rust/src/type_.rs
2022-05-03 17:47:46 -04:00

293 lines
9.0 KiB
Rust

use std::convert::TryInto;
use gccjit::{RValue, Struct, Type};
use rustc_codegen_ssa::traits::{BaseTypeMethods, DerivedTypeMethods};
use rustc_codegen_ssa::common::TypeKind;
use rustc_middle::{bug, ty};
use rustc_middle::ty::layout::TyAndLayout;
use rustc_target::abi::{AddressSpace, Align, Integer, Size};
use crate::common::TypeReflection;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn type_ix(&self, num_bits: u64) -> Type<'gcc> {
// gcc only supports 1, 2, 4 or 8-byte integers.
// FIXME(antoyo): this is misleading to use the next power of two as rustc_codegen_ssa
// sometimes use 96-bit numbers and the following code will give an integer of a different
// size.
let bytes = (num_bits / 8).next_power_of_two() as i32;
match bytes {
1 => self.i8_type,
2 => self.i16_type,
4 => self.i32_type,
8 => self.i64_type,
16 => self.i128_type,
_ => panic!("unexpected num_bits: {}", num_bits),
}
}
pub fn type_void(&self) -> Type<'gcc> {
self.context.new_type::<()>()
}
pub fn type_size_t(&self) -> Type<'gcc> {
self.context.new_type::<usize>()
}
pub fn type_u8(&self) -> Type<'gcc> {
self.u8_type
}
pub fn type_u16(&self) -> Type<'gcc> {
self.u16_type
}
pub fn type_u32(&self) -> Type<'gcc> {
self.u32_type
}
pub fn type_u64(&self) -> Type<'gcc> {
self.u64_type
}
pub fn type_u128(&self) -> Type<'gcc> {
self.u128_type
}
pub fn type_pointee_for_align(&self, align: Align) -> Type<'gcc> {
// FIXME(eddyb) We could find a better approximation if ity.align < align.
let ity = Integer::approximate_align(self, align);
self.type_from_integer(ity)
}
pub fn type_vector(&self, ty: Type<'gcc>, len: u64) -> Type<'gcc> {
self.context.new_vector_type(ty, len)
}
pub fn type_float_from_ty(&self, t: ty::FloatTy) -> Type<'gcc> {
match t {
ty::FloatTy::F32 => self.type_f32(),
ty::FloatTy::F64 => self.type_f64(),
}
}
}
impl<'gcc, 'tcx> BaseTypeMethods<'tcx> for CodegenCx<'gcc, 'tcx> {
fn type_i1(&self) -> Type<'gcc> {
self.bool_type
}
fn type_i8(&self) -> Type<'gcc> {
self.i8_type
}
fn type_i16(&self) -> Type<'gcc> {
self.i16_type
}
fn type_i32(&self) -> Type<'gcc> {
self.i32_type
}
fn type_i64(&self) -> Type<'gcc> {
self.i64_type
}
fn type_i128(&self) -> Type<'gcc> {
self.i128_type
}
fn type_isize(&self) -> Type<'gcc> {
self.isize_type
}
fn type_f32(&self) -> Type<'gcc> {
self.context.new_type::<f32>()
}
fn type_f64(&self) -> Type<'gcc> {
self.context.new_type::<f64>()
}
fn type_func(&self, params: &[Type<'gcc>], return_type: Type<'gcc>) -> Type<'gcc> {
self.context.new_function_pointer_type(None, return_type, params, false)
}
fn type_struct(&self, fields: &[Type<'gcc>], packed: bool) -> Type<'gcc> {
let types = fields.to_vec();
if let Some(typ) = self.struct_types.borrow().get(fields) {
return typ.clone();
}
let fields: Vec<_> = fields.iter().enumerate()
.map(|(index, field)| self.context.new_field(None, *field, &format!("field{}_TODO", index)))
.collect();
let typ = self.context.new_struct_type(None, "struct", &fields).as_type();
if packed {
#[cfg(feature="master")]
typ.set_packed();
}
self.struct_types.borrow_mut().insert(types, typ);
typ
}
fn type_kind(&self, typ: Type<'gcc>) -> TypeKind {
if self.is_int_type_or_bool(typ) {
TypeKind::Integer
}
else if typ.is_compatible_with(self.float_type) {
TypeKind::Float
}
else if typ.is_compatible_with(self.double_type) {
TypeKind::Double
}
else if typ.is_vector() {
TypeKind::Vector
}
else {
// TODO(antoyo): support other types.
TypeKind::Void
}
}
fn type_ptr_to(&self, ty: Type<'gcc>) -> Type<'gcc> {
ty.make_pointer()
}
fn type_ptr_to_ext(&self, ty: Type<'gcc>, _address_space: AddressSpace) -> Type<'gcc> {
// TODO(antoyo): use address_space, perhaps with TYPE_ADDR_SPACE?
ty.make_pointer()
}
fn element_type(&self, ty: Type<'gcc>) -> Type<'gcc> {
if let Some(typ) = ty.dyncast_array() {
typ
}
else if let Some(vector_type) = ty.dyncast_vector() {
vector_type.get_element_type()
}
else if let Some(typ) = ty.get_pointee() {
typ
}
else {
unreachable!()
}
}
fn vector_length(&self, _ty: Type<'gcc>) -> usize {
unimplemented!();
}
fn float_width(&self, typ: Type<'gcc>) -> usize {
let f32 = self.context.new_type::<f32>();
let f64 = self.context.new_type::<f64>();
if typ.is_compatible_with(f32) {
32
}
else if typ.is_compatible_with(f64) {
64
}
else {
panic!("Cannot get width of float type {:?}", typ);
}
// TODO(antoyo): support other sizes.
}
fn int_width(&self, typ: Type<'gcc>) -> u64 {
self.gcc_int_width(typ)
}
fn val_ty(&self, value: RValue<'gcc>) -> Type<'gcc> {
value.get_type()
}
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn type_padding_filler(&self, size: Size, align: Align) -> Type<'gcc> {
let unit = Integer::approximate_align(self, align);
let size = size.bytes();
let unit_size = unit.size().bytes();
assert_eq!(size % unit_size, 0);
self.type_array(self.type_from_integer(unit), size / unit_size)
}
pub fn set_struct_body(&self, typ: Struct<'gcc>, fields: &[Type<'gcc>], packed: bool) {
let fields: Vec<_> = fields.iter().enumerate()
.map(|(index, field)| self.context.new_field(None, *field, &format!("field_{}", index)))
.collect();
typ.set_fields(None, &fields);
if packed {
#[cfg(feature="master")]
typ.as_type().set_packed();
}
}
pub fn type_named_struct(&self, name: &str) -> Struct<'gcc> {
self.context.new_opaque_struct_type(None, name)
}
pub fn type_array(&self, ty: Type<'gcc>, mut len: u64) -> Type<'gcc> {
if let Some(struct_type) = ty.is_struct() {
if struct_type.get_field_count() == 0 {
// NOTE: since gccjit only supports i32 for the array size and libcore's tests uses a
// size of usize::MAX in test_binary_search, we workaround this by setting the size to
// zero for ZSTs.
// FIXME(antoyo): fix gccjit API.
len = 0;
}
}
// NOTE: see note above. Some other test uses usize::MAX.
if len == u64::MAX {
len = 0;
}
let len: i32 = len.try_into().expect("array len");
self.context.new_array_type(None, ty, len)
}
pub fn type_bool(&self) -> Type<'gcc> {
self.context.new_type::<bool>()
}
}
pub fn struct_fields<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, layout: TyAndLayout<'tcx>) -> (Vec<Type<'gcc>>, bool) {
let field_count = layout.fields.count();
let mut packed = false;
let mut offset = Size::ZERO;
let mut prev_effective_align = layout.align.abi;
let mut result: Vec<_> = Vec::with_capacity(1 + field_count * 2);
for i in layout.fields.index_by_increasing_offset() {
let target_offset = layout.fields.offset(i as usize);
let field = layout.field(cx, i);
let effective_field_align =
layout.align.abi.min(field.align.abi).restrict_for_offset(target_offset);
packed |= effective_field_align < field.align.abi;
assert!(target_offset >= offset);
let padding = target_offset - offset;
let padding_align = prev_effective_align.min(effective_field_align);
assert_eq!(offset.align_to(padding_align) + padding, target_offset);
result.push(cx.type_padding_filler(padding, padding_align));
result.push(field.gcc_type(cx, !field.ty.is_any_ptr())); // FIXME(antoyo): might need to check if the type is inside another, like Box<Type>.
offset = target_offset + field.size;
prev_effective_align = effective_field_align;
}
if !layout.is_unsized() && field_count > 0 {
if offset > layout.size {
bug!("layout: {:#?} stride: {:?} offset: {:?}", layout, layout.size, offset);
}
let padding = layout.size - offset;
let padding_align = prev_effective_align;
assert_eq!(offset.align_to(padding_align) + padding, layout.size);
result.push(cx.type_padding_filler(padding, padding_align));
assert_eq!(result.len(), 1 + field_count * 2);
}
(result, packed)
}