rust/clippy_utils/src/visitors.rs

383 lines
13 KiB
Rust

use crate::path_to_local_id;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::intravisit::{self, walk_block, walk_expr, NestedVisitorMap, Visitor};
use rustc_hir::{
Arm, Block, BlockCheckMode, Body, BodyId, Expr, ExprKind, HirId, ItemId, ItemKind, Stmt, UnOp, Unsafety,
};
use rustc_lint::LateContext;
use rustc_middle::hir::map::Map;
use rustc_middle::ty;
/// Convenience method for creating a `Visitor` with just `visit_expr` overridden and nested
/// bodies (i.e. closures) are visited.
/// If the callback returns `true`, the expr just provided to the callback is walked.
#[must_use]
pub fn expr_visitor<'tcx>(cx: &LateContext<'tcx>, f: impl FnMut(&'tcx Expr<'tcx>) -> bool) -> impl Visitor<'tcx> {
struct V<'tcx, F> {
hir: Map<'tcx>,
f: F,
}
impl<'tcx, F: FnMut(&'tcx Expr<'tcx>) -> bool> Visitor<'tcx> for V<'tcx, F> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::OnlyBodies(self.hir)
}
fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
if (self.f)(expr) {
walk_expr(self, expr);
}
}
}
V { hir: cx.tcx.hir(), f }
}
/// Convenience method for creating a `Visitor` with just `visit_expr` overridden and nested
/// bodies (i.e. closures) are not visited.
/// If the callback returns `true`, the expr just provided to the callback is walked.
#[must_use]
pub fn expr_visitor_no_bodies<'tcx>(f: impl FnMut(&'tcx Expr<'tcx>) -> bool) -> impl Visitor<'tcx> {
struct V<F>(F);
impl<'tcx, F: FnMut(&'tcx Expr<'tcx>) -> bool> Visitor<'tcx> for V<F> {
type Map = intravisit::ErasedMap<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::None
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if (self.0)(e) {
walk_expr(self, e);
}
}
}
V(f)
}
/// returns `true` if expr contains match expr desugared from try
fn contains_try(expr: &hir::Expr<'_>) -> bool {
let mut found = false;
expr_visitor_no_bodies(|e| {
if !found {
found = matches!(e.kind, hir::ExprKind::Match(_, _, hir::MatchSource::TryDesugar));
}
!found
})
.visit_expr(expr);
found
}
pub fn find_all_ret_expressions<'hir, F>(_cx: &LateContext<'_>, expr: &'hir hir::Expr<'hir>, callback: F) -> bool
where
F: FnMut(&'hir hir::Expr<'hir>) -> bool,
{
struct RetFinder<F> {
in_stmt: bool,
failed: bool,
cb: F,
}
struct WithStmtGuarg<'a, F> {
val: &'a mut RetFinder<F>,
prev_in_stmt: bool,
}
impl<F> RetFinder<F> {
fn inside_stmt(&mut self, in_stmt: bool) -> WithStmtGuarg<'_, F> {
let prev_in_stmt = std::mem::replace(&mut self.in_stmt, in_stmt);
WithStmtGuarg {
val: self,
prev_in_stmt,
}
}
}
impl<F> std::ops::Deref for WithStmtGuarg<'_, F> {
type Target = RetFinder<F>;
fn deref(&self) -> &Self::Target {
self.val
}
}
impl<F> std::ops::DerefMut for WithStmtGuarg<'_, F> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.val
}
}
impl<F> Drop for WithStmtGuarg<'_, F> {
fn drop(&mut self) {
self.val.in_stmt = self.prev_in_stmt;
}
}
impl<'hir, F: FnMut(&'hir hir::Expr<'hir>) -> bool> intravisit::Visitor<'hir> for RetFinder<F> {
type Map = Map<'hir>;
fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<Self::Map> {
intravisit::NestedVisitorMap::None
}
fn visit_stmt(&mut self, stmt: &'hir hir::Stmt<'_>) {
intravisit::walk_stmt(&mut *self.inside_stmt(true), stmt);
}
fn visit_expr(&mut self, expr: &'hir hir::Expr<'_>) {
if self.failed {
return;
}
if self.in_stmt {
match expr.kind {
hir::ExprKind::Ret(Some(expr)) => self.inside_stmt(false).visit_expr(expr),
_ => intravisit::walk_expr(self, expr),
}
} else {
match expr.kind {
hir::ExprKind::If(cond, then, else_opt) => {
self.inside_stmt(true).visit_expr(cond);
self.visit_expr(then);
if let Some(el) = else_opt {
self.visit_expr(el);
}
},
hir::ExprKind::Match(cond, arms, _) => {
self.inside_stmt(true).visit_expr(cond);
for arm in arms {
self.visit_expr(arm.body);
}
},
hir::ExprKind::Block(..) => intravisit::walk_expr(self, expr),
hir::ExprKind::Ret(Some(expr)) => self.visit_expr(expr),
_ => self.failed |= !(self.cb)(expr),
}
}
}
}
!contains_try(expr) && {
let mut ret_finder = RetFinder {
in_stmt: false,
failed: false,
cb: callback,
};
ret_finder.visit_expr(expr);
!ret_finder.failed
}
}
/// A type which can be visited.
pub trait Visitable<'tcx> {
/// Calls the corresponding `visit_*` function on the visitor.
fn visit<V: Visitor<'tcx>>(self, visitor: &mut V);
}
macro_rules! visitable_ref {
($t:ident, $f:ident) => {
impl Visitable<'tcx> for &'tcx $t<'tcx> {
fn visit<V: Visitor<'tcx>>(self, visitor: &mut V) {
visitor.$f(self);
}
}
};
}
visitable_ref!(Arm, visit_arm);
visitable_ref!(Block, visit_block);
visitable_ref!(Body, visit_body);
visitable_ref!(Expr, visit_expr);
visitable_ref!(Stmt, visit_stmt);
// impl<'tcx, I: IntoIterator> Visitable<'tcx> for I
// where
// I::Item: Visitable<'tcx>,
// {
// fn visit<V: Visitor<'tcx>>(self, visitor: &mut V) {
// for x in self {
// x.visit(visitor);
// }
// }
// }
/// Checks if the given resolved path is used in the given body.
pub fn is_res_used(cx: &LateContext<'_>, res: Res, body: BodyId) -> bool {
let mut found = false;
expr_visitor(cx, |e| {
if found {
return false;
}
if let ExprKind::Path(p) = &e.kind {
if cx.qpath_res(p, e.hir_id) == res {
found = true;
}
}
!found
})
.visit_expr(&cx.tcx.hir().body(body).value);
found
}
/// Checks if the given local is used.
pub fn is_local_used(cx: &LateContext<'tcx>, visitable: impl Visitable<'tcx>, id: HirId) -> bool {
let mut is_used = false;
let mut visitor = expr_visitor(cx, |expr| {
if !is_used {
is_used = path_to_local_id(expr, id);
}
!is_used
});
visitable.visit(&mut visitor);
drop(visitor);
is_used
}
/// Checks if the given expression is a constant.
pub fn is_const_evaluatable(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> bool {
struct V<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
is_const: bool,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::OnlyBodies(self.cx.tcx.hir())
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if !self.is_const {
return;
}
match e.kind {
ExprKind::ConstBlock(_) => return,
ExprKind::Call(
&Expr {
kind: ExprKind::Path(ref p),
hir_id,
..
},
_,
) if self
.cx
.qpath_res(p, hir_id)
.opt_def_id()
.map_or(false, |id| self.cx.tcx.is_const_fn_raw(id)) => {},
ExprKind::MethodCall(..)
if self
.cx
.typeck_results()
.type_dependent_def_id(e.hir_id)
.map_or(false, |id| self.cx.tcx.is_const_fn_raw(id)) => {},
ExprKind::Binary(_, lhs, rhs)
if self.cx.typeck_results().expr_ty(lhs).peel_refs().is_primitive_ty()
&& self.cx.typeck_results().expr_ty(rhs).peel_refs().is_primitive_ty() => {},
ExprKind::Unary(UnOp::Deref, e) if self.cx.typeck_results().expr_ty(e).is_ref() => (),
ExprKind::Unary(_, e) if self.cx.typeck_results().expr_ty(e).peel_refs().is_primitive_ty() => (),
ExprKind::Index(base, _)
if matches!(
self.cx.typeck_results().expr_ty(base).peel_refs().kind(),
ty::Slice(_) | ty::Array(..)
) => {},
ExprKind::Path(ref p)
if matches!(
self.cx.qpath_res(p, e.hir_id),
Res::Def(
DefKind::Const
| DefKind::AssocConst
| DefKind::AnonConst
| DefKind::ConstParam
| DefKind::Ctor(..)
| DefKind::Fn
| DefKind::AssocFn,
_
) | Res::SelfCtor(_)
) => {},
ExprKind::AddrOf(..)
| ExprKind::Array(_)
| ExprKind::Block(..)
| ExprKind::Cast(..)
| ExprKind::DropTemps(_)
| ExprKind::Field(..)
| ExprKind::If(..)
| ExprKind::Let(..)
| ExprKind::Lit(_)
| ExprKind::Match(..)
| ExprKind::Repeat(..)
| ExprKind::Struct(..)
| ExprKind::Tup(_)
| ExprKind::Type(..) => (),
_ => {
self.is_const = false;
return;
},
}
walk_expr(self, e);
}
}
let mut v = V { cx, is_const: true };
v.visit_expr(e);
v.is_const
}
/// Checks if the given expression performs an unsafe operation outside of an unsafe block.
pub fn is_expr_unsafe(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> bool {
struct V<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
is_unsafe: bool,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type Map = Map<'tcx>;
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
NestedVisitorMap::OnlyBodies(self.cx.tcx.hir())
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if self.is_unsafe {
return;
}
match e.kind {
ExprKind::Unary(UnOp::Deref, e) if self.cx.typeck_results().expr_ty(e).is_unsafe_ptr() => {
self.is_unsafe = true;
},
ExprKind::MethodCall(..)
if self
.cx
.typeck_results()
.type_dependent_def_id(e.hir_id)
.map_or(false, |id| self.cx.tcx.fn_sig(id).unsafety() == Unsafety::Unsafe) =>
{
self.is_unsafe = true;
},
ExprKind::Call(func, _) => match *self.cx.typeck_results().expr_ty(func).peel_refs().kind() {
ty::FnDef(id, _) if self.cx.tcx.fn_sig(id).unsafety() == Unsafety::Unsafe => self.is_unsafe = true,
ty::FnPtr(sig) if sig.unsafety() == Unsafety::Unsafe => self.is_unsafe = true,
_ => walk_expr(self, e),
},
ExprKind::Path(ref p)
if self
.cx
.qpath_res(p, e.hir_id)
.opt_def_id()
.map_or(false, |id| self.cx.tcx.is_mutable_static(id)) =>
{
self.is_unsafe = true;
},
_ => walk_expr(self, e),
}
}
fn visit_block(&mut self, b: &'tcx Block<'_>) {
if !matches!(b.rules, BlockCheckMode::UnsafeBlock(_)) {
walk_block(self, b);
}
}
fn visit_nested_item(&mut self, id: ItemId) {
if let ItemKind::Impl(i) = &self.cx.tcx.hir().item(id).kind {
self.is_unsafe = i.unsafety == Unsafety::Unsafe;
}
}
}
let mut v = V { cx, is_unsafe: false };
v.visit_expr(e);
v.is_unsafe
}