rust/compiler/rustc_codegen_gcc/src/builder.rs

2031 lines
88 KiB
Rust

use std::borrow::Cow;
use std::cell::Cell;
use std::convert::TryFrom;
use std::ops::Deref;
use gccjit::{
BinaryOp,
Block,
ComparisonOp,
Context,
Function,
LValue,
RValue,
ToRValue,
Type,
UnaryOp,
};
use rustc_apfloat::{ieee, Float, Round, Status};
use rustc_codegen_ssa::MemFlags;
use rustc_codegen_ssa::common::{
AtomicOrdering, AtomicRmwBinOp, IntPredicate, RealPredicate, SynchronizationScope, TypeKind,
};
use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
use rustc_codegen_ssa::mir::place::PlaceRef;
use rustc_codegen_ssa::traits::{
BackendTypes,
BaseTypeMethods,
BuilderMethods,
ConstMethods,
LayoutTypeMethods,
HasCodegen,
OverflowOp,
StaticBuilderMethods,
};
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
use rustc_middle::ty::{ParamEnv, Ty, TyCtxt};
use rustc_middle::ty::layout::{FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasParamEnv, HasTyCtxt, LayoutError, LayoutOfHelpers, TyAndLayout};
use rustc_span::Span;
use rustc_span::def_id::DefId;
use rustc_target::abi::{
self,
call::FnAbi,
Align,
HasDataLayout,
Size,
TargetDataLayout,
WrappingRange,
};
use rustc_target::spec::{HasTargetSpec, Target};
use crate::common::{SignType, TypeReflection, type_is_pointer};
use crate::context::CodegenCx;
use crate::intrinsic::llvm;
use crate::type_of::LayoutGccExt;
// TODO(antoyo)
type Funclet = ();
// TODO(antoyo): remove this variable.
static mut RETURN_VALUE_COUNT: usize = 0;
enum ExtremumOperation {
Max,
Min,
}
pub struct Builder<'a: 'gcc, 'gcc, 'tcx> {
pub cx: &'a CodegenCx<'gcc, 'tcx>,
pub block: Block<'gcc>,
stack_var_count: Cell<usize>,
}
impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
fn with_cx(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Self {
Builder {
cx,
block,
stack_var_count: Cell::new(0),
}
}
fn atomic_extremum(&mut self, operation: ExtremumOperation, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> {
let size = src.get_type().get_size();
let func = self.current_func();
let load_ordering =
match order {
// TODO(antoyo): does this make sense?
AtomicOrdering::AcquireRelease | AtomicOrdering::Release => AtomicOrdering::Acquire,
_ => order,
};
let previous_value = self.atomic_load(dst.get_type(), dst, load_ordering, Size::from_bytes(size));
let previous_var = func.new_local(None, previous_value.get_type(), "previous_value");
let return_value = func.new_local(None, previous_value.get_type(), "return_value");
self.llbb().add_assignment(None, previous_var, previous_value);
self.llbb().add_assignment(None, return_value, previous_var.to_rvalue());
let while_block = func.new_block("while");
let after_block = func.new_block("after_while");
self.llbb().end_with_jump(None, while_block);
// NOTE: since jumps were added and compare_exchange doesn't expect this, the current block in the
// state need to be updated.
self.switch_to_block(while_block);
let comparison_operator =
match operation {
ExtremumOperation::Max => ComparisonOp::LessThan,
ExtremumOperation::Min => ComparisonOp::GreaterThan,
};
let cond1 = self.context.new_comparison(None, comparison_operator, previous_var.to_rvalue(), self.context.new_cast(None, src, previous_value.get_type()));
let compare_exchange = self.compare_exchange(dst, previous_var, src, order, load_ordering, false);
let cond2 = self.cx.context.new_unary_op(None, UnaryOp::LogicalNegate, compare_exchange.get_type(), compare_exchange);
let cond = self.cx.context.new_binary_op(None, BinaryOp::LogicalAnd, self.cx.bool_type, cond1, cond2);
while_block.end_with_conditional(None, cond, while_block, after_block);
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
// state need to be updated.
self.switch_to_block(after_block);
return_value.to_rvalue()
}
fn compare_exchange(&self, dst: RValue<'gcc>, cmp: LValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> {
let size = src.get_type().get_size();
let compare_exchange = self.context.get_builtin_function(&format!("__atomic_compare_exchange_{}", size));
let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
let failure_order = self.context.new_rvalue_from_int(self.i32_type, failure_order.to_gcc());
let weak = self.context.new_rvalue_from_int(self.bool_type, weak as i32);
let void_ptr_type = self.context.new_type::<*mut ()>();
let volatile_void_ptr_type = void_ptr_type.make_volatile();
let dst = self.context.new_cast(None, dst, volatile_void_ptr_type);
let expected = self.context.new_cast(None, cmp.get_address(None), void_ptr_type);
// NOTE: not sure why, but we have the wrong type here.
let int_type = compare_exchange.get_param(2).to_rvalue().get_type();
let src = self.context.new_cast(None, src, int_type);
self.context.new_call(None, compare_exchange, &[dst, expected, src, weak, order, failure_order])
}
pub fn assign(&self, lvalue: LValue<'gcc>, value: RValue<'gcc>) {
self.llbb().add_assignment(None, lvalue, value);
}
fn check_call<'b>(&mut self, _typ: &str, func: Function<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> {
let mut all_args_match = true;
let mut param_types = vec![];
let param_count = func.get_param_count();
for (index, arg) in args.iter().enumerate().take(param_count) {
let param = func.get_param(index as i32);
let param = param.to_rvalue().get_type();
if param != arg.get_type() {
all_args_match = false;
}
param_types.push(param);
}
if all_args_match {
return Cow::Borrowed(args);
}
let casted_args: Vec<_> = param_types
.into_iter()
.zip(args.iter())
.enumerate()
.map(|(_i, (expected_ty, &actual_val))| {
let actual_ty = actual_val.get_type();
if expected_ty != actual_ty {
self.bitcast(actual_val, expected_ty)
}
else {
actual_val
}
})
.collect();
debug_assert_eq!(casted_args.len(), args.len());
Cow::Owned(casted_args)
}
fn check_ptr_call<'b>(&mut self, _typ: &str, func_ptr: RValue<'gcc>, args: &'b [RValue<'gcc>]) -> Cow<'b, [RValue<'gcc>]> {
let mut all_args_match = true;
let mut param_types = vec![];
let gcc_func = func_ptr.get_type().dyncast_function_ptr_type().expect("function ptr");
for (index, arg) in args.iter().enumerate().take(gcc_func.get_param_count()) {
let param = gcc_func.get_param_type(index);
if param != arg.get_type() {
all_args_match = false;
}
param_types.push(param);
}
let mut on_stack_param_indices = FxHashSet::default();
if let Some(indices) = self.on_stack_params.borrow().get(&gcc_func) {
on_stack_param_indices = indices.clone();
}
if all_args_match {
return Cow::Borrowed(args);
}
let func_name = format!("{:?}", func_ptr);
let mut casted_args: Vec<_> = param_types
.into_iter()
.zip(args.iter())
.enumerate()
.map(|(index, (expected_ty, &actual_val))| {
if llvm::ignore_arg_cast(&func_name, index, args.len()) {
return actual_val;
}
let actual_ty = actual_val.get_type();
if expected_ty != actual_ty {
if !actual_ty.is_vector() && !expected_ty.is_vector() && (actual_ty.is_integral() && expected_ty.is_integral()) || (actual_ty.get_pointee().is_some() && expected_ty.get_pointee().is_some()) {
self.context.new_cast(None, actual_val, expected_ty)
}
else if on_stack_param_indices.contains(&index) {
actual_val.dereference(None).to_rvalue()
}
else {
assert!(!((actual_ty.is_vector() && !expected_ty.is_vector()) || (!actual_ty.is_vector() && expected_ty.is_vector())), "{:?} ({}) -> {:?} ({}), index: {:?}[{}]", actual_ty, actual_ty.is_vector(), expected_ty, expected_ty.is_vector(), func_ptr, index);
// TODO(antoyo): perhaps use __builtin_convertvector for vector casting.
// TODO: remove bitcast now that vector types can be compared?
self.bitcast(actual_val, expected_ty)
}
}
else {
actual_val
}
})
.collect();
// NOTE: to take into account variadic functions.
for i in casted_args.len()..args.len() {
casted_args.push(args[i]);
}
Cow::Owned(casted_args)
}
fn check_store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
let dest_ptr_ty = self.cx.val_ty(ptr).make_pointer(); // TODO(antoyo): make sure make_pointer() is okay here.
let stored_ty = self.cx.val_ty(val);
let stored_ptr_ty = self.cx.type_ptr_to(stored_ty);
if dest_ptr_ty == stored_ptr_ty {
ptr
}
else {
self.bitcast(ptr, stored_ptr_ty)
}
}
pub fn current_func(&self) -> Function<'gcc> {
self.block.get_function()
}
fn function_call(&mut self, func: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> {
// TODO(antoyo): remove when the API supports a different type for functions.
let func: Function<'gcc> = self.cx.rvalue_as_function(func);
let args = self.check_call("call", func, args);
// gccjit requires to use the result of functions, even when it's not used.
// That's why we assign the result to a local or call add_eval().
let return_type = func.get_return_type();
let void_type = self.context.new_type::<()>();
let current_func = self.block.get_function();
if return_type != void_type {
unsafe { RETURN_VALUE_COUNT += 1 };
let result = current_func.new_local(None, return_type, &format!("returnValue{}", unsafe { RETURN_VALUE_COUNT }));
self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args));
result.to_rvalue()
}
else {
self.block.add_eval(None, self.cx.context.new_call(None, func, &args));
// Return dummy value when not having return value.
self.context.new_rvalue_from_long(self.isize_type, 0)
}
}
fn function_ptr_call(&mut self, typ: Type<'gcc>, mut func_ptr: RValue<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> {
let gcc_func =
match func_ptr.get_type().dyncast_function_ptr_type() {
Some(func) => func,
None => {
// NOTE: due to opaque pointers now being used, we need to cast here.
let new_func_type = typ.dyncast_function_ptr_type().expect("function ptr");
func_ptr = self.context.new_cast(None, func_ptr, typ);
new_func_type
},
};
let func_name = format!("{:?}", func_ptr);
let previous_arg_count = args.len();
let orig_args = args;
let args = {
let function_address_names = self.function_address_names.borrow();
let original_function_name = function_address_names.get(&func_ptr);
llvm::adjust_intrinsic_arguments(&self, gcc_func, args.into(), &func_name, original_function_name)
};
let args_adjusted = args.len() != previous_arg_count;
let args = self.check_ptr_call("call", func_ptr, &*args);
// gccjit requires to use the result of functions, even when it's not used.
// That's why we assign the result to a local or call add_eval().
let return_type = gcc_func.get_return_type();
let void_type = self.context.new_type::<()>();
let current_func = self.block.get_function();
if return_type != void_type {
unsafe { RETURN_VALUE_COUNT += 1 };
let return_value = self.cx.context.new_call_through_ptr(None, func_ptr, &args);
let return_value = llvm::adjust_intrinsic_return_value(&self, return_value, &func_name, &args, args_adjusted, orig_args);
let result = current_func.new_local(None, return_value.get_type(), &format!("ptrReturnValue{}", unsafe { RETURN_VALUE_COUNT }));
self.block.add_assignment(None, result, return_value);
result.to_rvalue()
}
else {
#[cfg(not(feature="master"))]
if gcc_func.get_param_count() == 0 {
// FIXME(antoyo): As a temporary workaround for unsupported LLVM intrinsics.
self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &[]));
}
else {
self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args));
}
#[cfg(feature="master")]
self.block.add_eval(None, self.cx.context.new_call_through_ptr(None, func_ptr, &args));
// Return dummy value when not having return value.
let result = current_func.new_local(None, self.isize_type, "dummyValueThatShouldNeverBeUsed");
self.block.add_assignment(None, result, self.context.new_rvalue_from_long(self.isize_type, 0));
result.to_rvalue()
}
}
pub fn overflow_call(&self, func: Function<'gcc>, args: &[RValue<'gcc>], _funclet: Option<&Funclet>) -> RValue<'gcc> {
// gccjit requires to use the result of functions, even when it's not used.
// That's why we assign the result to a local.
let return_type = self.context.new_type::<bool>();
let current_func = self.block.get_function();
// TODO(antoyo): return the new_call() directly? Since the overflow function has no side-effects.
unsafe { RETURN_VALUE_COUNT += 1 };
let result = current_func.new_local(None, return_type, &format!("overflowReturnValue{}", unsafe { RETURN_VALUE_COUNT }));
self.block.add_assignment(None, result, self.cx.context.new_call(None, func, &args));
result.to_rvalue()
}
}
impl<'gcc, 'tcx> HasCodegen<'tcx> for Builder<'_, 'gcc, 'tcx> {
type CodegenCx = CodegenCx<'gcc, 'tcx>;
}
impl<'tcx> HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.cx.tcx()
}
}
impl HasDataLayout for Builder<'_, '_, '_> {
fn data_layout(&self) -> &TargetDataLayout {
self.cx.data_layout()
}
}
impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
type LayoutOfResult = TyAndLayout<'tcx>;
#[inline]
fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
self.cx.handle_layout_err(err, span, ty)
}
}
impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
type FnAbiOfResult = &'tcx FnAbi<'tcx, Ty<'tcx>>;
#[inline]
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
span: Span,
fn_abi_request: FnAbiRequest<'tcx>,
) -> ! {
self.cx.handle_fn_abi_err(err, span, fn_abi_request)
}
}
impl<'a, 'gcc, 'tcx> Deref for Builder<'a, 'gcc, 'tcx> {
type Target = CodegenCx<'gcc, 'tcx>;
fn deref<'b>(&'b self) -> &'a Self::Target {
self.cx
}
}
impl<'gcc, 'tcx> BackendTypes for Builder<'_, 'gcc, 'tcx> {
type Value = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Value;
type Function = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Function;
type BasicBlock = <CodegenCx<'gcc, 'tcx> as BackendTypes>::BasicBlock;
type Type = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Type;
type Funclet = <CodegenCx<'gcc, 'tcx> as BackendTypes>::Funclet;
type DIScope = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIScope;
type DILocation = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DILocation;
type DIVariable = <CodegenCx<'gcc, 'tcx> as BackendTypes>::DIVariable;
}
impl<'a, 'gcc, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'gcc, 'tcx> {
fn build(cx: &'a CodegenCx<'gcc, 'tcx>, block: Block<'gcc>) -> Builder<'a, 'gcc, 'tcx> {
Builder::with_cx(cx, block)
}
fn llbb(&self) -> Block<'gcc> {
self.block
}
fn append_block(cx: &'a CodegenCx<'gcc, 'tcx>, func: RValue<'gcc>, name: &str) -> Block<'gcc> {
let func = cx.rvalue_as_function(func);
func.new_block(name)
}
fn append_sibling_block(&mut self, name: &str) -> Block<'gcc> {
let func = self.current_func();
func.new_block(name)
}
fn switch_to_block(&mut self, block: Self::BasicBlock) {
self.block = block;
}
fn ret_void(&mut self) {
self.llbb().end_with_void_return(None)
}
fn ret(&mut self, mut value: RValue<'gcc>) {
if self.structs_as_pointer.borrow().contains(&value) {
// NOTE: hack to workaround a limitation of the rustc API: see comment on
// CodegenCx.structs_as_pointer
value = value.dereference(None).to_rvalue();
}
let expected_return_type = self.current_func().get_return_type();
if !expected_return_type.is_compatible_with(value.get_type()) {
// NOTE: due to opaque pointers now being used, we need to cast here.
value = self.context.new_cast(None, value, expected_return_type);
}
self.llbb().end_with_return(None, value);
}
fn br(&mut self, dest: Block<'gcc>) {
self.llbb().end_with_jump(None, dest)
}
fn cond_br(&mut self, cond: RValue<'gcc>, then_block: Block<'gcc>, else_block: Block<'gcc>) {
self.llbb().end_with_conditional(None, cond, then_block, else_block)
}
fn switch(&mut self, value: RValue<'gcc>, default_block: Block<'gcc>, cases: impl ExactSizeIterator<Item = (u128, Block<'gcc>)>) {
let mut gcc_cases = vec![];
let typ = self.val_ty(value);
for (on_val, dest) in cases {
let on_val = self.const_uint_big(typ, on_val);
gcc_cases.push(self.context.new_case(on_val, on_val, dest));
}
self.block.end_with_switch(None, value, default_block, &gcc_cases);
}
#[cfg(feature="master")]
fn invoke(&mut self, typ: Type<'gcc>, fn_attrs: Option<&CodegenFnAttrs>, _fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, func: RValue<'gcc>, args: &[RValue<'gcc>], then: Block<'gcc>, catch: Block<'gcc>, _funclet: Option<&Funclet>) -> RValue<'gcc> {
let try_block = self.current_func().new_block("try");
let current_block = self.block.clone();
self.block = try_block;
let call = self.call(typ, fn_attrs, None, func, args, None); // TODO(antoyo): use funclet here?
self.block = current_block;
let return_value = self.current_func()
.new_local(None, call.get_type(), "invokeResult");
try_block.add_assignment(None, return_value, call);
try_block.end_with_jump(None, then);
if self.cleanup_blocks.borrow().contains(&catch) {
self.block.add_try_finally(None, try_block, catch);
}
else {
self.block.add_try_catch(None, try_block, catch);
}
self.block.end_with_jump(None, then);
return_value.to_rvalue()
}
#[cfg(not(feature="master"))]
fn invoke(&mut self, typ: Type<'gcc>, fn_attrs: &CodegenFnAttrs, fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>, func: RValue<'gcc>, args: &[RValue<'gcc>], then: Block<'gcc>, catch: Block<'gcc>, _funclet: Option<&Funclet>) -> RValue<'gcc> {
let call_site = self.call(typ, fn_attrs, None, func, args, None);
let condition = self.context.new_rvalue_from_int(self.bool_type, 1);
self.llbb().end_with_conditional(None, condition, then, catch);
if let Some(_fn_abi) = fn_abi {
// TODO(bjorn3): Apply function attributes
}
call_site
}
fn unreachable(&mut self) {
let func = self.context.get_builtin_function("__builtin_unreachable");
self.block.add_eval(None, self.context.new_call(None, func, &[]));
let return_type = self.block.get_function().get_return_type();
let void_type = self.context.new_type::<()>();
if return_type == void_type {
self.block.end_with_void_return(None)
}
else {
let return_value = self.current_func()
.new_local(None, return_type, "unreachableReturn");
self.block.end_with_return(None, return_value)
}
}
fn add(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_add(a, b)
}
fn fadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a + b
}
fn sub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_sub(a, b)
}
fn fsub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a - b
}
fn mul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_mul(a, b)
}
fn fmul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a * b
}
fn udiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_udiv(a, b)
}
fn exactudiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): poison if not exact.
let a_type = a.get_type().to_unsigned(self);
let a = self.gcc_int_cast(a, a_type);
let b_type = b.get_type().to_unsigned(self);
let b = self.gcc_int_cast(b, b_type);
a / b
}
fn sdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_sdiv(a, b)
}
fn exactsdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): poison if not exact.
// FIXME(antoyo): rustc_codegen_ssa::mir::intrinsic uses different types for a and b but they
// should be the same.
let typ = a.get_type().to_signed(self);
let b = self.context.new_cast(None, b, typ);
a / b
}
fn fdiv(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a / b
}
fn urem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_urem(a, b)
}
fn srem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_srem(a, b)
}
fn frem(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): add check in libgccjit since using the binary operator % causes the following error:
// during RTL pass: expand
// libgccjit.so: error: in expmed_mode_index, at expmed.h:240
// 0x7f0101d58dc6 expmed_mode_index
// ../../../gcc/gcc/expmed.h:240
// 0x7f0101d58e35 expmed_op_cost_ptr
// ../../../gcc/gcc/expmed.h:262
// 0x7f0101d594a1 sdiv_cost_ptr
// ../../../gcc/gcc/expmed.h:531
// 0x7f0101d594f3 sdiv_cost
// ../../../gcc/gcc/expmed.h:549
// 0x7f0101d6af7e expand_divmod(int, tree_code, machine_mode, rtx_def*, rtx_def*, rtx_def*, int, optab_methods)
// ../../../gcc/gcc/expmed.cc:4356
// 0x7f0101d94f9e expand_expr_divmod
// ../../../gcc/gcc/expr.cc:8929
// 0x7f0101d97a26 expand_expr_real_2(separate_ops*, rtx_def*, machine_mode, expand_modifier)
// ../../../gcc/gcc/expr.cc:9566
// 0x7f0101bef6ef expand_gimple_stmt_1
// ../../../gcc/gcc/cfgexpand.cc:3967
// 0x7f0101bef910 expand_gimple_stmt
// ../../../gcc/gcc/cfgexpand.cc:4028
// 0x7f0101bf6ee7 expand_gimple_basic_block
// ../../../gcc/gcc/cfgexpand.cc:6069
// 0x7f0101bf9194 execute
// ../../../gcc/gcc/cfgexpand.cc:6795
if a.get_type().is_compatible_with(self.cx.float_type) {
let fmodf = self.context.get_builtin_function("fmodf");
// FIXME(antoyo): this seems to produce the wrong result.
return self.context.new_call(None, fmodf, &[a, b]);
}
assert_eq!(a.get_type().unqualified(), self.cx.double_type);
let fmod = self.context.get_builtin_function("fmod");
return self.context.new_call(None, fmod, &[a, b]);
}
fn shl(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_shl(a, b)
}
fn lshr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_lshr(a, b)
}
fn ashr(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): check whether behavior is an arithmetic shift for >> .
// It seems to be if the value is signed.
self.gcc_lshr(a, b)
}
fn and(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_and(a, b)
}
fn or(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.cx.gcc_or(a, b)
}
fn xor(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_xor(a, b)
}
fn neg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_neg(a)
}
fn fneg(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
self.cx.context.new_unary_op(None, UnaryOp::Minus, a.get_type(), a)
}
fn not(&mut self, a: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_not(a)
}
fn unchecked_sadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a + b
}
fn unchecked_uadd(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_add(a, b)
}
fn unchecked_ssub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a - b
}
fn unchecked_usub(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): should generate poison value?
self.gcc_sub(a, b)
}
fn unchecked_smul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a * b
}
fn unchecked_umul(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
a * b
}
fn fadd_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
// NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
lhs + rhs
}
fn fsub_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
// NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
lhs - rhs
}
fn fmul_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
// NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
lhs * rhs
}
fn fdiv_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
// NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
lhs / rhs
}
fn frem_fast(&mut self, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
// NOTE: it seems like we cannot enable fast-mode for a single operation in GCC.
self.frem(lhs, rhs)
}
fn checked_binop(&mut self, oop: OverflowOp, typ: Ty<'_>, lhs: Self::Value, rhs: Self::Value) -> (Self::Value, Self::Value) {
self.gcc_checked_binop(oop, typ, lhs, rhs)
}
fn alloca(&mut self, ty: Type<'gcc>, align: Align) -> RValue<'gcc> {
// FIXME(antoyo): this check that we don't call get_aligned() a second time on a type.
// Ideally, we shouldn't need to do this check.
let aligned_type =
if ty == self.cx.u128_type || ty == self.cx.i128_type {
ty
}
else {
ty.get_aligned(align.bytes())
};
// TODO(antoyo): It might be better to return a LValue, but fixing the rustc API is non-trivial.
self.stack_var_count.set(self.stack_var_count.get() + 1);
self.current_func().new_local(None, aligned_type, &format!("stack_var_{}", self.stack_var_count.get())).get_address(None)
}
fn byte_array_alloca(&mut self, _len: RValue<'gcc>, _align: Align) -> RValue<'gcc> {
unimplemented!();
}
fn load(&mut self, pointee_ty: Type<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> {
let block = self.llbb();
let function = block.get_function();
// NOTE: instead of returning the dereference here, we have to assign it to a variable in
// the current basic block. Otherwise, it could be used in another basic block, causing a
// dereference after a drop, for instance.
// FIXME(antoyo): this check that we don't call get_aligned() a second time on a type.
// Ideally, we shouldn't need to do this check.
let aligned_type =
if pointee_ty == self.cx.u128_type || pointee_ty == self.cx.i128_type {
pointee_ty
}
else {
pointee_ty.get_aligned(align.bytes())
};
let ptr = self.context.new_cast(None, ptr, aligned_type.make_pointer());
let deref = ptr.dereference(None).to_rvalue();
unsafe { RETURN_VALUE_COUNT += 1 };
let loaded_value = function.new_local(None, aligned_type, &format!("loadedValue{}", unsafe { RETURN_VALUE_COUNT }));
block.add_assignment(None, loaded_value, deref);
loaded_value.to_rvalue()
}
fn volatile_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): use ty.
let ptr = self.context.new_cast(None, ptr, ptr.get_type().make_volatile());
ptr.dereference(None).to_rvalue()
}
fn atomic_load(&mut self, _ty: Type<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) -> RValue<'gcc> {
// TODO(antoyo): use ty.
// TODO(antoyo): handle alignment.
let atomic_load = self.context.get_builtin_function(&format!("__atomic_load_{}", size.bytes()));
let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
let volatile_const_void_ptr_type = self.context.new_type::<()>()
.make_const()
.make_volatile()
.make_pointer();
let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type);
self.context.new_call(None, atomic_load, &[ptr, ordering])
}
fn load_operand(&mut self, place: PlaceRef<'tcx, RValue<'gcc>>) -> OperandRef<'tcx, RValue<'gcc>> {
assert_eq!(place.llextra.is_some(), place.layout.is_unsized());
if place.layout.is_zst() {
return OperandRef::zero_sized(place.layout);
}
fn scalar_load_metadata<'a, 'gcc, 'tcx>(bx: &mut Builder<'a, 'gcc, 'tcx>, load: RValue<'gcc>, scalar: &abi::Scalar) {
let vr = scalar.valid_range(bx);
match scalar.primitive() {
abi::Int(..) => {
if !scalar.is_always_valid(bx) {
bx.range_metadata(load, vr);
}
}
abi::Pointer(_) if vr.start < vr.end && !vr.contains(0) => {
bx.nonnull_metadata(load);
}
_ => {}
}
}
let val =
if let Some(llextra) = place.llextra {
OperandValue::Ref(place.llval, Some(llextra), place.align)
}
else if place.layout.is_gcc_immediate() {
let load = self.load(
place.layout.gcc_type(self),
place.llval,
place.align,
);
if let abi::Abi::Scalar(ref scalar) = place.layout.abi {
scalar_load_metadata(self, load, scalar);
}
OperandValue::Immediate(self.to_immediate(load, place.layout))
}
else if let abi::Abi::ScalarPair(ref a, ref b) = place.layout.abi {
let b_offset = a.size(self).align_to(b.align(self).abi);
let pair_type = place.layout.gcc_type(self);
let mut load = |i, scalar: &abi::Scalar, align| {
let llptr = self.struct_gep(pair_type, place.llval, i as u64);
let llty = place.layout.scalar_pair_element_gcc_type(self, i, false);
let load = self.load(llty, llptr, align);
scalar_load_metadata(self, load, scalar);
if scalar.is_bool() { self.trunc(load, self.type_i1()) } else { load }
};
OperandValue::Pair(
load(0, a, place.align),
load(1, b, place.align.restrict_for_offset(b_offset)),
)
}
else {
OperandValue::Ref(place.llval, None, place.align)
};
OperandRef { val, layout: place.layout }
}
fn write_operand_repeatedly(&mut self, cg_elem: OperandRef<'tcx, RValue<'gcc>>, count: u64, dest: PlaceRef<'tcx, RValue<'gcc>>) {
let zero = self.const_usize(0);
let count = self.const_usize(count);
let start = dest.project_index(self, zero).llval;
let end = dest.project_index(self, count).llval;
let header_bb = self.append_sibling_block("repeat_loop_header");
let body_bb = self.append_sibling_block("repeat_loop_body");
let next_bb = self.append_sibling_block("repeat_loop_next");
let ptr_type = start.get_type();
let current = self.llbb().get_function().new_local(None, ptr_type, "loop_var");
let current_val = current.to_rvalue();
self.assign(current, start);
self.br(header_bb);
self.switch_to_block(header_bb);
let keep_going = self.icmp(IntPredicate::IntNE, current_val, end);
self.cond_br(keep_going, body_bb, next_bb);
self.switch_to_block(body_bb);
let align = dest.align.restrict_for_offset(dest.layout.field(self.cx(), 0).size);
cg_elem.val.store(self, PlaceRef::new_sized_aligned(current_val, cg_elem.layout, align));
let next = self.inbounds_gep(self.backend_type(cg_elem.layout), current.to_rvalue(), &[self.const_usize(1)]);
self.llbb().add_assignment(None, current, next);
self.br(header_bb);
self.switch_to_block(next_bb);
}
fn range_metadata(&mut self, _load: RValue<'gcc>, _range: WrappingRange) {
// TODO(antoyo)
}
fn nonnull_metadata(&mut self, _load: RValue<'gcc>) {
// TODO(antoyo)
}
fn store(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align) -> RValue<'gcc> {
self.store_with_flags(val, ptr, align, MemFlags::empty())
}
fn store_with_flags(&mut self, val: RValue<'gcc>, ptr: RValue<'gcc>, align: Align, _flags: MemFlags) -> RValue<'gcc> {
let ptr = self.check_store(val, ptr);
let destination = ptr.dereference(None);
// NOTE: libgccjit does not support specifying the alignment on the assignment, so we cast
// to type so it gets the proper alignment.
let destination_type = destination.to_rvalue().get_type().unqualified();
let aligned_type = destination_type.get_aligned(align.bytes()).make_pointer();
let aligned_destination = self.cx.context.new_bitcast(None, ptr, aligned_type);
let aligned_destination = aligned_destination.dereference(None);
self.llbb().add_assignment(None, aligned_destination, val);
// TODO(antoyo): handle align and flags.
// NOTE: dummy value here since it's never used. FIXME(antoyo): API should not return a value here?
self.cx.context.new_rvalue_zero(self.type_i32())
}
fn atomic_store(&mut self, value: RValue<'gcc>, ptr: RValue<'gcc>, order: AtomicOrdering, size: Size) {
// TODO(antoyo): handle alignment.
let atomic_store = self.context.get_builtin_function(&format!("__atomic_store_{}", size.bytes()));
let ordering = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
let volatile_const_void_ptr_type = self.context.new_type::<()>()
.make_volatile()
.make_pointer();
let ptr = self.context.new_cast(None, ptr, volatile_const_void_ptr_type);
// FIXME(antoyo): fix libgccjit to allow comparing an integer type with an aligned integer type because
// the following cast is required to avoid this error:
// gcc_jit_context_new_call: mismatching types for argument 2 of function "__atomic_store_4": assignment to param arg1 (type: int) from loadedValue3577 (type: unsigned int __attribute__((aligned(4))))
let int_type = atomic_store.get_param(1).to_rvalue().get_type();
let value = self.context.new_cast(None, value, int_type);
self.llbb()
.add_eval(None, self.context.new_call(None, atomic_store, &[ptr, value, ordering]));
}
fn gep(&mut self, _typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> {
let ptr_type = ptr.get_type();
let mut pointee_type = ptr.get_type();
// NOTE: we cannot use array indexing here like in inbounds_gep because array indexing is
// always considered in bounds in GCC (TODO(antoyo): to be verified).
// So, we have to cast to a number.
let mut result = self.context.new_bitcast(None, ptr, self.sizet_type);
// FIXME(antoyo): if there were more than 1 index, this code is probably wrong and would
// require dereferencing the pointer.
for index in indices {
pointee_type = pointee_type.get_pointee().expect("pointee type");
let pointee_size = self.context.new_rvalue_from_int(index.get_type(), pointee_type.get_size() as i32);
result = result + self.gcc_int_cast(*index * pointee_size, self.sizet_type);
}
self.context.new_bitcast(None, result, ptr_type)
}
fn inbounds_gep(&mut self, typ: Type<'gcc>, ptr: RValue<'gcc>, indices: &[RValue<'gcc>]) -> RValue<'gcc> {
// NOTE: due to opaque pointers now being used, we need to cast here.
let ptr = self.context.new_cast(None, ptr, typ.make_pointer());
// NOTE: array indexing is always considered in bounds in GCC (TODO(antoyo): to be verified).
let mut indices = indices.into_iter();
let index = indices.next().expect("first index in inbounds_gep");
let mut result = self.context.new_array_access(None, ptr, *index);
for index in indices {
result = self.context.new_array_access(None, result, *index);
}
result.get_address(None)
}
fn struct_gep(&mut self, value_type: Type<'gcc>, ptr: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
// FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
assert_eq!(idx as usize as u64, idx);
let value = ptr.dereference(None).to_rvalue();
if value_type.dyncast_array().is_some() {
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
let element = self.context.new_array_access(None, value, index);
element.get_address(None)
}
else if let Some(vector_type) = value_type.dyncast_vector() {
let array_type = vector_type.get_element_type().make_pointer();
let array = self.bitcast(ptr, array_type);
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
let element = self.context.new_array_access(None, array, index);
element.get_address(None)
}
else if let Some(struct_type) = value_type.is_struct() {
// NOTE: due to opaque pointers now being used, we need to bitcast here.
let ptr = self.bitcast_if_needed(ptr, value_type.make_pointer());
ptr.dereference_field(None, struct_type.get_field(idx as i32)).get_address(None)
}
else {
panic!("Unexpected type {:?}", value_type);
}
}
/* Casts */
fn trunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): check that it indeed truncate the value.
self.gcc_int_cast(value, dest_ty)
}
fn sext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): check that it indeed sign extend the value.
if dest_ty.dyncast_vector().is_some() {
// TODO(antoyo): nothing to do as it is only for LLVM?
return value;
}
self.context.new_cast(None, value, dest_ty)
}
fn fptoui(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.gcc_float_to_uint_cast(value, dest_ty)
}
fn fptosi(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.gcc_float_to_int_cast(value, dest_ty)
}
fn uitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.gcc_uint_to_float_cast(value, dest_ty)
}
fn sitofp(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.gcc_int_to_float_cast(value, dest_ty)
}
fn fptrunc(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
// TODO(antoyo): make sure it truncates.
self.context.new_cast(None, value, dest_ty)
}
fn fpext(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.context.new_cast(None, value, dest_ty)
}
fn ptrtoint(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let usize_value = self.cx.const_bitcast(value, self.cx.type_isize());
self.intcast(usize_value, dest_ty, false)
}
fn inttoptr(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let usize_value = self.intcast(value, self.cx.type_isize(), false);
self.cx.const_bitcast(usize_value, dest_ty)
}
fn bitcast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.cx.const_bitcast(value, dest_ty)
}
fn intcast(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>, _is_signed: bool) -> RValue<'gcc> {
// NOTE: is_signed is for value, not dest_typ.
self.gcc_int_cast(value, dest_typ)
}
fn pointercast(&mut self, value: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let val_type = value.get_type();
match (type_is_pointer(val_type), type_is_pointer(dest_ty)) {
(false, true) => {
// NOTE: Projecting a field of a pointer type will attempt a cast from a signed char to
// a pointer, which is not supported by gccjit.
return self.cx.context.new_cast(None, self.inttoptr(value, val_type.make_pointer()), dest_ty);
},
(false, false) => {
// When they are not pointers, we want a transmute (or reinterpret_cast).
self.bitcast(value, dest_ty)
},
(true, true) => self.cx.context.new_cast(None, value, dest_ty),
(true, false) => unimplemented!(),
}
}
/* Comparisons */
fn icmp(&mut self, op: IntPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
self.gcc_icmp(op, lhs, rhs)
}
fn fcmp(&mut self, op: RealPredicate, lhs: RValue<'gcc>, rhs: RValue<'gcc>) -> RValue<'gcc> {
self.context.new_comparison(None, op.to_gcc_comparison(), lhs, rhs)
}
/* Miscellaneous instructions */
fn memcpy(&mut self, dst: RValue<'gcc>, _dst_align: Align, src: RValue<'gcc>, _src_align: Align, size: RValue<'gcc>, flags: MemFlags) {
assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported");
let size = self.intcast(size, self.type_size_t(), false);
let _is_volatile = flags.contains(MemFlags::VOLATILE);
let dst = self.pointercast(dst, self.type_i8p());
let src = self.pointercast(src, self.type_ptr_to(self.type_void()));
let memcpy = self.context.get_builtin_function("memcpy");
// TODO(antoyo): handle aligns and is_volatile.
self.block.add_eval(None, self.context.new_call(None, memcpy, &[dst, src, size]));
}
fn memmove(&mut self, dst: RValue<'gcc>, dst_align: Align, src: RValue<'gcc>, src_align: Align, size: RValue<'gcc>, flags: MemFlags) {
if flags.contains(MemFlags::NONTEMPORAL) {
// HACK(nox): This is inefficient but there is no nontemporal memmove.
let val = self.load(src.get_type().get_pointee().expect("get_pointee"), src, src_align);
let ptr = self.pointercast(dst, self.type_ptr_to(self.val_ty(val)));
self.store_with_flags(val, ptr, dst_align, flags);
return;
}
let size = self.intcast(size, self.type_size_t(), false);
let _is_volatile = flags.contains(MemFlags::VOLATILE);
let dst = self.pointercast(dst, self.type_i8p());
let src = self.pointercast(src, self.type_ptr_to(self.type_void()));
let memmove = self.context.get_builtin_function("memmove");
// TODO(antoyo): handle is_volatile.
self.block.add_eval(None, self.context.new_call(None, memmove, &[dst, src, size]));
}
fn memset(&mut self, ptr: RValue<'gcc>, fill_byte: RValue<'gcc>, size: RValue<'gcc>, _align: Align, flags: MemFlags) {
let _is_volatile = flags.contains(MemFlags::VOLATILE);
let ptr = self.pointercast(ptr, self.type_i8p());
let memset = self.context.get_builtin_function("memset");
// TODO(antoyo): handle align and is_volatile.
let fill_byte = self.context.new_cast(None, fill_byte, self.i32_type);
let size = self.intcast(size, self.type_size_t(), false);
self.block.add_eval(None, self.context.new_call(None, memset, &[ptr, fill_byte, size]));
}
fn select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, mut else_val: RValue<'gcc>) -> RValue<'gcc> {
let func = self.current_func();
let variable = func.new_local(None, then_val.get_type(), "selectVar");
let then_block = func.new_block("then");
let else_block = func.new_block("else");
let after_block = func.new_block("after");
self.llbb().end_with_conditional(None, cond, then_block, else_block);
then_block.add_assignment(None, variable, then_val);
then_block.end_with_jump(None, after_block);
if !then_val.get_type().is_compatible_with(else_val.get_type()) {
else_val = self.context.new_cast(None, else_val, then_val.get_type());
}
else_block.add_assignment(None, variable, else_val);
else_block.end_with_jump(None, after_block);
// NOTE: since jumps were added in a place rustc does not expect, the current block in the
// state need to be updated.
self.switch_to_block(after_block);
variable.to_rvalue()
}
#[allow(dead_code)]
fn va_arg(&mut self, _list: RValue<'gcc>, _ty: Type<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
#[cfg(feature="master")]
fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> {
self.context.new_vector_access(None, vec, idx).to_rvalue()
}
#[cfg(not(feature="master"))]
fn extract_element(&mut self, vec: RValue<'gcc>, idx: RValue<'gcc>) -> RValue<'gcc> {
let vector_type = vec.get_type().unqualified().dyncast_vector().expect("Called extract_element on a non-vector type");
let element_type = vector_type.get_element_type();
let vec_num_units = vector_type.get_num_units();
let array_type = self.context.new_array_type(None, element_type, vec_num_units as u64);
let array = self.context.new_bitcast(None, vec, array_type).to_rvalue();
self.context.new_array_access(None, array, idx).to_rvalue()
}
fn vector_splat(&mut self, _num_elts: usize, _elt: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
fn extract_value(&mut self, aggregate_value: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
// FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
assert_eq!(idx as usize as u64, idx);
let value_type = aggregate_value.get_type();
if value_type.dyncast_array().is_some() {
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
let element = self.context.new_array_access(None, aggregate_value, index);
element.get_address(None)
}
else if value_type.dyncast_vector().is_some() {
panic!();
}
else if let Some(pointer_type) = value_type.get_pointee() {
if let Some(struct_type) = pointer_type.is_struct() {
// NOTE: hack to workaround a limitation of the rustc API: see comment on
// CodegenCx.structs_as_pointer
aggregate_value.dereference_field(None, struct_type.get_field(idx as i32)).to_rvalue()
}
else {
panic!("Unexpected type {:?}", value_type);
}
}
else if let Some(struct_type) = value_type.is_struct() {
aggregate_value.access_field(None, struct_type.get_field(idx as i32)).to_rvalue()
}
else {
panic!("Unexpected type {:?}", value_type);
}
}
fn insert_value(&mut self, aggregate_value: RValue<'gcc>, value: RValue<'gcc>, idx: u64) -> RValue<'gcc> {
// FIXME(antoyo): it would be better if the API only called this on struct, not on arrays.
assert_eq!(idx as usize as u64, idx);
let value_type = aggregate_value.get_type();
let lvalue =
if value_type.dyncast_array().is_some() {
let index = self.context.new_rvalue_from_long(self.u64_type, i64::try_from(idx).expect("i64::try_from"));
self.context.new_array_access(None, aggregate_value, index)
}
else if value_type.dyncast_vector().is_some() {
panic!();
}
else if let Some(pointer_type) = value_type.get_pointee() {
if let Some(struct_type) = pointer_type.is_struct() {
// NOTE: hack to workaround a limitation of the rustc API: see comment on
// CodegenCx.structs_as_pointer
aggregate_value.dereference_field(None, struct_type.get_field(idx as i32))
}
else {
panic!("Unexpected type {:?}", value_type);
}
}
else {
panic!("Unexpected type {:?}", value_type);
};
let lvalue_type = lvalue.to_rvalue().get_type();
let value =
// NOTE: sometimes, rustc will create a value with the wrong type.
if lvalue_type != value.get_type() {
self.context.new_cast(None, value, lvalue_type)
}
else {
value
};
self.llbb().add_assignment(None, lvalue, value);
aggregate_value
}
fn set_personality_fn(&mut self, _personality: RValue<'gcc>) {
#[cfg(feature="master")]
{
let personality = self.rvalue_as_function(_personality);
self.current_func().set_personality_function(personality);
}
}
#[cfg(feature="master")]
fn cleanup_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
self.set_personality_fn(pers_fn);
// NOTE: insert the current block in a variable so that a later call to invoke knows to
// generate a try/finally instead of a try/catch for this block.
self.cleanup_blocks.borrow_mut().insert(self.block);
let eh_pointer_builtin = self.cx.context.get_target_builtin_function("__builtin_eh_pointer");
let zero = self.cx.context.new_rvalue_zero(self.int_type);
let ptr = self.cx.context.new_call(None, eh_pointer_builtin, &[zero]);
let value1_type = self.u8_type.make_pointer();
let ptr = self.cx.context.new_cast(None, ptr, value1_type);
let value1 = ptr;
let value2 = zero; // TODO(antoyo): set the proper value here (the type of exception?).
(value1, value2)
}
#[cfg(not(feature="master"))]
fn cleanup_landing_pad(&mut self, _pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
let value1 = self.current_func().new_local(None, self.u8_type.make_pointer(), "landing_pad0")
.to_rvalue();
let value2 = self.current_func().new_local(None, self.i32_type, "landing_pad1").to_rvalue();
(value1, value2)
}
fn filter_landing_pad(&mut self, pers_fn: RValue<'gcc>) -> (RValue<'gcc>, RValue<'gcc>) {
// TODO(antoyo): generate the correct landing pad
self.cleanup_landing_pad(pers_fn)
}
#[cfg(feature="master")]
fn resume(&mut self, exn0: RValue<'gcc>, _exn1: RValue<'gcc>) {
let exn_type = exn0.get_type();
let exn = self.context.new_cast(None, exn0, exn_type);
let unwind_resume = self.context.get_target_builtin_function("__builtin_unwind_resume");
self.llbb().add_eval(None, self.context.new_call(None, unwind_resume, &[exn]));
self.unreachable();
}
#[cfg(not(feature="master"))]
fn resume(&mut self, _exn0: RValue<'gcc>, _exn1: RValue<'gcc>) {
self.unreachable();
}
fn cleanup_pad(&mut self, _parent: Option<RValue<'gcc>>, _args: &[RValue<'gcc>]) -> Funclet {
unimplemented!();
}
fn cleanup_ret(&mut self, _funclet: &Funclet, _unwind: Option<Block<'gcc>>) {
unimplemented!();
}
fn catch_pad(&mut self, _parent: RValue<'gcc>, _args: &[RValue<'gcc>]) -> Funclet {
unimplemented!();
}
fn catch_switch(
&mut self,
_parent: Option<RValue<'gcc>>,
_unwind: Option<Block<'gcc>>,
_handlers: &[Block<'gcc>],
) -> RValue<'gcc> {
unimplemented!();
}
// Atomic Operations
fn atomic_cmpxchg(&mut self, dst: RValue<'gcc>, cmp: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering, failure_order: AtomicOrdering, weak: bool) -> RValue<'gcc> {
let expected = self.current_func().new_local(None, cmp.get_type(), "expected");
self.llbb().add_assignment(None, expected, cmp);
// NOTE: gcc doesn't support a failure memory model that is stronger than the success
// memory model.
let order =
if failure_order as i32 > order as i32 {
failure_order
}
else {
order
};
let success = self.compare_exchange(dst, expected, src, order, failure_order, weak);
let pair_type = self.cx.type_struct(&[src.get_type(), self.bool_type], false);
let result = self.current_func().new_local(None, pair_type, "atomic_cmpxchg_result");
let align = Align::from_bits(64).expect("align"); // TODO(antoyo): use good align.
let value_type = result.to_rvalue().get_type();
if let Some(struct_type) = value_type.is_struct() {
self.store(success, result.access_field(None, struct_type.get_field(1)).get_address(None), align);
// NOTE: since success contains the call to the intrinsic, it must be stored before
// expected so that we store expected after the call.
self.store(expected.to_rvalue(), result.access_field(None, struct_type.get_field(0)).get_address(None), align);
}
// TODO(antoyo): handle when value is not a struct.
result.to_rvalue()
}
fn atomic_rmw(&mut self, op: AtomicRmwBinOp, dst: RValue<'gcc>, src: RValue<'gcc>, order: AtomicOrdering) -> RValue<'gcc> {
let size = src.get_type().get_size();
let name =
match op {
AtomicRmwBinOp::AtomicXchg => format!("__atomic_exchange_{}", size),
AtomicRmwBinOp::AtomicAdd => format!("__atomic_fetch_add_{}", size),
AtomicRmwBinOp::AtomicSub => format!("__atomic_fetch_sub_{}", size),
AtomicRmwBinOp::AtomicAnd => format!("__atomic_fetch_and_{}", size),
AtomicRmwBinOp::AtomicNand => format!("__atomic_fetch_nand_{}", size),
AtomicRmwBinOp::AtomicOr => format!("__atomic_fetch_or_{}", size),
AtomicRmwBinOp::AtomicXor => format!("__atomic_fetch_xor_{}", size),
AtomicRmwBinOp::AtomicMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order),
AtomicRmwBinOp::AtomicMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order),
AtomicRmwBinOp::AtomicUMax => return self.atomic_extremum(ExtremumOperation::Max, dst, src, order),
AtomicRmwBinOp::AtomicUMin => return self.atomic_extremum(ExtremumOperation::Min, dst, src, order),
};
let atomic_function = self.context.get_builtin_function(name);
let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
let void_ptr_type = self.context.new_type::<*mut ()>();
let volatile_void_ptr_type = void_ptr_type.make_volatile();
let dst = self.context.new_cast(None, dst, volatile_void_ptr_type);
// FIXME(antoyo): not sure why, but we have the wrong type here.
let new_src_type = atomic_function.get_param(1).to_rvalue().get_type();
let src = self.context.new_cast(None, src, new_src_type);
let res = self.context.new_call(None, atomic_function, &[dst, src, order]);
self.context.new_cast(None, res, src.get_type())
}
fn atomic_fence(&mut self, order: AtomicOrdering, scope: SynchronizationScope) {
let name =
match scope {
SynchronizationScope::SingleThread => "__atomic_signal_fence",
SynchronizationScope::CrossThread => "__atomic_thread_fence",
};
let thread_fence = self.context.get_builtin_function(name);
let order = self.context.new_rvalue_from_int(self.i32_type, order.to_gcc());
self.llbb().add_eval(None, self.context.new_call(None, thread_fence, &[order]));
}
fn set_invariant_load(&mut self, load: RValue<'gcc>) {
// NOTE: Hack to consider vtable function pointer as non-global-variable function pointer.
self.normal_function_addresses.borrow_mut().insert(load);
// TODO(antoyo)
}
fn lifetime_start(&mut self, _ptr: RValue<'gcc>, _size: Size) {
// TODO(antoyo)
}
fn lifetime_end(&mut self, _ptr: RValue<'gcc>, _size: Size) {
// TODO(antoyo)
}
fn call(
&mut self,
typ: Type<'gcc>,
_fn_attrs: Option<&CodegenFnAttrs>,
fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
func: RValue<'gcc>,
args: &[RValue<'gcc>],
funclet: Option<&Funclet>,
) -> RValue<'gcc> {
// FIXME(antoyo): remove when having a proper API.
let gcc_func = unsafe { std::mem::transmute(func) };
let call = if self.functions.borrow().values().any(|value| *value == gcc_func) {
self.function_call(func, args, funclet)
}
else {
// If it's a not function that was defined, it's a function pointer.
self.function_ptr_call(typ, func, args, funclet)
};
if let Some(_fn_abi) = fn_abi {
// TODO(bjorn3): Apply function attributes
}
call
}
fn zext(&mut self, value: RValue<'gcc>, dest_typ: Type<'gcc>) -> RValue<'gcc> {
// FIXME(antoyo): this does not zero-extend.
if value.get_type().is_bool() && dest_typ.is_i8(&self.cx) {
// FIXME(antoyo): hack because base::from_immediate converts i1 to i8.
// Fix the code in codegen_ssa::base::from_immediate.
return value;
}
self.gcc_int_cast(value, dest_typ)
}
fn cx(&self) -> &CodegenCx<'gcc, 'tcx> {
self.cx
}
fn do_not_inline(&mut self, _llret: RValue<'gcc>) {
// FIXME(bjorn3): implement
}
fn set_span(&mut self, _span: Span) {}
fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
if self.cx().val_ty(val) == self.cx().type_i1() {
self.zext(val, self.cx().type_i8())
}
else {
val
}
}
fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value {
if scalar.is_bool() {
return self.trunc(val, self.cx().type_i1());
}
val
}
fn fptoui_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.fptoint_sat(false, val, dest_ty)
}
fn fptosi_sat(&mut self, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
self.fptoint_sat(true, val, dest_ty)
}
fn instrprof_increment(&mut self, _fn_name: RValue<'gcc>, _hash: RValue<'gcc>, _num_counters: RValue<'gcc>, _index: RValue<'gcc>) {
unimplemented!();
}
}
impl<'a, 'gcc, 'tcx> Builder<'a, 'gcc, 'tcx> {
fn fptoint_sat(&mut self, signed: bool, val: RValue<'gcc>, dest_ty: Type<'gcc>) -> RValue<'gcc> {
let src_ty = self.cx.val_ty(val);
let (float_ty, int_ty) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
(self.cx.element_type(src_ty), self.cx.element_type(dest_ty))
} else {
(src_ty, dest_ty)
};
// FIXME(jistone): the following was originally the fallback SSA implementation, before LLVM 13
// added native `fptosi.sat` and `fptoui.sat` conversions, but it was used by GCC as well.
// Now that LLVM always relies on its own, the code has been moved to GCC, but the comments are
// still LLVM-specific. This should be updated, and use better GCC specifics if possible.
let int_width = self.cx.int_width(int_ty);
let float_width = self.cx.float_width(float_ty);
// LLVM's fpto[su]i returns undef when the input val is infinite, NaN, or does not fit into the
// destination integer type after rounding towards zero. This `undef` value can cause UB in
// safe code (see issue #10184), so we implement a saturating conversion on top of it:
// Semantically, the mathematical value of the input is rounded towards zero to the next
// mathematical integer, and then the result is clamped into the range of the destination
// integer type. Positive and negative infinity are mapped to the maximum and minimum value of
// the destination integer type. NaN is mapped to 0.
//
// Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
// a value representable in int_ty.
// They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
// Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
// int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
// representable. Note that this only works if float_ty's exponent range is sufficiently large.
// f16 or 256 bit integers would break this property. Right now the smallest float type is f32
// with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
// On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
// we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
// This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
let int_max = |signed: bool, int_width: u64| -> u128 {
let shift_amount = 128 - int_width;
if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
};
let int_min = |signed: bool, int_width: u64| -> i128 {
if signed { i128::MIN >> (128 - int_width) } else { 0 }
};
let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
let rounded_min =
ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
assert_eq!(rounded_min.status, Status::OK);
let rounded_max =
ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
assert!(rounded_max.value.is_finite());
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
};
let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
let rounded_min =
ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
assert_eq!(rounded_min.status, Status::OK);
let rounded_max =
ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
assert!(rounded_max.value.is_finite());
(rounded_min.value.to_bits(), rounded_max.value.to_bits())
};
// To implement saturation, we perform the following steps:
//
// 1. Cast val to an integer with fpto[su]i. This may result in undef.
// 2. Compare val to f_min and f_max, and use the comparison results to select:
// a) int_ty::MIN if val < f_min or val is NaN
// b) int_ty::MAX if val > f_max
// c) the result of fpto[su]i otherwise
// 3. If val is NaN, return 0.0, otherwise return the result of step 2.
//
// This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
// destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
// undef does not introduce any non-determinism either.
// More importantly, the above procedure correctly implements saturating conversion.
// Proof (sketch):
// If val is NaN, 0 is returned by definition.
// Otherwise, val is finite or infinite and thus can be compared with f_min and f_max.
// This yields three cases to consider:
// (1) if val in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
// saturating conversion for inputs in that range.
// (2) if val > f_max, then val is larger than int_ty::MAX. This holds even if f_max is rounded
// (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
// than int_ty::MAX. Because val is larger than int_ty::MAX, the return value of int_ty::MAX
// is correct.
// (3) if val < f_min, then val is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
// int_ty::MIN and therefore the return value of int_ty::MIN is correct.
// QED.
let float_bits_to_llval = |bx: &mut Self, bits| {
let bits_llval = match float_width {
32 => bx.cx().const_u32(bits as u32),
64 => bx.cx().const_u64(bits as u64),
n => bug!("unsupported float width {}", n),
};
bx.bitcast(bits_llval, float_ty)
};
let (f_min, f_max) = match float_width {
32 => compute_clamp_bounds_single(signed, int_width),
64 => compute_clamp_bounds_double(signed, int_width),
n => bug!("unsupported float width {}", n),
};
let f_min = float_bits_to_llval(self, f_min);
let f_max = float_bits_to_llval(self, f_max);
let int_max = self.cx.const_uint_big(int_ty, int_max(signed, int_width));
let int_min = self.cx.const_uint_big(int_ty, int_min(signed, int_width) as u128);
let zero = self.cx.const_uint(int_ty, 0);
// If we're working with vectors, constants must be "splatted": the constant is duplicated
// into each lane of the vector. The algorithm stays the same, we are just using the
// same constant across all lanes.
let maybe_splat = |bx: &mut Self, val| {
if bx.cx().type_kind(dest_ty) == TypeKind::Vector {
bx.vector_splat(bx.vector_length(dest_ty), val)
} else {
val
}
};
let f_min = maybe_splat(self, f_min);
let f_max = maybe_splat(self, f_max);
let int_max = maybe_splat(self, int_max);
let int_min = maybe_splat(self, int_min);
let zero = maybe_splat(self, zero);
// Step 1 ...
let fptosui_result = if signed { self.fptosi(val, dest_ty) } else { self.fptoui(val, dest_ty) };
let less_or_nan = self.fcmp(RealPredicate::RealULT, val, f_min);
let greater = self.fcmp(RealPredicate::RealOGT, val, f_max);
// Step 2: We use two comparisons and two selects, with %s1 being the
// result:
// %less_or_nan = fcmp ult %val, %f_min
// %greater = fcmp olt %val, %f_max
// %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
// %s1 = select %greater, int_ty::MAX, %s0
// Note that %less_or_nan uses an *unordered* comparison. This
// comparison is true if the operands are not comparable (i.e., if val is
// NaN). The unordered comparison ensures that s1 becomes int_ty::MIN if
// val is NaN.
//
// Performance note: Unordered comparison can be lowered to a "flipped"
// comparison and a negation, and the negation can be merged into the
// select. Therefore, it not necessarily any more expensive than an
// ordered ("normal") comparison. Whether these optimizations will be
// performed is ultimately up to the backend, but at least x86 does
// perform them.
let s0 = self.select(less_or_nan, int_min, fptosui_result);
let s1 = self.select(greater, int_max, s0);
// Step 3: NaN replacement.
// For unsigned types, the above step already yielded int_ty::MIN == 0 if val is NaN.
// Therefore we only need to execute this step for signed integer types.
if signed {
// LLVM has no isNaN predicate, so we use (val == val) instead
let cmp = self.fcmp(RealPredicate::RealOEQ, val, val);
self.select(cmp, s1, zero)
} else {
s1
}
}
#[cfg(feature="master")]
pub fn shuffle_vector(&mut self, v1: RValue<'gcc>, v2: RValue<'gcc>, mask: RValue<'gcc>) -> RValue<'gcc> {
let struct_type = mask.get_type().is_struct().expect("mask should be of struct type");
// TODO(antoyo): use a recursive unqualified() here.
let vector_type = v1.get_type().unqualified().dyncast_vector().expect("vector type");
let element_type = vector_type.get_element_type();
let vec_num_units = vector_type.get_num_units();
let mask_num_units = struct_type.get_field_count();
let mut vector_elements = vec![];
let mask_element_type =
if element_type.is_integral() {
element_type
}
else {
#[cfg(feature="master")]
{
self.cx.type_ix(element_type.get_size() as u64 * 8)
}
#[cfg(not(feature="master"))]
self.int_type
};
for i in 0..mask_num_units {
let field = struct_type.get_field(i as i32);
vector_elements.push(self.context.new_cast(None, mask.access_field(None, field).to_rvalue(), mask_element_type));
}
// NOTE: the mask needs to be the same length as the input vectors, so add the missing
// elements in the mask if needed.
for _ in mask_num_units..vec_num_units {
vector_elements.push(self.context.new_rvalue_zero(mask_element_type));
}
let result_type = self.context.new_vector_type(element_type, mask_num_units as u64);
let (v1, v2) =
if vec_num_units < mask_num_units {
// NOTE: the mask needs to be the same length as the input vectors, so join the 2
// vectors and create a dummy second vector.
let mut elements = vec![];
for i in 0..vec_num_units {
elements.push(self.context.new_vector_access(None, v1, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue());
}
for i in 0..(mask_num_units - vec_num_units) {
elements.push(self.context.new_vector_access(None, v2, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue());
}
let v1 = self.context.new_rvalue_from_vector(None, result_type, &elements);
let zero = self.context.new_rvalue_zero(element_type);
let v2 = self.context.new_rvalue_from_vector(None, result_type, &vec![zero; mask_num_units]);
(v1, v2)
}
else {
(v1, v2)
};
let new_mask_num_units = std::cmp::max(mask_num_units, vec_num_units);
let mask_type = self.context.new_vector_type(mask_element_type, new_mask_num_units as u64);
let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements);
let result = self.context.new_rvalue_vector_perm(None, v1, v2, mask);
if vec_num_units != mask_num_units {
// NOTE: if padding was added, only select the number of elements of the masks to
// remove that padding in the result.
let mut elements = vec![];
for i in 0..mask_num_units {
elements.push(self.context.new_vector_access(None, result, self.context.new_rvalue_from_int(self.int_type, i as i32)).to_rvalue());
}
self.context.new_rvalue_from_vector(None, result_type, &elements)
}
else {
result
}
}
#[cfg(not(feature="master"))]
pub fn shuffle_vector(&mut self, _v1: RValue<'gcc>, _v2: RValue<'gcc>, _mask: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
#[cfg(feature="master")]
pub fn vector_reduce<F>(&mut self, src: RValue<'gcc>, op: F) -> RValue<'gcc>
where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>
{
let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
let element_type = vector_type.get_element_type();
let mask_element_type = self.type_ix(element_type.get_size() as u64 * 8);
let element_count = vector_type.get_num_units();
let mut vector_elements = vec![];
for i in 0..element_count {
vector_elements.push(i);
}
let mask_type = self.context.new_vector_type(mask_element_type, element_count as u64);
let mut shift = 1;
let mut res = src;
while shift < element_count {
let vector_elements: Vec<_> =
vector_elements.iter()
.map(|i| self.context.new_rvalue_from_int(mask_element_type, ((i + shift) % element_count) as i32))
.collect();
let mask = self.context.new_rvalue_from_vector(None, mask_type, &vector_elements);
let shifted = self.context.new_rvalue_vector_perm(None, res, res, mask);
shift *= 2;
res = op(res, shifted, &self.context);
}
self.context.new_vector_access(None, res, self.context.new_rvalue_zero(self.int_type))
.to_rvalue()
}
#[cfg(not(feature="master"))]
pub fn vector_reduce<F>(&mut self, _src: RValue<'gcc>, _op: F) -> RValue<'gcc>
where F: Fn(RValue<'gcc>, RValue<'gcc>, &'gcc Context<'gcc>) -> RValue<'gcc>
{
unimplemented!();
}
pub fn vector_reduce_op(&mut self, src: RValue<'gcc>, op: BinaryOp) -> RValue<'gcc> {
self.vector_reduce(src, |a, b, context| context.new_binary_op(None, op, a.get_type(), a, b))
}
pub fn vector_reduce_fadd_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
#[cfg(feature="master")]
pub fn vector_reduce_fadd(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> {
let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
let element_count = vector_type.get_num_units();
(0..element_count).into_iter()
.map(|i| self.context
.new_vector_access(None, src, self.context.new_rvalue_from_int(self.int_type, i as _))
.to_rvalue())
.fold(acc, |x, i| x + i)
}
#[cfg(not(feature="master"))]
pub fn vector_reduce_fadd(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
pub fn vector_reduce_fmul_fast(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
#[cfg(feature="master")]
pub fn vector_reduce_fmul(&mut self, acc: RValue<'gcc>, src: RValue<'gcc>) -> RValue<'gcc> {
let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
let element_count = vector_type.get_num_units();
(0..element_count).into_iter()
.map(|i| self.context
.new_vector_access(None, src, self.context.new_rvalue_from_int(self.int_type, i as _))
.to_rvalue())
.fold(acc, |x, i| x * i)
}
#[cfg(not(feature="master"))]
pub fn vector_reduce_fmul(&mut self, _acc: RValue<'gcc>, _src: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!()
}
// Inspired by Hacker's Delight min implementation.
pub fn vector_reduce_min(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
self.vector_reduce(src, |a, b, context| {
let differences_or_zeros = difference_or_zero(a, b, context);
context.new_binary_op(None, BinaryOp::Plus, b.get_type(), b, differences_or_zeros)
})
}
// Inspired by Hacker's Delight max implementation.
pub fn vector_reduce_max(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
self.vector_reduce(src, |a, b, context| {
let differences_or_zeros = difference_or_zero(a, b, context);
context.new_binary_op(None, BinaryOp::Minus, a.get_type(), a, differences_or_zeros)
})
}
fn vector_extremum(&mut self, a: RValue<'gcc>, b: RValue<'gcc>, direction: ExtremumOperation) -> RValue<'gcc> {
let vector_type = a.get_type();
// mask out the NaNs in b and replace them with the corresponding lane in a, so when a and
// b get compared & spliced together, we get the numeric values instead of NaNs.
let b_nan_mask = self.context.new_comparison(None, ComparisonOp::NotEquals, b, b);
let mask_type = b_nan_mask.get_type();
let b_nan_mask_inverted = self.context.new_unary_op(None, UnaryOp::BitwiseNegate, mask_type, b_nan_mask);
let a_cast = self.context.new_bitcast(None, a, mask_type);
let b_cast = self.context.new_bitcast(None, b, mask_type);
let res = (b_nan_mask & a_cast) | (b_nan_mask_inverted & b_cast);
let b = self.context.new_bitcast(None, res, vector_type);
// now do the actual comparison
let comparison_op = match direction {
ExtremumOperation::Min => ComparisonOp::LessThan,
ExtremumOperation::Max => ComparisonOp::GreaterThan,
};
let cmp = self.context.new_comparison(None, comparison_op, a, b);
let cmp_inverted = self.context.new_unary_op(None, UnaryOp::BitwiseNegate, cmp.get_type(), cmp);
let res = (cmp & a_cast) | (cmp_inverted & res);
self.context.new_bitcast(None, res, vector_type)
}
pub fn vector_fmin(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.vector_extremum(a, b, ExtremumOperation::Min)
}
#[cfg(feature="master")]
pub fn vector_reduce_fmin(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
let element_count = vector_type.get_num_units();
let mut acc = self.context.new_vector_access(None, src, self.context.new_rvalue_zero(self.int_type)).to_rvalue();
for i in 1..element_count {
let elem = self.context
.new_vector_access(None, src, self.context.new_rvalue_from_int(self.int_type, i as _))
.to_rvalue();
let cmp = self.context.new_comparison(None, ComparisonOp::LessThan, acc, elem);
acc = self.select(cmp, acc, elem);
}
acc
}
#[cfg(not(feature="master"))]
pub fn vector_reduce_fmin(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
pub fn vector_fmax(&mut self, a: RValue<'gcc>, b: RValue<'gcc>) -> RValue<'gcc> {
self.vector_extremum(a, b, ExtremumOperation::Max)
}
#[cfg(feature="master")]
pub fn vector_reduce_fmax(&mut self, src: RValue<'gcc>) -> RValue<'gcc> {
let vector_type = src.get_type().unqualified().dyncast_vector().expect("vector type");
let element_count = vector_type.get_num_units();
let mut acc = self.context.new_vector_access(None, src, self.context.new_rvalue_zero(self.int_type)).to_rvalue();
for i in 1..element_count {
let elem = self.context
.new_vector_access(None, src, self.context.new_rvalue_from_int(self.int_type, i as _))
.to_rvalue();
let cmp = self.context.new_comparison(None, ComparisonOp::GreaterThan, acc, elem);
acc = self.select(cmp, acc, elem);
}
acc
}
#[cfg(not(feature="master"))]
pub fn vector_reduce_fmax(&mut self, _src: RValue<'gcc>) -> RValue<'gcc> {
unimplemented!();
}
pub fn vector_select(&mut self, cond: RValue<'gcc>, then_val: RValue<'gcc>, else_val: RValue<'gcc>) -> RValue<'gcc> {
// cond is a vector of integers, not of bools.
let vector_type = cond.get_type().unqualified().dyncast_vector().expect("vector type");
let num_units = vector_type.get_num_units();
let element_type = vector_type.get_element_type();
#[cfg(feature="master")]
let (cond, element_type) = {
// TODO(antoyo): dyncast_vector should not require a call to unqualified.
let then_val_vector_type = then_val.get_type().unqualified().dyncast_vector().expect("vector type");
let then_val_element_type = then_val_vector_type.get_element_type();
let then_val_element_size = then_val_element_type.get_size();
// NOTE: the mask needs to be of the same size as the other arguments in order for the &
// operation to work.
if then_val_element_size != element_type.get_size() {
let new_element_type = self.type_ix(then_val_element_size as u64 * 8);
let new_vector_type = self.context.new_vector_type(new_element_type, num_units as u64);
let cond = self.context.convert_vector(None, cond, new_vector_type);
(cond, new_element_type)
}
else {
(cond, element_type)
}
};
let cond_type = cond.get_type();
let zeros = vec![self.context.new_rvalue_zero(element_type); num_units];
let zeros = self.context.new_rvalue_from_vector(None, cond_type, &zeros);
let result_type = then_val.get_type();
let masks = self.context.new_comparison(None, ComparisonOp::NotEquals, cond, zeros);
// NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make
// the & operation work.
let then_val = self.bitcast_if_needed(then_val, masks.get_type());
let then_vals = masks & then_val;
let minus_ones = vec![self.context.new_rvalue_from_int(element_type, -1); num_units];
let minus_ones = self.context.new_rvalue_from_vector(None, cond_type, &minus_ones);
let inverted_masks = masks ^ minus_ones;
// NOTE: sometimes, the type of else_val can be different than the type of then_val in
// libgccjit (vector of int vs vector of int32_t), but they should be the same for the AND
// operation to work.
// TODO: remove bitcast now that vector types can be compared?
let else_val = self.context.new_bitcast(None, else_val, then_val.get_type());
let else_vals = inverted_masks & else_val;
let res = then_vals | else_vals;
self.bitcast_if_needed(res, result_type)
}
}
fn difference_or_zero<'gcc>(a: RValue<'gcc>, b: RValue<'gcc>, context: &'gcc Context<'gcc>) -> RValue<'gcc> {
let difference = a - b;
let masks = context.new_comparison(None, ComparisonOp::GreaterThanEquals, b, a);
// NOTE: masks is a vector of integers, but the values can be vectors of floats, so use bitcast to make
// the & operation work.
let a_type = a.get_type();
let masks =
if masks.get_type() != a_type {
context.new_bitcast(None, masks, a_type)
}
else {
masks
};
difference & masks
}
impl<'a, 'gcc, 'tcx> StaticBuilderMethods for Builder<'a, 'gcc, 'tcx> {
fn get_static(&mut self, def_id: DefId) -> RValue<'gcc> {
// Forward to the `get_static` method of `CodegenCx`
self.cx().get_static(def_id).get_address(None)
}
}
impl<'tcx> HasParamEnv<'tcx> for Builder<'_, '_, 'tcx> {
fn param_env(&self) -> ParamEnv<'tcx> {
self.cx.param_env()
}
}
impl<'tcx> HasTargetSpec for Builder<'_, '_, 'tcx> {
fn target_spec(&self) -> &Target {
&self.cx.target_spec()
}
}
pub trait ToGccComp {
fn to_gcc_comparison(&self) -> ComparisonOp;
}
impl ToGccComp for IntPredicate {
fn to_gcc_comparison(&self) -> ComparisonOp {
match *self {
IntPredicate::IntEQ => ComparisonOp::Equals,
IntPredicate::IntNE => ComparisonOp::NotEquals,
IntPredicate::IntUGT => ComparisonOp::GreaterThan,
IntPredicate::IntUGE => ComparisonOp::GreaterThanEquals,
IntPredicate::IntULT => ComparisonOp::LessThan,
IntPredicate::IntULE => ComparisonOp::LessThanEquals,
IntPredicate::IntSGT => ComparisonOp::GreaterThan,
IntPredicate::IntSGE => ComparisonOp::GreaterThanEquals,
IntPredicate::IntSLT => ComparisonOp::LessThan,
IntPredicate::IntSLE => ComparisonOp::LessThanEquals,
}
}
}
impl ToGccComp for RealPredicate {
fn to_gcc_comparison(&self) -> ComparisonOp {
// TODO(antoyo): check that ordered vs non-ordered is respected.
match *self {
RealPredicate::RealPredicateFalse => unreachable!(),
RealPredicate::RealOEQ => ComparisonOp::Equals,
RealPredicate::RealOGT => ComparisonOp::GreaterThan,
RealPredicate::RealOGE => ComparisonOp::GreaterThanEquals,
RealPredicate::RealOLT => ComparisonOp::LessThan,
RealPredicate::RealOLE => ComparisonOp::LessThanEquals,
RealPredicate::RealONE => ComparisonOp::NotEquals,
RealPredicate::RealORD => unreachable!(),
RealPredicate::RealUNO => unreachable!(),
RealPredicate::RealUEQ => ComparisonOp::Equals,
RealPredicate::RealUGT => ComparisonOp::GreaterThan,
RealPredicate::RealUGE => ComparisonOp::GreaterThan,
RealPredicate::RealULT => ComparisonOp::LessThan,
RealPredicate::RealULE => ComparisonOp::LessThan,
RealPredicate::RealUNE => ComparisonOp::NotEquals,
RealPredicate::RealPredicateTrue => unreachable!(),
}
}
}
#[repr(C)]
#[allow(non_camel_case_types)]
enum MemOrdering {
__ATOMIC_RELAXED,
__ATOMIC_CONSUME,
__ATOMIC_ACQUIRE,
__ATOMIC_RELEASE,
__ATOMIC_ACQ_REL,
__ATOMIC_SEQ_CST,
}
trait ToGccOrdering {
fn to_gcc(self) -> i32;
}
impl ToGccOrdering for AtomicOrdering {
fn to_gcc(self) -> i32 {
use MemOrdering::*;
let ordering =
match self {
AtomicOrdering::Unordered => __ATOMIC_RELAXED,
AtomicOrdering::Relaxed => __ATOMIC_RELAXED, // TODO(antoyo): check if that's the same.
AtomicOrdering::Acquire => __ATOMIC_ACQUIRE,
AtomicOrdering::Release => __ATOMIC_RELEASE,
AtomicOrdering::AcquireRelease => __ATOMIC_ACQ_REL,
AtomicOrdering::SequentiallyConsistent => __ATOMIC_SEQ_CST,
};
ordering as i32
}
}