;
}
impl TypeMethods for Type {
fn is_reg_ty(&self) -> bool {
match self.kind() {
Integer | Pointer | Float | Double => true,
_ => false
}
}
}
impl RegClass {
fn is_sse(&self) -> bool {
match *self {
SSEFs | SSEFv | SSEDs | SSEDv => true,
_ => false
}
}
}
trait ClassList {
fn is_pass_byval(&self) -> bool;
fn is_ret_bysret(&self) -> bool;
}
impl<'a> ClassList for &'a [RegClass] {
fn is_pass_byval(&self) -> bool {
if self.len() == 0 { return false; }
let class = self[0];
class == Memory
|| class == X87
|| class == ComplexX87
}
fn is_ret_bysret(&self) -> bool {
if self.len() == 0 { return false; }
self[0] == Memory
}
}
fn classify_ty(ty: Type) -> Vec<RegClass> {
fn align(off: uint, ty: Type) -> uint {
let a = ty_align(ty);
return (off + a - 1u) / a * a;
}
fn ty_align(ty: Type) -> uint {
match ty.kind() {
Integer => {
unsafe {
((llvm::LLVMGetIntTypeWidth(ty.to_ref()) as uint) + 7) / 8
}
}
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
if ty.is_packed() {
1
} else {
let str_tys = ty.field_types();
str_tys.iter().fold(1, |a, t| cmp::max(a, ty_align(*t)))
}
}
Array => {
let elt = ty.element_type();
ty_align(elt)
}
_ => fail!("ty_size: unhandled type")
}
}
fn ty_size(ty: Type) -> uint {
match ty.kind() {
Integer => {
unsafe {
((llvm::LLVMGetIntTypeWidth(ty.to_ref()) as uint) + 7) / 8
}
}
Pointer => 8,
Float => 4,
Double => 8,
Struct => {
let str_tys = ty.field_types();
if ty.is_packed() {
str_tys.iter().fold(0, |s, t| s + ty_size(*t))
} else {
let size = str_tys.iter().fold(0, |s, t| align(s, *t) + ty_size(*t));
align(size, ty)
}
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
len * eltsz
}
_ => fail!("ty_size: unhandled type")
}
}
fn all_mem(cls: &mut [RegClass]) {
for elt in cls.mut_iter() {
*elt = Memory;
}
}
fn unify(cls: &mut [RegClass],
i: uint,
newv: RegClass) {
if cls[i] == newv {
return;
} else if cls[i] == NoClass {
cls[i] = newv;
} else if newv == NoClass {
return;
} else if cls[i] == Memory || newv == Memory {
cls[i] = Memory;
} else if cls[i] == Int || newv == Int {
cls[i] = Int;
} else if cls[i] == X87 ||
cls[i] == X87Up ||
cls[i] == ComplexX87 ||
newv == X87 ||
newv == X87Up ||
newv == ComplexX87 {
cls[i] = Memory;
} else {
cls[i] = newv;
}
}
fn classify_struct(tys: &[Type],
cls: &mut [RegClass], i: uint,
off: uint) {
let mut field_off = off;
for ty in tys.iter() {
field_off = align(field_off, *ty);
classify(*ty, cls, i, field_off);
field_off += ty_size(*ty);
}
}
fn classify(ty: Type,
cls: &mut [RegClass], ix: uint,
off: uint) {
let t_align = ty_align(ty);
let t_size = ty_size(ty);
let misalign = off % t_align;
if misalign != 0u {
let mut i = off / 8u;
let e = (off + t_size + 7u) / 8u;
while i < e {
unify(cls, ix + i, Memory);
i += 1u;
}
return;
}
match ty.kind() {
Integer |
Pointer => {
unify(cls, ix + off / 8u, Int);
}
Float => {
if off % 8u == 4u {
unify(cls, ix + off / 8u, SSEFv);
} else {
unify(cls, ix + off / 8u, SSEFs);
}
}
Double => {
unify(cls, ix + off / 8u, SSEDs);
}
Struct => {
classify_struct(ty.field_types().as_slice(), cls, ix, off);
}
Array => {
let len = ty.array_length();
let elt = ty.element_type();
let eltsz = ty_size(elt);
let mut i = 0u;
while i < len {
classify(elt, cls, ix, off + i * eltsz);
i += 1u;
}
}
_ => fail!("classify: unhandled type")
}
}
fn fixup(ty: Type, cls: &mut [RegClass]) {
let mut i = 0u;
let ty_kind = ty.kind();
let e = cls.len();
if cls.len() > 2u && (ty_kind == Struct || ty_kind == Array) {
if cls[i].is_sse() {
i += 1u;
while i < e {
if cls[i] != SSEUp {
all_mem(cls);
return;
}
i += 1u;
}
} else {
all_mem(cls);
return
}
} else {
while i < e {
if cls[i] == Memory {
all_mem(cls);
return;
}
if cls[i] == X87Up {
// for darwin
// cls[i] = SSEDs;
all_mem(cls);
return;
}
if cls[i] == SSEUp {
cls[i] = SSEDv;
} else if cls[i].is_sse() {
i += 1;
while i != e && cls[i] == SSEUp { i += 1u; }
} else if cls[i] == X87 {
i += 1;
while i != e && cls[i] == X87Up { i += 1u; }
} else {
i += 1;
}
}
}
}
let words = (ty_size(ty) + 7) / 8;
let mut cls = Vec::from_elem(words, NoClass);
if words > 4 {
all_mem(cls.as_mut_slice());
return cls;
}
classify(ty, cls.as_mut_slice(), 0, 0);
fixup(ty, cls.as_mut_slice());
return cls;
}
fn llreg_ty(ccx: &CrateContext, cls: &[RegClass]) -> Type {
fn llvec_len(cls: &[RegClass]) -> uint {
let mut len = 1u;
for c in cls.iter() {
if *c != SSEUp {
break;
}
len += 1u;
}
return len;
}
let mut tys = Vec::new();
let mut i = 0u;
let e = cls.len();
while i < e {
match cls[i] {
Int => {
tys.push(Type::i64(ccx));
}
SSEFv => {
let vec_len = llvec_len(cls.tailn(i + 1u));
let vec_ty = Type::vector(&Type::f32(ccx), (vec_len * 2u) as u64);
tys.push(vec_ty);
i += vec_len;
continue;
}
SSEFs => {
tys.push(Type::f32(ccx));
}
SSEDs => {
tys.push(Type::f64(ccx));
}
_ => fail!("llregtype: unhandled class")
}
i += 1u;
}
return Type::struct_(ccx, tys.as_slice(), false);
}
pub fn compute_abi_info(ccx: &CrateContext,
atys: &[Type],
rty: Type,
ret_def: bool) -> FnType {
fn x86_64_ty(ccx: &CrateContext,
ty: Type,
is_mem_cls: |cls: &[RegClass]| -> bool,
attr: Attribute)
-> ArgType {
if !ty.is_reg_ty() {
let cls = classify_ty(ty);
if is_mem_cls(cls.as_slice()) {
ArgType::indirect(ty, Some(attr))
} else {
ArgType::direct(ty,
Some(llreg_ty(ccx, cls.as_slice())),
None,
None)
}
} else {
ArgType::direct(ty, None, None, None)
}
}
let mut arg_tys = Vec::new();
for t in atys.iter() {
let ty = x86_64_ty(ccx, *t, |cls| cls.is_pass_byval(), ByValAttribute);
arg_tys.push(ty);
}
let ret_ty = if ret_def {
x86_64_ty(ccx, rty, |cls| cls.is_ret_bysret(), StructRetAttribute)
} else {
ArgType::direct(Type::void(ccx), None, None, None)
};
return FnType {
arg_tys: arg_tys,
ret_ty: ret_ty,
};
}