598 lines
18 KiB
Rust
598 lines
18 KiB
Rust
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use bitvec::BitMatrix;
|
|
use std::cell::RefCell;
|
|
use std::fmt::Debug;
|
|
use std::mem;
|
|
|
|
#[derive(Clone)]
|
|
pub struct TransitiveRelation<T: Debug + PartialEq> {
|
|
// List of elements. This is used to map from a T to a usize. We
|
|
// expect domain to be small so just use a linear list versus a
|
|
// hashmap or something.
|
|
elements: Vec<T>,
|
|
|
|
// List of base edges in the graph. Require to compute transitive
|
|
// closure.
|
|
edges: Vec<Edge>,
|
|
|
|
// This is a cached transitive closure derived from the edges.
|
|
// Currently, we build it lazilly and just throw out any existing
|
|
// copy whenever a new edge is added. (The RefCell is to permit
|
|
// the lazy computation.) This is kind of silly, except for the
|
|
// fact its size is tied to `self.elements.len()`, so I wanted to
|
|
// wait before building it up to avoid reallocating as new edges
|
|
// are added with new elements. Perhaps better would be to ask the
|
|
// user for a batch of edges to minimize this effect, but I
|
|
// already wrote the code this way. :P -nmatsakis
|
|
closure: RefCell<Option<BitMatrix>>,
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, PartialOrd)]
|
|
struct Index(usize);
|
|
|
|
#[derive(Clone, PartialEq)]
|
|
struct Edge {
|
|
source: Index,
|
|
target: Index,
|
|
}
|
|
|
|
impl<T: Debug + PartialEq> TransitiveRelation<T> {
|
|
pub fn new() -> TransitiveRelation<T> {
|
|
TransitiveRelation {
|
|
elements: vec![],
|
|
edges: vec![],
|
|
closure: RefCell::new(None),
|
|
}
|
|
}
|
|
|
|
fn index(&self, a: &T) -> Option<Index> {
|
|
self.elements.iter().position(|e| *e == *a).map(Index)
|
|
}
|
|
|
|
fn add_index(&mut self, a: T) -> Index {
|
|
match self.index(&a) {
|
|
Some(i) => i,
|
|
None => {
|
|
self.elements.push(a);
|
|
|
|
// if we changed the dimensions, clear the cache
|
|
*self.closure.borrow_mut() = None;
|
|
|
|
Index(self.elements.len() - 1)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicate that `a < b` (where `<` is this relation)
|
|
pub fn add(&mut self, a: T, b: T) {
|
|
let a = self.add_index(a);
|
|
let b = self.add_index(b);
|
|
let edge = Edge {
|
|
source: a,
|
|
target: b,
|
|
};
|
|
if !self.edges.contains(&edge) {
|
|
self.edges.push(edge);
|
|
|
|
// added an edge, clear the cache
|
|
*self.closure.borrow_mut() = None;
|
|
}
|
|
}
|
|
|
|
/// Check whether `a < target` (transitively)
|
|
pub fn contains(&self, a: &T, b: &T) -> bool {
|
|
match (self.index(a), self.index(b)) {
|
|
(Some(a), Some(b)) => self.with_closure(|closure| closure.contains(a.0, b.0)),
|
|
(None, _) | (_, None) => false,
|
|
}
|
|
}
|
|
|
|
/// Picks what I am referring to as the "postdominating"
|
|
/// upper-bound for `a` and `b`. This is usually the least upper
|
|
/// bound, but in cases where there is no single least upper
|
|
/// bound, it is the "mutual immediate postdominator", if you
|
|
/// imagine a graph where `a < b` means `a -> b`.
|
|
///
|
|
/// This function is needed because region inference currently
|
|
/// requires that we produce a single "UB", and there is no best
|
|
/// choice for the LUB. Rather than pick arbitrarily, I pick a
|
|
/// less good, but predictable choice. This should help ensure
|
|
/// that region inference yields predictable results (though it
|
|
/// itself is not fully sufficient).
|
|
///
|
|
/// Examples are probably clearer than any prose I could write
|
|
/// (there are corresponding tests below, btw). In each case,
|
|
/// the query is `postdom_upper_bound(a, b)`:
|
|
///
|
|
/// ```text
|
|
/// // returns Some(x), which is also LUB
|
|
/// a -> a1 -> x
|
|
/// ^
|
|
/// |
|
|
/// b -> b1 ---+
|
|
///
|
|
/// // returns Some(x), which is not LUB (there is none)
|
|
/// // diagonal edges run left-to-right
|
|
/// a -> a1 -> x
|
|
/// \/ ^
|
|
/// /\ |
|
|
/// b -> b1 ---+
|
|
///
|
|
/// // returns None
|
|
/// a -> a1
|
|
/// b -> b1
|
|
/// ```
|
|
pub fn postdom_upper_bound(&self, a: &T, b: &T) -> Option<&T> {
|
|
let mut mubs = self.minimal_upper_bounds(a, b);
|
|
loop {
|
|
match mubs.len() {
|
|
0 => return None,
|
|
1 => return Some(mubs[0]),
|
|
_ => {
|
|
let m = mubs.pop().unwrap();
|
|
let n = mubs.pop().unwrap();
|
|
mubs.extend(self.minimal_upper_bounds(n, m));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the set of bounds `X` such that:
|
|
///
|
|
/// - `a < X` and `b < X`
|
|
/// - there is no `Y != X` such that `a < Y` and `Y < X`
|
|
/// - except for the case where `X < a` (i.e., a strongly connected
|
|
/// component in the graph). In that case, the smallest
|
|
/// representative of the SCC is returned (as determined by the
|
|
/// internal indices).
|
|
///
|
|
/// Note that this set can, in principle, have any size.
|
|
pub fn minimal_upper_bounds(&self, a: &T, b: &T) -> Vec<&T> {
|
|
let (mut a, mut b) = match (self.index(a), self.index(b)) {
|
|
(Some(a), Some(b)) => (a, b),
|
|
(None, _) | (_, None) => {
|
|
return vec![];
|
|
}
|
|
};
|
|
|
|
// in some cases, there are some arbitrary choices to be made;
|
|
// it doesn't really matter what we pick, as long as we pick
|
|
// the same thing consistently when queried, so ensure that
|
|
// (a, b) are in a consistent relative order
|
|
if a > b {
|
|
mem::swap(&mut a, &mut b);
|
|
}
|
|
|
|
let lub_indices = self.with_closure(|closure| {
|
|
// Easy case is when either a < b or b < a:
|
|
if closure.contains(a.0, b.0) {
|
|
return vec![b.0];
|
|
}
|
|
if closure.contains(b.0, a.0) {
|
|
return vec![a.0];
|
|
}
|
|
|
|
// Otherwise, the tricky part is that there may be some c
|
|
// where a < c and b < c. In fact, there may be many such
|
|
// values. So here is what we do:
|
|
//
|
|
// 1. Find the vector `[X | a < X && b < X]` of all values
|
|
// `X` where `a < X` and `b < X`. In terms of the
|
|
// graph, this means all values reachable from both `a`
|
|
// and `b`. Note that this vector is also a set, but we
|
|
// use the term vector because the order matters
|
|
// to the steps below.
|
|
// - This vector contains upper bounds, but they are
|
|
// not minimal upper bounds. So you may have e.g.
|
|
// `[x, y, tcx, z]` where `x < tcx` and `y < tcx` and
|
|
// `z < x` and `z < y`:
|
|
//
|
|
// z --+---> x ----+----> tcx
|
|
// | |
|
|
// | |
|
|
// +---> y ----+
|
|
//
|
|
// In this case, we really want to return just `[z]`.
|
|
// The following steps below achieve this by gradually
|
|
// reducing the list.
|
|
// 2. Pare down the vector using `pare_down`. This will
|
|
// remove elements from the vector that can be reached
|
|
// by an earlier element.
|
|
// - In the example above, this would convert `[x, y,
|
|
// tcx, z]` to `[x, y, z]`. Note that `x` and `y` are
|
|
// still in the vector; this is because while `z < x`
|
|
// (and `z < y`) holds, `z` comes after them in the
|
|
// vector.
|
|
// 3. Reverse the vector and repeat the pare down process.
|
|
// - In the example above, we would reverse to
|
|
// `[z, y, x]` and then pare down to `[z]`.
|
|
// 4. Reverse once more just so that we yield a vector in
|
|
// increasing order of index. Not necessary, but why not.
|
|
//
|
|
// I believe this algorithm yields a minimal set. The
|
|
// argument is that, after step 2, we know that no element
|
|
// can reach its successors (in the vector, not the graph).
|
|
// After step 3, we know that no element can reach any of
|
|
// its predecesssors (because of step 2) nor successors
|
|
// (because we just called `pare_down`)
|
|
|
|
let mut candidates = closure.intersection(a.0, b.0); // (1)
|
|
pare_down(&mut candidates, closure); // (2)
|
|
candidates.reverse(); // (3a)
|
|
pare_down(&mut candidates, closure); // (3b)
|
|
candidates
|
|
});
|
|
|
|
lub_indices.into_iter()
|
|
.rev() // (4)
|
|
.map(|i| &self.elements[i])
|
|
.collect()
|
|
}
|
|
|
|
fn with_closure<OP, R>(&self, op: OP) -> R
|
|
where OP: FnOnce(&BitMatrix) -> R
|
|
{
|
|
let mut closure_cell = self.closure.borrow_mut();
|
|
let mut closure = closure_cell.take();
|
|
if closure.is_none() {
|
|
closure = Some(self.compute_closure());
|
|
}
|
|
let result = op(closure.as_ref().unwrap());
|
|
*closure_cell = closure;
|
|
result
|
|
}
|
|
|
|
fn compute_closure(&self) -> BitMatrix {
|
|
let mut matrix = BitMatrix::new(self.elements.len());
|
|
let mut changed = true;
|
|
while changed {
|
|
changed = false;
|
|
for edge in self.edges.iter() {
|
|
// add an edge from S -> T
|
|
changed |= matrix.add(edge.source.0, edge.target.0);
|
|
|
|
// add all outgoing edges from T into S
|
|
changed |= matrix.merge(edge.target.0, edge.source.0);
|
|
}
|
|
}
|
|
matrix
|
|
}
|
|
}
|
|
|
|
/// Pare down is used as a step in the LUB computation. It edits the
|
|
/// candidates array in place by removing any element j for which
|
|
/// there exists an earlier element i<j such that i -> j. That is,
|
|
/// after you run `pare_down`, you know that for all elements that
|
|
/// remain in candidates, they cannot reach any of the elements that
|
|
/// come after them.
|
|
///
|
|
/// Examples follow. Assume that a -> b -> c and x -> y -> z.
|
|
///
|
|
/// - Input: `[a, b, x]`. Output: `[a, x]`.
|
|
/// - Input: `[b, a, x]`. Output: `[b, a, x]`.
|
|
/// - Input: `[a, x, b, y]`. Output: `[a, x]`.
|
|
fn pare_down(candidates: &mut Vec<usize>, closure: &BitMatrix) {
|
|
let mut i = 0;
|
|
while i < candidates.len() {
|
|
let candidate_i = candidates[i];
|
|
i += 1;
|
|
|
|
let mut j = i;
|
|
let mut dead = 0;
|
|
while j < candidates.len() {
|
|
let candidate_j = candidates[j];
|
|
if closure.contains(candidate_i, candidate_j) {
|
|
// If `i` can reach `j`, then we can remove `j`. So just
|
|
// mark it as dead and move on; subsequent indices will be
|
|
// shifted into its place.
|
|
dead += 1;
|
|
} else {
|
|
candidates[j - dead] = candidate_j;
|
|
}
|
|
j += 1;
|
|
}
|
|
candidates.truncate(j - dead);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_one_step() {
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "b");
|
|
relation.add("a", "c");
|
|
assert!(relation.contains(&"a", &"c"));
|
|
assert!(relation.contains(&"a", &"b"));
|
|
assert!(!relation.contains(&"b", &"a"));
|
|
assert!(!relation.contains(&"a", &"d"));
|
|
}
|
|
|
|
#[test]
|
|
fn test_many_steps() {
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "b");
|
|
relation.add("a", "c");
|
|
relation.add("a", "f");
|
|
|
|
relation.add("b", "c");
|
|
relation.add("b", "d");
|
|
relation.add("b", "e");
|
|
|
|
relation.add("e", "g");
|
|
|
|
assert!(relation.contains(&"a", &"b"));
|
|
assert!(relation.contains(&"a", &"c"));
|
|
assert!(relation.contains(&"a", &"d"));
|
|
assert!(relation.contains(&"a", &"e"));
|
|
assert!(relation.contains(&"a", &"f"));
|
|
assert!(relation.contains(&"a", &"g"));
|
|
|
|
assert!(relation.contains(&"b", &"g"));
|
|
|
|
assert!(!relation.contains(&"a", &"x"));
|
|
assert!(!relation.contains(&"b", &"f"));
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_triange() {
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "tcx");
|
|
relation.add("b", "tcx");
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"tcx"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_best_choice1() {
|
|
// 0 -> 1 <- 3
|
|
// | ^ |
|
|
// | | |
|
|
// +--> 2 <--+
|
|
//
|
|
// mubs(0,3) = [1]
|
|
|
|
// This tests a particular state in the algorithm, in which we
|
|
// need the second pare down call to get the right result (after
|
|
// intersection, we have [1, 2], but 2 -> 1).
|
|
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("0", "1");
|
|
relation.add("0", "2");
|
|
|
|
relation.add("2", "1");
|
|
|
|
relation.add("3", "1");
|
|
relation.add("3", "2");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"2"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_best_choice2() {
|
|
// 0 -> 1 <- 3
|
|
// | | |
|
|
// | v |
|
|
// +--> 2 <--+
|
|
//
|
|
// mubs(0,3) = [2]
|
|
|
|
// Like the precedecing test, but in this case intersection is [2,
|
|
// 1], and hence we rely on the first pare down call.
|
|
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("0", "1");
|
|
relation.add("0", "2");
|
|
|
|
relation.add("1", "2");
|
|
|
|
relation.add("3", "1");
|
|
relation.add("3", "2");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_no_best_choice() {
|
|
// in this case, the intersection yields [1, 2], and the "pare
|
|
// down" calls find nothing to remove.
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("0", "1");
|
|
relation.add("0", "2");
|
|
|
|
relation.add("3", "1");
|
|
relation.add("3", "2");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1", &"2"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_best_choice_scc() {
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("0", "1");
|
|
relation.add("0", "2");
|
|
|
|
relation.add("1", "2");
|
|
relation.add("2", "1");
|
|
|
|
relation.add("3", "1");
|
|
relation.add("3", "2");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"0", &"3"), vec![&"1"]);
|
|
}
|
|
|
|
#[test]
|
|
fn pdub_crisscross() {
|
|
// diagonal edges run left-to-right
|
|
// a -> a1 -> x
|
|
// \/ ^
|
|
// /\ |
|
|
// b -> b1 ---+
|
|
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "a1");
|
|
relation.add("a", "b1");
|
|
relation.add("b", "a1");
|
|
relation.add("b", "b1");
|
|
relation.add("a1", "x");
|
|
relation.add("b1", "x");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
|
|
vec![&"a1", &"b1"]);
|
|
assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
|
|
}
|
|
|
|
#[test]
|
|
fn pdub_crisscross_more() {
|
|
// diagonal edges run left-to-right
|
|
// a -> a1 -> a2 -> a3 -> x
|
|
// \/ \/ ^
|
|
// /\ /\ |
|
|
// b -> b1 -> b2 ---------+
|
|
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "a1");
|
|
relation.add("a", "b1");
|
|
relation.add("b", "a1");
|
|
relation.add("b", "b1");
|
|
|
|
relation.add("a1", "a2");
|
|
relation.add("a1", "b2");
|
|
relation.add("b1", "a2");
|
|
relation.add("b1", "b2");
|
|
|
|
relation.add("a2", "a3");
|
|
|
|
relation.add("a3", "x");
|
|
relation.add("b2", "x");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"),
|
|
vec![&"a1", &"b1"]);
|
|
assert_eq!(relation.minimal_upper_bounds(&"a1", &"b1"),
|
|
vec![&"a2", &"b2"]);
|
|
assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
|
|
}
|
|
|
|
#[test]
|
|
fn pdub_lub() {
|
|
// a -> a1 -> x
|
|
// ^
|
|
// |
|
|
// b -> b1 ---+
|
|
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "a1");
|
|
relation.add("b", "b1");
|
|
relation.add("a1", "x");
|
|
relation.add("b1", "x");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"x"]);
|
|
assert_eq!(relation.postdom_upper_bound(&"a", &"b"), Some(&"x"));
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_intermediate_node_on_one_side_only() {
|
|
// a -> c -> d
|
|
// ^
|
|
// |
|
|
// b
|
|
|
|
// "digraph { a -> c -> d; b -> d; }",
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "c");
|
|
relation.add("c", "d");
|
|
relation.add("b", "d");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"d"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_scc_1() {
|
|
// +-------------+
|
|
// | +----+ |
|
|
// | v | |
|
|
// a -> c -> d <-+
|
|
// ^
|
|
// |
|
|
// b
|
|
|
|
// "digraph { a -> c -> d; d -> c; a -> d; b -> d; }",
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "c");
|
|
relation.add("c", "d");
|
|
relation.add("d", "c");
|
|
relation.add("a", "d");
|
|
relation.add("b", "d");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_scc_2() {
|
|
// +----+
|
|
// v |
|
|
// a -> c -> d
|
|
// ^ ^
|
|
// | |
|
|
// +--- b
|
|
|
|
// "digraph { a -> c -> d; d -> c; b -> d; b -> c; }",
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "c");
|
|
relation.add("c", "d");
|
|
relation.add("d", "c");
|
|
relation.add("b", "d");
|
|
relation.add("b", "c");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_scc_3() {
|
|
// +---------+
|
|
// v |
|
|
// a -> c -> d -> e
|
|
// ^ ^
|
|
// | |
|
|
// b ---+
|
|
|
|
// "digraph { a -> c -> d -> e -> c; b -> d; b -> e; }",
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "c");
|
|
relation.add("c", "d");
|
|
relation.add("d", "e");
|
|
relation.add("e", "c");
|
|
relation.add("b", "d");
|
|
relation.add("b", "e");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
|
}
|
|
|
|
#[test]
|
|
fn mubs_scc_4() {
|
|
// +---------+
|
|
// v |
|
|
// a -> c -> d -> e
|
|
// | ^ ^
|
|
// +---------+ |
|
|
// |
|
|
// b ---+
|
|
|
|
// "digraph { a -> c -> d -> e -> c; a -> d; b -> e; }"
|
|
let mut relation = TransitiveRelation::new();
|
|
relation.add("a", "c");
|
|
relation.add("c", "d");
|
|
relation.add("d", "e");
|
|
relation.add("e", "c");
|
|
relation.add("a", "d");
|
|
relation.add("b", "e");
|
|
|
|
assert_eq!(relation.minimal_upper_bounds(&"a", &"b"), vec![&"c"]);
|
|
}
|