rust/src/librustdoc/html/render.rs
Alex Crichton 429ef870f6 rustdoc: Handle links to reexported items
When building up our path cache, we don't plaster over a path which was
previously inserted if we're inserting a non-public-item thing.

Closes #11678
2014-02-19 01:30:52 -08:00

1640 lines
61 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Rustdoc's HTML Rendering module
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering tasks. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among tasks). The context, however, should be a lightweight structure. This
//! is cloned per-task and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These tasks are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
use std::fmt;
use std::hashmap::{HashMap, HashSet};
use std::local_data;
use std::io;
use std::io::{fs, File, BufferedWriter};
use std::str;
use std::vec;
use sync::Arc;
use extra::json::ToJson;
use syntax::ast;
use syntax::attr;
use syntax::parse::token::InternedString;
use clean;
use doctree;
use fold::DocFolder;
use html::escape::Escape;
use html::format::{VisSpace, Method, PuritySpace};
use html::layout;
use html::markdown::Markdown;
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
/// how the current page is being rendered.
///
/// It is intended that this context is a lightweight object which can be fairly
/// easily cloned because it is cloned per work-job (about once per item in the
/// rustdoc tree).
#[deriving(Clone)]
pub struct Context {
/// Current hierarchy of components leading down to what's currently being
/// rendered
current: ~[~str],
/// String representation of how to get back to the root path of the 'doc/'
/// folder in terms of a relative URL.
root_path: ~str,
/// The current destination folder of where HTML artifacts should be placed.
/// This changes as the context descends into the module hierarchy.
dst: Path,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon)
layout: layout::Layout,
/// This map is a list of what should be displayed on the sidebar of the
/// current page. The key is the section header (traits, modules,
/// functions), and the value is the list of containers belonging to this
/// header. This map will change depending on the surrounding context of the
/// page.
sidebar: HashMap<~str, ~[~str]>,
/// This flag indicates whether [src] links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
include_sources: bool,
}
/// Indicates where an external crate can be found.
pub enum ExternalLocation {
/// Remote URL root of the external crate
Remote(~str),
/// This external crate can be found in the local doc/ folder
Local,
/// The external crate could not be found.
Unknown,
}
/// Different ways an implementor of a trait can be rendered.
enum Implementor {
/// Paths are displayed specially by omitting the `impl XX for` cruft
PathType(clean::Type),
/// This is the generic representation of a trait implementor, used for
/// primitive types and otherwise non-path types.
OtherType(clean::Generics, /* trait */ clean::Type, /* for */ clean::Type),
}
/// This cache is used to store information about the `clean::Crate` being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to both `Send` and `Freeze` so it may be stored in a `Arc` instance and
/// shared among the various rendering tasks.
pub struct Cache {
/// Mapping of typaram ids to the name of the type parameter. This is used
/// when pretty-printing a type (so pretty printing doesn't have to
/// painfully maintain a context like this)
typarams: HashMap<ast::NodeId, ~str>,
/// Maps a type id to all known implementations for that type. This is only
/// recognized for intra-crate `ResolvedPath` types, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
impls: HashMap<ast::NodeId, ~[(clean::Impl, Option<~str>)]>,
/// Maintains a mapping of local crate node ids to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
paths: HashMap<ast::NodeId, (~[~str], &'static str)>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
traits: HashMap<ast::NodeId, clean::Trait>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
implementors: HashMap<ast::NodeId, ~[Implementor]>,
/// Cache of where external crate documentation can be found.
extern_locations: HashMap<ast::CrateNum, ExternalLocation>,
// Private fields only used when initially crawling a crate to build a cache
priv stack: ~[~str],
priv parent_stack: ~[ast::NodeId],
priv search_index: ~[IndexItem],
priv privmod: bool,
priv public_items: HashSet<ast::NodeId>,
}
/// Helper struct to render all source code to HTML pages
struct SourceCollector<'a> {
cx: &'a mut Context,
/// Processed source-file paths
seen: HashSet<~str>,
/// Root destination to place all HTML output into
dst: Path,
}
/// Wrapper struct to render the source code of a file. This will do things like
/// adding line numbers to the left-hand side.
struct Source<'a>(&'a str);
// Helper structs for rendering items/sidebars and carrying along contextual
// information
struct Item<'a> { cx: &'a Context, item: &'a clean::Item, }
struct Sidebar<'a> { cx: &'a Context, item: &'a clean::Item, }
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
struct IndexItem {
ty: &'static str,
name: ~str,
path: ~str,
desc: ~str,
parent: Option<ast::NodeId>,
}
// TLS keys used to carry information around during rendering.
local_data_key!(pub cache_key: Arc<Cache>)
local_data_key!(pub current_location_key: ~[~str])
/// Generates the documentation for `crate` into the directory `dst`
pub fn run(mut krate: clean::Crate, dst: Path) -> io::IoResult<()> {
let mut cx = Context {
dst: dst,
current: ~[],
root_path: ~"",
sidebar: HashMap::new(),
layout: layout::Layout {
logo: ~"",
favicon: ~"",
krate: krate.name.clone(),
},
include_sources: true,
};
if_ok!(mkdir(&cx.dst));
match krate.module.as_ref().map(|m| m.doc_list().unwrap_or(&[])) {
Some(attrs) => {
for attr in attrs.iter() {
match *attr {
clean::NameValue(~"html_favicon_url", ref s) => {
cx.layout.favicon = s.to_owned();
}
clean::NameValue(~"html_logo_url", ref s) => {
cx.layout.logo = s.to_owned();
}
clean::Word(~"html_no_source") => {
cx.include_sources = false;
}
_ => {}
}
}
}
None => {}
}
// Crawl the crate to build various caches used for the output
let mut cache = local_data::get(::analysiskey, |analysis| {
let public_items = analysis.map(|a| a.public_items.clone());
let public_items = public_items.unwrap_or(HashSet::new());
Cache {
impls: HashMap::new(),
typarams: HashMap::new(),
paths: HashMap::new(),
traits: HashMap::new(),
implementors: HashMap::new(),
stack: ~[],
parent_stack: ~[],
search_index: ~[],
extern_locations: HashMap::new(),
privmod: false,
public_items: public_items,
}
});
cache.stack.push(krate.name.clone());
krate = cache.fold_crate(krate);
// Add all the static files
let mut dst = cx.dst.join(krate.name.as_slice());
if_ok!(mkdir(&dst));
if_ok!(write(dst.join("jquery.js"),
include_str!("static/jquery-2.1.0.min.js")));
if_ok!(write(dst.join("main.js"), include_str!("static/main.js")));
if_ok!(write(dst.join("main.css"), include_str!("static/main.css")));
if_ok!(write(dst.join("normalize.css"),
include_str!("static/normalize.css")));
// Publish the search index
{
dst.push("search-index.js");
let mut w = BufferedWriter::new(File::create(&dst).unwrap());
let w = &mut w as &mut Writer;
if_ok!(write!(w, "var searchIndex = ["));
for (i, item) in cache.search_index.iter().enumerate() {
if i > 0 {
if_ok!(write!(w, ","));
}
if_ok!(write!(w, "\\{ty:\"{}\",name:\"{}\",path:\"{}\",desc:{}",
item.ty, item.name, item.path,
item.desc.to_json().to_str()));
match item.parent {
Some(id) => {
if_ok!(write!(w, ",parent:'{}'", id));
}
None => {}
}
if_ok!(write!(w, "\\}"));
}
if_ok!(write!(w, "];"));
if_ok!(write!(w, "var allPaths = \\{"));
for (i, (&id, &(ref fqp, short))) in cache.paths.iter().enumerate() {
if i > 0 {
if_ok!(write!(w, ","));
}
if_ok!(write!(w, "'{}':\\{type:'{}',name:'{}'\\}",
id, short, *fqp.last().unwrap()));
}
if_ok!(write!(w, "\\};"));
if_ok!(w.flush());
}
// Render all source files (this may turn into a giant no-op)
{
info!("emitting source files");
let dst = cx.dst.join("src");
if_ok!(mkdir(&dst));
let dst = dst.join(krate.name.as_slice());
if_ok!(mkdir(&dst));
let mut folder = SourceCollector {
dst: dst,
seen: HashSet::new(),
cx: &mut cx,
};
krate = folder.fold_crate(krate);
}
for &(n, ref e) in krate.externs.iter() {
cache.extern_locations.insert(n, extern_location(e, &cx.dst));
}
// And finally render the whole crate's documentation
cx.krate(krate, cache)
}
/// Writes the entire contents of a string to a destination, not attempting to
/// catch any errors.
fn write(dst: Path, contents: &str) -> io::IoResult<()> {
File::create(&dst).write(contents.as_bytes())
}
/// Makes a directory on the filesystem, failing the task if an error occurs and
/// skipping if the directory already exists.
fn mkdir(path: &Path) -> io::IoResult<()> {
if !path.exists() {
fs::mkdir(path, io::UserRWX)
} else {
Ok(())
}
}
/// Takes a path to a source file and cleans the path to it. This canonicalizes
/// things like ".." to components which preserve the "top down" hierarchy of a
/// static HTML tree.
// FIXME (#9639): The closure should deal with &[u8] instead of &str
fn clean_srcpath(src: &[u8], f: |&str|) {
let p = Path::new(src);
if p.as_vec() != bytes!(".") {
for c in p.str_components().map(|x|x.unwrap()) {
if ".." == c {
f("up");
} else {
f(c.as_slice())
}
}
}
}
/// Attempts to find where an external crate is located, given that we're
/// rendering in to the specified source destination.
fn extern_location(e: &clean::ExternalCrate, dst: &Path) -> ExternalLocation {
// See if there's documentation generated into the local directory
let local_location = dst.join(e.name.as_slice());
if local_location.is_dir() {
return Local;
}
// Failing that, see if there's an attribute specifying where to find this
// external crate
for attr in e.attrs.iter() {
match *attr {
clean::List(~"doc", ref list) => {
for attr in list.iter() {
match *attr {
clean::NameValue(~"html_root_url", ref s) => {
if s.ends_with("/") {
return Remote(s.to_owned());
}
return Remote(*s + "/");
}
_ => {}
}
}
}
_ => {}
}
}
// Well, at least we tried.
return Unknown;
}
impl<'a> DocFolder for SourceCollector<'a> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If we're including source files, and we haven't seen this file yet,
// then we need to render it out to the filesystem
if self.cx.include_sources && !self.seen.contains(&item.source.filename) {
// If it turns out that we couldn't read this file, then we probably
// can't read any of the files (generating html output from json or
// something like that), so just don't include sources for the
// entire crate. The other option is maintaining this mapping on a
// per-file basis, but that's probably not worth it...
self.cx.include_sources = match self.emit_source(item.source.filename) {
Ok(()) => true,
Err(e) => {
println!("warning: source code was requested to be rendered, \
but processing `{}` had an error: {}",
item.source.filename, e);
println!(" skipping rendering of source code");
false
}
};
self.seen.insert(item.source.filename.clone());
}
self.fold_item_recur(item)
}
}
impl<'a> SourceCollector<'a> {
/// Renders the given filename into its corresponding HTML source file.
fn emit_source(&mut self, filename: &str) -> io::IoResult<()> {
let p = Path::new(filename);
// If we couldn't open this file, then just returns because it
// probably means that it's some standard library macro thing and we
// can't have the source to it anyway.
let contents = match File::open(&p).read_to_end() {
Ok(r) => r,
// macros from other libraries get special filenames which we can
// safely ignore
Err(..) if filename.starts_with("<") &&
filename.ends_with("macros>") => return Ok(()),
Err(e) => return Err(e)
};
let contents = str::from_utf8_owned(contents).unwrap();
// Create the intermediate directories
let mut cur = self.dst.clone();
let mut root_path = ~"../../";
clean_srcpath(p.dirname(), |component| {
cur.push(component);
mkdir(&cur).unwrap();
root_path.push_str("../");
});
cur.push(p.filename().expect("source has no filename") + bytes!(".html"));
let mut w = BufferedWriter::new(if_ok!(File::create(&cur)));
let title = format!("{} -- source", cur.filename_display());
let page = layout::Page {
title: title,
ty: "source",
root_path: root_path,
};
if_ok!(layout::render(&mut w as &mut Writer, &self.cx.layout,
&page, &(""), &Source(contents.as_slice())));
if_ok!(w.flush());
return Ok(());
}
}
impl DocFolder for Cache {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If this is a private module, we don't want it in the search index.
let orig_privmod = match item.inner {
clean::ModuleItem(..) => {
let prev = self.privmod;
self.privmod = prev || item.visibility != Some(ast::Public);
prev
}
_ => self.privmod,
};
// Register any generics to their corresponding string. This is used
// when pretty-printing types
match item.inner {
clean::StructItem(ref s) => self.generics(&s.generics),
clean::EnumItem(ref e) => self.generics(&e.generics),
clean::FunctionItem(ref f) => self.generics(&f.generics),
clean::TypedefItem(ref t) => self.generics(&t.generics),
clean::TraitItem(ref t) => self.generics(&t.generics),
clean::ImplItem(ref i) => self.generics(&i.generics),
clean::TyMethodItem(ref i) => self.generics(&i.generics),
clean::MethodItem(ref i) => self.generics(&i.generics),
clean::ForeignFunctionItem(ref f) => self.generics(&f.generics),
_ => {}
}
// Propagate a trait methods' documentation to all implementors of the
// trait
match item.inner {
clean::TraitItem(ref t) => {
self.traits.insert(item.id, t.clone());
}
_ => {}
}
// Collect all the implementors of traits.
match item.inner {
clean::ImplItem(ref i) => {
match i.trait_ {
Some(clean::ResolvedPath{ id, .. }) => {
let v = self.implementors.find_or_insert_with(id, |_|{
~[]
});
match i.for_ {
clean::ResolvedPath{..} => {
v.unshift(PathType(i.for_.clone()));
}
_ => {
v.push(OtherType(i.generics.clone(),
i.trait_.get_ref().clone(),
i.for_.clone()));
}
}
}
Some(..) | None => {}
}
}
_ => {}
}
// Index this method for searching later on
match item.name {
Some(ref s) => {
let parent = match item.inner {
clean::TyMethodItem(..) |
clean::StructFieldItem(..) |
clean::VariantItem(..) => {
Some((Some(*self.parent_stack.last().unwrap()),
self.stack.slice_to(self.stack.len() - 1)))
}
clean::MethodItem(..) => {
if self.parent_stack.len() == 0 {
None
} else {
let last = self.parent_stack.last().unwrap();
let amt = match self.paths.find(last) {
Some(&(_, "trait")) => self.stack.len() - 1,
Some(..) | None => self.stack.len(),
};
Some((Some(*last), self.stack.slice_to(amt)))
}
}
_ => Some((None, self.stack.as_slice()))
};
match parent {
Some((parent, path)) if !self.privmod => {
self.search_index.push(IndexItem {
ty: shortty(&item),
name: s.to_owned(),
path: path.connect("::"),
desc: shorter(item.doc_value()).to_owned(),
parent: parent,
});
}
Some(..) | None => {}
}
}
None => {}
}
// Keep track of the fully qualified path for this item.
let pushed = if item.name.is_some() {
let n = item.name.get_ref();
if n.len() > 0 {
self.stack.push(n.to_owned());
true
} else { false }
} else { false };
match item.inner {
clean::StructItem(..) | clean::EnumItem(..) |
clean::TypedefItem(..) | clean::TraitItem(..) |
clean::FunctionItem(..) | clean::ModuleItem(..) |
clean::ForeignFunctionItem(..) => {
// Reexported items mean that the same id can show up twice in
// the rustdoc ast that we're looking at. We know, however, that
// a reexported item doesn't show up in the `public_items` map,
// so we can skip inserting into the paths map if there was
// already an entry present and we're not a public item.
if !self.paths.contains_key(&item.id) ||
self.public_items.contains(&item.id) {
self.paths.insert(item.id,
(self.stack.clone(), shortty(&item)));
}
}
// link variants to their parent enum because pages aren't emitted
// for each variant
clean::VariantItem(..) => {
let mut stack = self.stack.clone();
stack.pop();
self.paths.insert(item.id, (stack, "enum"));
}
_ => {}
}
// Maintain the parent stack
let parent_pushed = match item.inner {
clean::TraitItem(..) | clean::EnumItem(..) | clean::StructItem(..) => {
self.parent_stack.push(item.id); true
}
clean::ImplItem(ref i) => {
match i.for_ {
clean::ResolvedPath{ id, .. } => {
self.parent_stack.push(id); true
}
_ => false
}
}
_ => false
};
// Once we've recursively found all the generics, then hoard off all the
// implementations elsewhere
let ret = match self.fold_item_recur(item) {
Some(item) => {
match item {
clean::Item{ attrs, inner: clean::ImplItem(i), .. } => {
match i.for_ {
clean::ResolvedPath { id, .. } => {
let v = self.impls.find_or_insert_with(id, |_| {
~[]
});
// extract relevant documentation for this impl
match attrs.move_iter().find(|a| {
match *a {
clean::NameValue(~"doc", _) => true,
_ => false
}
}) {
Some(clean::NameValue(_, dox)) => {
v.push((i, Some(dox)));
}
Some(..) | None => {
v.push((i, None));
}
}
}
_ => {}
}
None
}
// Private modules may survive the strip-private pass if
// they contain impls for public types, but those will get
// stripped here
clean::Item { inner: clean::ModuleItem(ref m),
visibility, .. }
if (m.items.len() == 0 &&
item.doc_value().is_none()) ||
visibility != Some(ast::Public) => None,
i => Some(i),
}
}
i => i,
};
if pushed { self.stack.pop().unwrap(); }
if parent_pushed { self.parent_stack.pop().unwrap(); }
self.privmod = orig_privmod;
return ret;
}
}
impl<'a> Cache {
fn generics(&mut self, generics: &clean::Generics) {
for typ in generics.type_params.iter() {
self.typarams.insert(typ.id, typ.name.clone());
}
}
}
impl Context {
/// Recurse in the directory structure and change the "root path" to make
/// sure it always points to the top (relatively)
fn recurse<T>(&mut self, s: ~str, f: |&mut Context| -> T) -> T {
if s.len() == 0 {
fail!("what {:?}", self);
}
let prev = self.dst.clone();
self.dst.push(s.as_slice());
self.root_path.push_str("../");
self.current.push(s);
info!("Recursing into {}", self.dst.display());
mkdir(&self.dst).unwrap();
let ret = f(self);
info!("Recursed; leaving {}", self.dst.display());
// Go back to where we were at
self.dst = prev;
let len = self.root_path.len();
self.root_path.truncate(len - 3);
self.current.pop().unwrap();
return ret;
}
/// Main method for rendering a crate.
///
/// This currently isn't parallelized, but it'd be pretty easy to add
/// parallelization to this function.
fn krate(self, mut krate: clean::Crate, cache: Cache) -> io::IoResult<()> {
let mut item = match krate.module.take() {
Some(i) => i,
None => return Ok(())
};
item.name = Some(krate.name);
// using a rwarc makes this parallelizable in the future
local_data::set(cache_key, Arc::new(cache));
let mut work = ~[(self, item)];
loop {
match work.pop() {
Some((mut cx, item)) => if_ok!(cx.item(item, |cx, item| {
work.push((cx.clone(), item));
})),
None => break,
}
}
Ok(())
}
/// Non-parellelized version of rendering an item. This will take the input
/// item, render its contents, and then invoke the specified closure with
/// all sub-items which need to be rendered.
///
/// The rendering driver uses this closure to queue up more work.
fn item(&mut self, item: clean::Item,
f: |&mut Context, clean::Item|) -> io::IoResult<()> {
fn render(w: io::File, cx: &mut Context, it: &clean::Item,
pushname: bool) -> io::IoResult<()> {
info!("Rendering an item to {}", w.path().display());
// A little unfortunate that this is done like this, but it sure
// does make formatting *a lot* nicer.
local_data::set(current_location_key, cx.current.clone());
let mut title = cx.current.connect("::");
if pushname {
if title.len() > 0 { title.push_str("::"); }
title.push_str(*it.name.get_ref());
}
title.push_str(" - Rust");
let page = layout::Page {
ty: shortty(it),
root_path: cx.root_path,
title: title,
};
// We have a huge number of calls to write, so try to alleviate some
// of the pain by using a buffered writer instead of invoking the
// write sycall all the time.
let mut writer = BufferedWriter::new(w);
if_ok!(layout::render(&mut writer as &mut Writer, &cx.layout, &page,
&Sidebar{ cx: cx, item: it },
&Item{ cx: cx, item: it }));
writer.flush()
}
match item.inner {
// modules are special because they add a namespace. We also need to
// recurse into the items of the module as well.
clean::ModuleItem(..) => {
let name = item.name.get_ref().to_owned();
let mut item = Some(item);
self.recurse(name, |this| {
let item = item.take_unwrap();
let dst = this.dst.join("index.html");
let dst = if_ok!(File::create(&dst));
if_ok!(render(dst, this, &item, false));
let m = match item.inner {
clean::ModuleItem(m) => m,
_ => unreachable!()
};
this.sidebar = build_sidebar(&m);
for item in m.items.move_iter() {
f(this,item);
}
Ok(())
})
}
// Things which don't have names (like impls) don't get special
// pages dedicated to them.
_ if item.name.is_some() => {
let dst = self.dst.join(item_path(&item));
let dst = if_ok!(File::create(&dst));
render(dst, self, &item, true)
}
_ => Ok(())
}
}
}
fn shortty(item: &clean::Item) -> &'static str {
match item.inner {
clean::ModuleItem(..) => "mod",
clean::StructItem(..) => "struct",
clean::EnumItem(..) => "enum",
clean::FunctionItem(..) => "fn",
clean::TypedefItem(..) => "typedef",
clean::StaticItem(..) => "static",
clean::TraitItem(..) => "trait",
clean::ImplItem(..) => "impl",
clean::ViewItemItem(..) => "viewitem",
clean::TyMethodItem(..) => "tymethod",
clean::MethodItem(..) => "method",
clean::StructFieldItem(..) => "structfield",
clean::VariantItem(..) => "variant",
clean::ForeignFunctionItem(..) => "ffi",
clean::ForeignStaticItem(..) => "ffs",
clean::MacroItem(..) => "macro",
}
}
impl<'a> Item<'a> {
fn ismodule(&self) -> bool {
match self.item.inner {
clean::ModuleItem(..) => true, _ => false
}
}
}
impl<'a> fmt::Show for Item<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match attr::find_stability(self.item.attrs.iter()) {
Some(ref stability) => {
if_ok!(write!(fmt.buf,
"<a class='stability {lvl}' title='{reason}'>{lvl}</a>",
lvl = stability.level.to_str(),
reason = match stability.text {
Some(ref s) => (*s).clone(),
None => InternedString::new(""),
}));
}
None => {}
}
if self.cx.include_sources {
let mut path = ~[];
clean_srcpath(self.item.source.filename.as_bytes(), |component| {
path.push(component.to_owned());
});
let href = if self.item.source.loline == self.item.source.hiline {
format!("{}", self.item.source.loline)
} else {
format!("{}-{}", self.item.source.loline, self.item.source.hiline)
};
if_ok!(write!(fmt.buf,
"<a class='source'
href='{root}src/{krate}/{path}.html\\#{href}'>\
[src]</a>",
root = self.cx.root_path,
krate = self.cx.layout.krate,
path = path.connect("/"),
href = href));
}
// Write the breadcrumb trail header for the top
if_ok!(write!(fmt.buf, "<h1 class='fqn'>"));
match self.item.inner {
clean::ModuleItem(..) => if_ok!(write!(fmt.buf, "Module ")),
clean::FunctionItem(..) => if_ok!(write!(fmt.buf, "Function ")),
clean::TraitItem(..) => if_ok!(write!(fmt.buf, "Trait ")),
clean::StructItem(..) => if_ok!(write!(fmt.buf, "Struct ")),
clean::EnumItem(..) => if_ok!(write!(fmt.buf, "Enum ")),
_ => {}
}
let cur = self.cx.current.as_slice();
let amt = if self.ismodule() { cur.len() - 1 } else { cur.len() };
for (i, component) in cur.iter().enumerate().take(amt) {
let mut trail = ~"";
for _ in range(0, cur.len() - i - 1) {
trail.push_str("../");
}
if_ok!(write!(fmt.buf, "<a href='{}index.html'>{}</a>::",
trail, component.as_slice()));
}
if_ok!(write!(fmt.buf, "<a class='{}' href=''>{}</a></h1>",
shortty(self.item), self.item.name.get_ref().as_slice()));
match self.item.inner {
clean::ModuleItem(ref m) => item_module(fmt.buf, self.cx,
self.item, m.items),
clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) =>
item_function(fmt.buf, self.item, f),
clean::TraitItem(ref t) => item_trait(fmt.buf, self.item, t),
clean::StructItem(ref s) => item_struct(fmt.buf, self.item, s),
clean::EnumItem(ref e) => item_enum(fmt.buf, self.item, e),
clean::TypedefItem(ref t) => item_typedef(fmt.buf, self.item, t),
clean::MacroItem(ref m) => item_macro(fmt.buf, self.item, m),
_ => Ok(())
}
}
}
fn item_path(item: &clean::Item) -> ~str {
match item.inner {
clean::ModuleItem(..) => *item.name.get_ref() + "/index.html",
_ => shortty(item) + "." + *item.name.get_ref() + ".html"
}
}
fn full_path(cx: &Context, item: &clean::Item) -> ~str {
let mut s = cx.current.connect("::");
s.push_str("::");
s.push_str(item.name.get_ref().as_slice());
return s;
}
fn blank<'a>(s: Option<&'a str>) -> &'a str {
match s {
Some(s) => s,
None => ""
}
}
fn shorter<'a>(s: Option<&'a str>) -> &'a str {
match s {
Some(s) => match s.find_str("\n\n") {
Some(pos) => s.slice_to(pos),
None => s,
},
None => ""
}
}
fn document(w: &mut Writer, item: &clean::Item) -> fmt::Result {
match item.doc_value() {
Some(s) => {
if_ok!(write!(w, "<div class='docblock'>{}</div>", Markdown(s)));
}
None => {}
}
Ok(())
}
fn item_module(w: &mut Writer, cx: &Context,
item: &clean::Item, items: &[clean::Item]) -> fmt::Result {
if_ok!(document(w, item));
debug!("{:?}", items);
let mut indices = vec::from_fn(items.len(), |i| i);
fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: uint, idx2: uint) -> Ordering {
if shortty(i1) == shortty(i2) {
return i1.name.cmp(&i2.name);
}
match (&i1.inner, &i2.inner) {
(&clean::ViewItemItem(ref a), &clean::ViewItemItem(ref b)) => {
match (&a.inner, &b.inner) {
(&clean::ExternMod(..), _) => Less,
(_, &clean::ExternMod(..)) => Greater,
_ => idx1.cmp(&idx2),
}
}
(&clean::ViewItemItem(..), _) => Less,
(_, &clean::ViewItemItem(..)) => Greater,
(&clean::ModuleItem(..), _) => Less,
(_, &clean::ModuleItem(..)) => Greater,
(&clean::MacroItem(..), _) => Less,
(_, &clean::MacroItem(..)) => Greater,
(&clean::StructItem(..), _) => Less,
(_, &clean::StructItem(..)) => Greater,
(&clean::EnumItem(..), _) => Less,
(_, &clean::EnumItem(..)) => Greater,
(&clean::StaticItem(..), _) => Less,
(_, &clean::StaticItem(..)) => Greater,
(&clean::ForeignFunctionItem(..), _) => Less,
(_, &clean::ForeignFunctionItem(..)) => Greater,
(&clean::ForeignStaticItem(..), _) => Less,
(_, &clean::ForeignStaticItem(..)) => Greater,
(&clean::TraitItem(..), _) => Less,
(_, &clean::TraitItem(..)) => Greater,
(&clean::FunctionItem(..), _) => Less,
(_, &clean::FunctionItem(..)) => Greater,
(&clean::TypedefItem(..), _) => Less,
(_, &clean::TypedefItem(..)) => Greater,
_ => idx1.cmp(&idx2),
}
}
debug!("{:?}", indices);
indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2));
debug!("{:?}", indices);
let mut curty = "";
for &idx in indices.iter() {
let myitem = &items[idx];
let myty = shortty(myitem);
if myty != curty {
if curty != "" {
if_ok!(write!(w, "</table>"));
}
curty = myty;
if_ok!(write!(w, "<h2>{}</h2>\n<table>", match myitem.inner {
clean::ModuleItem(..) => "Modules",
clean::StructItem(..) => "Structs",
clean::EnumItem(..) => "Enums",
clean::FunctionItem(..) => "Functions",
clean::TypedefItem(..) => "Type Definitions",
clean::StaticItem(..) => "Statics",
clean::TraitItem(..) => "Traits",
clean::ImplItem(..) => "Implementations",
clean::ViewItemItem(..) => "Reexports",
clean::TyMethodItem(..) => "Type Methods",
clean::MethodItem(..) => "Methods",
clean::StructFieldItem(..) => "Struct Fields",
clean::VariantItem(..) => "Variants",
clean::ForeignFunctionItem(..) => "Foreign Functions",
clean::ForeignStaticItem(..) => "Foreign Statics",
clean::MacroItem(..) => "Macros",
}));
}
match myitem.inner {
clean::StaticItem(ref s) | clean::ForeignStaticItem(ref s) => {
struct Initializer<'a>(&'a str);
impl<'a> fmt::Show for Initializer<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let Initializer(s) = *self;
if s.len() == 0 { return Ok(()); }
if_ok!(write!(f.buf, "<code> = </code>"));
let tag = if s.contains("\n") { "pre" } else { "code" };
if_ok!(write!(f.buf, "<{tag}>{}</{tag}>",
s.as_slice(), tag=tag));
Ok(())
}
}
if_ok!(write!(w, "
<tr>
<td><code>{}static {}: {}</code>{}</td>
<td class='docblock'>{}&nbsp;</td>
</tr>
",
VisSpace(myitem.visibility),
*myitem.name.get_ref(),
s.type_,
Initializer(s.expr),
Markdown(blank(myitem.doc_value()))));
}
clean::ViewItemItem(ref item) => {
match item.inner {
clean::ExternMod(ref name, ref src, _) => {
if_ok!(write!(w, "<tr><td><code>extern crate {}",
name.as_slice()));
match *src {
Some(ref src) => if_ok!(write!(w, " = \"{}\"",
src.as_slice())),
None => {}
}
if_ok!(write!(w, ";</code></td></tr>"));
}
clean::Import(ref imports) => {
for import in imports.iter() {
if_ok!(write!(w, "<tr><td><code>{}{}</code></td></tr>",
VisSpace(myitem.visibility),
*import));
}
}
}
}
_ => {
if myitem.name.is_none() { continue }
if_ok!(write!(w, "
<tr>
<td><a class='{class}' href='{href}'
title='{title}'>{}</a></td>
<td class='docblock short'>{}</td>
</tr>
",
*myitem.name.get_ref(),
Markdown(shorter(myitem.doc_value())),
class = shortty(myitem),
href = item_path(myitem),
title = full_path(cx, myitem)));
}
}
}
write!(w, "</table>")
}
fn item_function(w: &mut Writer, it: &clean::Item,
f: &clean::Function) -> fmt::Result {
if_ok!(write!(w, "<pre class='fn'>{vis}{purity}fn {name}{generics}{decl}</pre>",
vis = VisSpace(it.visibility),
purity = PuritySpace(f.purity),
name = it.name.get_ref().as_slice(),
generics = f.generics,
decl = f.decl));
document(w, it)
}
fn item_trait(w: &mut Writer, it: &clean::Item,
t: &clean::Trait) -> fmt::Result {
let mut parents = ~"";
if t.parents.len() > 0 {
parents.push_str(": ");
for (i, p) in t.parents.iter().enumerate() {
if i > 0 { parents.push_str(" + "); }
parents.push_str(format!("{}", *p));
}
}
// Output the trait definition
if_ok!(write!(w, "<pre class='trait'>{}trait {}{}{} ",
VisSpace(it.visibility),
it.name.get_ref().as_slice(),
t.generics,
parents));
let required = t.methods.iter().filter(|m| m.is_req()).to_owned_vec();
let provided = t.methods.iter().filter(|m| !m.is_req()).to_owned_vec();
if t.methods.len() == 0 {
if_ok!(write!(w, "\\{ \\}"));
} else {
if_ok!(write!(w, "\\{\n"));
for m in required.iter() {
if_ok!(write!(w, " "));
if_ok!(render_method(w, m.item()));
if_ok!(write!(w, ";\n"));
}
if required.len() > 0 && provided.len() > 0 {
if_ok!(w.write("\n".as_bytes()));
}
for m in provided.iter() {
if_ok!(write!(w, " "));
if_ok!(render_method(w, m.item()));
if_ok!(write!(w, " \\{ ... \\}\n"));
}
if_ok!(write!(w, "\\}"));
}
if_ok!(write!(w, "</pre>"));
// Trait documentation
if_ok!(document(w, it));
fn meth(w: &mut Writer, m: &clean::TraitMethod) -> fmt::Result {
if_ok!(write!(w, "<h3 id='{}.{}' class='method'><code>",
shortty(m.item()),
*m.item().name.get_ref()));
if_ok!(render_method(w, m.item()));
if_ok!(write!(w, "</code></h3>"));
if_ok!(document(w, m.item()));
Ok(())
}
// Output the documentation for each function individually
if required.len() > 0 {
if_ok!(write!(w, "
<h2 id='required-methods'>Required Methods</h2>
<div class='methods'>
"));
for m in required.iter() {
if_ok!(meth(w, *m));
}
if_ok!(write!(w, "</div>"));
}
if provided.len() > 0 {
if_ok!(write!(w, "
<h2 id='provided-methods'>Provided Methods</h2>
<div class='methods'>
"));
for m in provided.iter() {
if_ok!(meth(w, *m));
}
if_ok!(write!(w, "</div>"));
}
local_data::get(cache_key, |cache| {
let cache = cache.unwrap().get();
match cache.implementors.find(&it.id) {
Some(implementors) => {
if_ok!(write!(w, "
<h2 id='implementors'>Implementors</h2>
<ul class='item-list'>
"));
for i in implementors.iter() {
match *i {
PathType(ref ty) => {
if_ok!(write!(w, "<li><code>{}</code></li>", *ty));
}
OtherType(ref generics, ref trait_, ref for_) => {
if_ok!(write!(w, "<li><code>impl{} {} for {}</code></li>",
*generics, *trait_, *for_));
}
}
}
if_ok!(write!(w, "</ul>"));
}
None => {}
}
Ok(())
})
}
fn render_method(w: &mut Writer, meth: &clean::Item) -> fmt::Result {
fn fun(w: &mut Writer, it: &clean::Item, purity: ast::Purity,
g: &clean::Generics, selfty: &clean::SelfTy,
d: &clean::FnDecl) -> fmt::Result {
write!(w, "{}fn <a href='\\#{ty}.{name}' class='fnname'>{name}</a>\
{generics}{decl}",
match purity {
ast::UnsafeFn => "unsafe ",
_ => "",
},
ty = shortty(it),
name = it.name.get_ref().as_slice(),
generics = *g,
decl = Method(selfty, d))
}
match meth.inner {
clean::TyMethodItem(ref m) => {
fun(w, meth, m.purity, &m.generics, &m.self_, &m.decl)
}
clean::MethodItem(ref m) => {
fun(w, meth, m.purity, &m.generics, &m.self_, &m.decl)
}
_ => unreachable!()
}
}
fn item_struct(w: &mut Writer, it: &clean::Item,
s: &clean::Struct) -> fmt::Result {
if_ok!(write!(w, "<pre class='struct'>"));
if_ok!(render_struct(w, it, Some(&s.generics), s.struct_type, s.fields,
s.fields_stripped, "", true));
if_ok!(write!(w, "</pre>"));
if_ok!(document(w, it));
match s.struct_type {
doctree::Plain if s.fields.len() > 0 => {
if_ok!(write!(w, "<h2 class='fields'>Fields</h2>\n<table>"));
for field in s.fields.iter() {
if_ok!(write!(w, "<tr><td id='structfield.{name}'>\
<code>{name}</code></td><td>",
name = field.name.get_ref().as_slice()));
if_ok!(document(w, field));
if_ok!(write!(w, "</td></tr>"));
}
if_ok!(write!(w, "</table>"));
}
_ => {}
}
render_methods(w, it)
}
fn item_enum(w: &mut Writer, it: &clean::Item, e: &clean::Enum) -> fmt::Result {
if_ok!(write!(w, "<pre class='enum'>{}enum {}{}",
VisSpace(it.visibility),
it.name.get_ref().as_slice(),
e.generics));
if e.variants.len() == 0 && !e.variants_stripped {
if_ok!(write!(w, " \\{\\}"));
} else {
if_ok!(write!(w, " \\{\n"));
for v in e.variants.iter() {
if_ok!(write!(w, " "));
let name = v.name.get_ref().as_slice();
match v.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::CLikeVariant => if_ok!(write!(w, "{}", name)),
clean::TupleVariant(ref tys) => {
if_ok!(write!(w, "{}(", name));
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
if_ok!(write!(w, ", "))
}
if_ok!(write!(w, "{}", *ty));
}
if_ok!(write!(w, ")"));
}
clean::StructVariant(ref s) => {
if_ok!(render_struct(w, v, None, s.struct_type,
s.fields, s.fields_stripped,
" ", false));
}
}
}
_ => unreachable!()
}
if_ok!(write!(w, ",\n"));
}
if e.variants_stripped {
if_ok!(write!(w, " // some variants omitted\n"));
}
if_ok!(write!(w, "\\}"));
}
if_ok!(write!(w, "</pre>"));
if_ok!(document(w, it));
if e.variants.len() > 0 {
if_ok!(write!(w, "<h2 class='variants'>Variants</h2>\n<table>"));
for variant in e.variants.iter() {
if_ok!(write!(w, "<tr><td id='variant.{name}'><code>{name}</code></td><td>",
name = variant.name.get_ref().as_slice()));
if_ok!(document(w, variant));
match variant.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::StructVariant(ref s) => {
if_ok!(write!(w, "<h3 class='fields'>Fields</h3>\n
<table>"));
for field in s.fields.iter() {
if_ok!(write!(w, "<tr><td \
id='variant.{v}.field.{f}'>\
<code>{f}</code></td><td>",
v = variant.name.get_ref().as_slice(),
f = field.name.get_ref().as_slice()));
if_ok!(document(w, field));
if_ok!(write!(w, "</td></tr>"));
}
if_ok!(write!(w, "</table>"));
}
_ => ()
}
}
_ => ()
}
if_ok!(write!(w, "</td></tr>"));
}
if_ok!(write!(w, "</table>"));
}
if_ok!(render_methods(w, it));
Ok(())
}
fn render_struct(w: &mut Writer, it: &clean::Item,
g: Option<&clean::Generics>,
ty: doctree::StructType,
fields: &[clean::Item],
fields_stripped: bool,
tab: &str,
structhead: bool) -> fmt::Result {
if_ok!(write!(w, "{}{}{}",
VisSpace(it.visibility),
if structhead {"struct "} else {""},
it.name.get_ref().as_slice()));
match g {
Some(g) => if_ok!(write!(w, "{}", *g)),
None => {}
}
match ty {
doctree::Plain => {
if_ok!(write!(w, " \\{\n{}", tab));
for field in fields.iter() {
match field.inner {
clean::StructFieldItem(ref ty) => {
if_ok!(write!(w, " {}{}: {},\n{}",
VisSpace(field.visibility),
field.name.get_ref().as_slice(),
ty.type_,
tab));
}
_ => unreachable!()
}
}
if fields_stripped {
if_ok!(write!(w, " // some fields omitted\n{}", tab));
}
if_ok!(write!(w, "\\}"));
}
doctree::Tuple | doctree::Newtype => {
if_ok!(write!(w, "("));
for (i, field) in fields.iter().enumerate() {
if i > 0 {
if_ok!(write!(w, ", "));
}
match field.inner {
clean::StructFieldItem(ref field) => {
if_ok!(write!(w, "{}", field.type_));
}
_ => unreachable!()
}
}
if_ok!(write!(w, ");"));
}
doctree::Unit => {
if_ok!(write!(w, ";"));
}
}
Ok(())
}
fn render_methods(w: &mut Writer, it: &clean::Item) -> fmt::Result {
local_data::get(cache_key, |cache| {
let c = cache.unwrap().get();
match c.impls.find(&it.id) {
Some(v) => {
let mut non_trait = v.iter().filter(|p| {
p.ref0().trait_.is_none()
});
let non_trait = non_trait.to_owned_vec();
let mut traits = v.iter().filter(|p| {
p.ref0().trait_.is_some()
});
let traits = traits.to_owned_vec();
if non_trait.len() > 0 {
if_ok!(write!(w, "<h2 id='methods'>Methods</h2>"));
for &(ref i, ref dox) in non_trait.move_iter() {
if_ok!(render_impl(w, i, dox));
}
}
if traits.len() > 0 {
if_ok!(write!(w, "<h2 id='implementations'>Trait \
Implementations</h2>"));
for &(ref i, ref dox) in traits.move_iter() {
if_ok!(render_impl(w, i, dox));
}
}
}
None => {}
}
Ok(())
})
}
fn render_impl(w: &mut Writer, i: &clean::Impl,
dox: &Option<~str>) -> fmt::Result {
if_ok!(write!(w, "<h3 class='impl'><code>impl{} ", i.generics));
let trait_id = match i.trait_ {
Some(ref ty) => {
if_ok!(write!(w, "{} for ", *ty));
match *ty {
clean::ResolvedPath { id, .. } => Some(id),
_ => None,
}
}
None => None
};
if_ok!(write!(w, "{}</code></h3>", i.for_));
match *dox {
Some(ref dox) => {
if_ok!(write!(w, "<div class='docblock'>{}</div>",
Markdown(dox.as_slice())));
}
None => {}
}
fn docmeth(w: &mut Writer, item: &clean::Item) -> io::IoResult<bool> {
if_ok!(write!(w, "<h4 id='method.{}' class='method'><code>",
*item.name.get_ref()));
if_ok!(render_method(w, item));
if_ok!(write!(w, "</code></h4>\n"));
match item.doc_value() {
Some(s) => {
if_ok!(write!(w, "<div class='docblock'>{}</div>", Markdown(s)));
Ok(true)
}
None => Ok(false)
}
}
if_ok!(write!(w, "<div class='methods'>"));
for meth in i.methods.iter() {
if if_ok!(docmeth(w, meth)) {
continue
}
// No documentation? Attempt to slurp in the trait's documentation
let trait_id = match trait_id {
None => continue,
Some(id) => id,
};
if_ok!(local_data::get(cache_key, |cache| {
let cache = cache.unwrap().get();
match cache.traits.find(&trait_id) {
Some(t) => {
let name = meth.name.clone();
match t.methods.iter().find(|t| t.item().name == name) {
Some(method) => {
match method.item().doc_value() {
Some(s) => {
if_ok!(write!(w,
"<div class='docblock'>{}</div>",
Markdown(s)));
}
None => {}
}
}
None => {}
}
}
None => {}
}
Ok(())
}))
}
// If we've implemented a trait, then also emit documentation for all
// default methods which weren't overridden in the implementation block.
match trait_id {
None => {}
Some(id) => {
if_ok!(local_data::get(cache_key, |cache| {
let cache = cache.unwrap().get();
match cache.traits.find(&id) {
Some(t) => {
for method in t.methods.iter() {
let n = method.item().name.clone();
match i.methods.iter().find(|m| m.name == n) {
Some(..) => continue,
None => {}
}
if_ok!(docmeth(w, method.item()));
}
}
None => {}
}
Ok(())
}))
}
}
if_ok!(write!(w, "</div>"));
Ok(())
}
fn item_typedef(w: &mut Writer, it: &clean::Item,
t: &clean::Typedef) -> fmt::Result {
if_ok!(write!(w, "<pre class='typedef'>type {}{} = {};</pre>",
it.name.get_ref().as_slice(),
t.generics,
t.type_));
document(w, it)
}
impl<'a> fmt::Show for Sidebar<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let cx = self.cx;
let it = self.item;
if_ok!(write!(fmt.buf, "<p class='location'>"));
let len = cx.current.len() - if it.is_mod() {1} else {0};
for (i, name) in cx.current.iter().take(len).enumerate() {
if i > 0 {
if_ok!(write!(fmt.buf, "&\\#8203;::"));
}
if_ok!(write!(fmt.buf, "<a href='{}index.html'>{}</a>",
cx.root_path.slice_to((cx.current.len() - i - 1) * 3),
*name));
}
if_ok!(write!(fmt.buf, "</p>"));
fn block(w: &mut Writer, short: &str, longty: &str,
cur: &clean::Item, cx: &Context) -> fmt::Result {
let items = match cx.sidebar.find_equiv(&short) {
Some(items) => items.as_slice(),
None => return Ok(())
};
if_ok!(write!(w, "<div class='block {}'><h2>{}</h2>", short, longty));
for item in items.iter() {
let class = if cur.name.get_ref() == item &&
short == shortty(cur) { "current" } else { "" };
if_ok!(write!(w, "<a class='{ty} {class}' href='{curty, select,
mod{../}
other{}
}{tysel, select,
mod{{name}/index.html}
other{#.{name}.html}
}'>{name}</a><br/>",
ty = short,
tysel = short,
class = class,
curty = shortty(cur),
name = item.as_slice()));
}
if_ok!(write!(w, "</div>"));
Ok(())
}
if_ok!(block(fmt.buf, "mod", "Modules", it, cx));
if_ok!(block(fmt.buf, "struct", "Structs", it, cx));
if_ok!(block(fmt.buf, "enum", "Enums", it, cx));
if_ok!(block(fmt.buf, "trait", "Traits", it, cx));
if_ok!(block(fmt.buf, "fn", "Functions", it, cx));
Ok(())
}
}
fn build_sidebar(m: &clean::Module) -> HashMap<~str, ~[~str]> {
let mut map = HashMap::new();
for item in m.items.iter() {
let short = shortty(item);
let myname = match item.name {
None => continue,
Some(ref s) => s.to_owned(),
};
let v = map.find_or_insert_with(short.to_owned(), |_| ~[]);
v.push(myname);
}
for (_, items) in map.mut_iter() {
items.sort();
}
return map;
}
impl<'a> fmt::Show for Source<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let Source(s) = *self;
let lines = s.lines().len();
let mut cols = 0;
let mut tmp = lines;
while tmp > 0 {
cols += 1;
tmp /= 10;
}
if_ok!(write!(fmt.buf, "<pre class='line-numbers'>"));
for i in range(1, lines + 1) {
if_ok!(write!(fmt.buf, "<span id='{0:u}'>{0:1$u}</span>\n", i, cols));
}
if_ok!(write!(fmt.buf, "</pre>"));
if_ok!(write!(fmt.buf, "<pre class='rust'>"));
if_ok!(write!(fmt.buf, "{}", Escape(s.as_slice())));
if_ok!(write!(fmt.buf, "</pre>"));
Ok(())
}
}
fn item_macro(w: &mut Writer, it: &clean::Item,
t: &clean::Macro) -> fmt::Result {
if_ok!(write!(w, "<pre class='macro'>{}</pre>", t.source));
document(w, it)
}