e3f913167c
- Don't hash traits in scope as part of HIR hashing any more. - Some queries returned DefIndexes from other crates. - Provide a generic way of stably hashing maps (not used everywhere yet).
1120 lines
46 KiB
Rust
1120 lines
46 KiB
Rust
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Validates all used crates and extern libraries and loads their metadata
|
|
|
|
use cstore::{self, CStore, CrateSource, MetadataBlob};
|
|
use locator::{self, CratePaths};
|
|
use native_libs::relevant_lib;
|
|
use schema::CrateRoot;
|
|
|
|
use rustc::hir::def_id::{CrateNum, DefIndex, CRATE_DEF_INDEX};
|
|
use rustc::hir::svh::Svh;
|
|
use rustc::middle::allocator::AllocatorKind;
|
|
use rustc::middle::cstore::DepKind;
|
|
use rustc::session::Session;
|
|
use rustc::session::config::{Sanitizer, self};
|
|
use rustc_back::PanicStrategy;
|
|
use rustc::session::search_paths::PathKind;
|
|
use rustc::middle;
|
|
use rustc::middle::cstore::{validate_crate_name, ExternCrate};
|
|
use rustc::util::common::record_time;
|
|
use rustc::util::nodemap::FxHashSet;
|
|
use rustc::hir::map::Definitions;
|
|
|
|
use std::cell::{RefCell, Cell};
|
|
use std::ops::Deref;
|
|
use std::path::PathBuf;
|
|
use std::rc::Rc;
|
|
use std::{cmp, fs};
|
|
|
|
use syntax::ast;
|
|
use syntax::attr;
|
|
use syntax::ext::base::SyntaxExtension;
|
|
use syntax::symbol::Symbol;
|
|
use syntax::visit;
|
|
use syntax_pos::{Span, DUMMY_SP};
|
|
use log;
|
|
|
|
pub struct Library {
|
|
pub dylib: Option<(PathBuf, PathKind)>,
|
|
pub rlib: Option<(PathBuf, PathKind)>,
|
|
pub rmeta: Option<(PathBuf, PathKind)>,
|
|
pub metadata: MetadataBlob,
|
|
}
|
|
|
|
pub struct CrateLoader<'a> {
|
|
pub sess: &'a Session,
|
|
cstore: &'a CStore,
|
|
next_crate_num: CrateNum,
|
|
local_crate_name: Symbol,
|
|
}
|
|
|
|
fn dump_crates(cstore: &CStore) {
|
|
info!("resolved crates:");
|
|
cstore.iter_crate_data(|_, data| {
|
|
info!(" name: {}", data.name());
|
|
info!(" cnum: {}", data.cnum);
|
|
info!(" hash: {}", data.hash());
|
|
info!(" reqd: {:?}", data.dep_kind.get());
|
|
let CrateSource { dylib, rlib, rmeta } = data.source.clone();
|
|
dylib.map(|dl| info!(" dylib: {}", dl.0.display()));
|
|
rlib.map(|rl| info!(" rlib: {}", rl.0.display()));
|
|
rmeta.map(|rl| info!(" rmeta: {}", rl.0.display()));
|
|
});
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct ExternCrateInfo {
|
|
ident: Symbol,
|
|
name: Symbol,
|
|
id: ast::NodeId,
|
|
dep_kind: DepKind,
|
|
}
|
|
|
|
// Extra info about a crate loaded for plugins or exported macros.
|
|
struct ExtensionCrate {
|
|
metadata: PMDSource,
|
|
dylib: Option<PathBuf>,
|
|
target_only: bool,
|
|
}
|
|
|
|
enum PMDSource {
|
|
Registered(Rc<cstore::CrateMetadata>),
|
|
Owned(Library),
|
|
}
|
|
|
|
impl Deref for PMDSource {
|
|
type Target = MetadataBlob;
|
|
|
|
fn deref(&self) -> &MetadataBlob {
|
|
match *self {
|
|
PMDSource::Registered(ref cmd) => &cmd.blob,
|
|
PMDSource::Owned(ref lib) => &lib.metadata
|
|
}
|
|
}
|
|
}
|
|
|
|
enum LoadResult {
|
|
Previous(CrateNum),
|
|
Loaded(Library),
|
|
}
|
|
|
|
impl<'a> CrateLoader<'a> {
|
|
pub fn new(sess: &'a Session, cstore: &'a CStore, local_crate_name: &str) -> Self {
|
|
CrateLoader {
|
|
sess,
|
|
cstore,
|
|
next_crate_num: cstore.next_crate_num(),
|
|
local_crate_name: Symbol::intern(local_crate_name),
|
|
}
|
|
}
|
|
|
|
fn extract_crate_info(&self, i: &ast::Item) -> Option<ExternCrateInfo> {
|
|
match i.node {
|
|
ast::ItemKind::ExternCrate(ref path_opt) => {
|
|
debug!("resolving extern crate stmt. ident: {} path_opt: {:?}",
|
|
i.ident, path_opt);
|
|
let name = match *path_opt {
|
|
Some(name) => {
|
|
validate_crate_name(Some(self.sess), &name.as_str(),
|
|
Some(i.span));
|
|
name
|
|
}
|
|
None => i.ident.name,
|
|
};
|
|
Some(ExternCrateInfo {
|
|
ident: i.ident.name,
|
|
name,
|
|
id: i.id,
|
|
dep_kind: if attr::contains_name(&i.attrs, "no_link") {
|
|
DepKind::UnexportedMacrosOnly
|
|
} else {
|
|
DepKind::Explicit
|
|
},
|
|
})
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
fn existing_match(&self, name: Symbol, hash: Option<&Svh>, kind: PathKind)
|
|
-> Option<CrateNum> {
|
|
let mut ret = None;
|
|
self.cstore.iter_crate_data(|cnum, data| {
|
|
if data.name != name { return }
|
|
|
|
match hash {
|
|
Some(hash) if *hash == data.hash() => { ret = Some(cnum); return }
|
|
Some(..) => return,
|
|
None => {}
|
|
}
|
|
|
|
// When the hash is None we're dealing with a top-level dependency
|
|
// in which case we may have a specification on the command line for
|
|
// this library. Even though an upstream library may have loaded
|
|
// something of the same name, we have to make sure it was loaded
|
|
// from the exact same location as well.
|
|
//
|
|
// We're also sure to compare *paths*, not actual byte slices. The
|
|
// `source` stores paths which are normalized which may be different
|
|
// from the strings on the command line.
|
|
let source = &self.cstore.get_crate_data(cnum).source;
|
|
if let Some(locs) = self.sess.opts.externs.get(&*name.as_str()) {
|
|
let found = locs.iter().any(|l| {
|
|
let l = fs::canonicalize(l).ok();
|
|
source.dylib.as_ref().map(|p| &p.0) == l.as_ref() ||
|
|
source.rlib.as_ref().map(|p| &p.0) == l.as_ref()
|
|
});
|
|
if found {
|
|
ret = Some(cnum);
|
|
}
|
|
return
|
|
}
|
|
|
|
// Alright, so we've gotten this far which means that `data` has the
|
|
// right name, we don't have a hash, and we don't have a --extern
|
|
// pointing for ourselves. We're still not quite yet done because we
|
|
// have to make sure that this crate was found in the crate lookup
|
|
// path (this is a top-level dependency) as we don't want to
|
|
// implicitly load anything inside the dependency lookup path.
|
|
let prev_kind = source.dylib.as_ref().or(source.rlib.as_ref())
|
|
.or(source.rmeta.as_ref())
|
|
.expect("No sources for crate").1;
|
|
if ret.is_none() && (prev_kind == kind || prev_kind == PathKind::All) {
|
|
ret = Some(cnum);
|
|
}
|
|
});
|
|
return ret;
|
|
}
|
|
|
|
fn verify_no_symbol_conflicts(&self,
|
|
span: Span,
|
|
root: &CrateRoot) {
|
|
// Check for (potential) conflicts with the local crate
|
|
if self.local_crate_name == root.name &&
|
|
self.sess.local_crate_disambiguator() == root.disambiguator {
|
|
span_fatal!(self.sess, span, E0519,
|
|
"the current crate is indistinguishable from one of its \
|
|
dependencies: it has the same crate-name `{}` and was \
|
|
compiled with the same `-C metadata` arguments. This \
|
|
will result in symbol conflicts between the two.",
|
|
root.name)
|
|
}
|
|
|
|
// Check for conflicts with any crate loaded so far
|
|
self.cstore.iter_crate_data(|_, other| {
|
|
if other.name() == root.name && // same crate-name
|
|
other.disambiguator() == root.disambiguator && // same crate-disambiguator
|
|
other.hash() != root.hash { // but different SVH
|
|
span_fatal!(self.sess, span, E0523,
|
|
"found two different crates with name `{}` that are \
|
|
not distinguished by differing `-C metadata`. This \
|
|
will result in symbol conflicts between the two.",
|
|
root.name)
|
|
}
|
|
});
|
|
}
|
|
|
|
fn register_crate(&mut self,
|
|
root: &Option<CratePaths>,
|
|
ident: Symbol,
|
|
name: Symbol,
|
|
span: Span,
|
|
lib: Library,
|
|
dep_kind: DepKind)
|
|
-> (CrateNum, Rc<cstore::CrateMetadata>) {
|
|
info!("register crate `extern crate {} as {}`", name, ident);
|
|
let crate_root = lib.metadata.get_root();
|
|
self.verify_no_symbol_conflicts(span, &crate_root);
|
|
|
|
// Claim this crate number and cache it
|
|
let cnum = self.next_crate_num;
|
|
self.next_crate_num = CrateNum::from_u32(cnum.as_u32() + 1);
|
|
|
|
// Stash paths for top-most crate locally if necessary.
|
|
let crate_paths = if root.is_none() {
|
|
Some(CratePaths {
|
|
ident: ident.to_string(),
|
|
dylib: lib.dylib.clone().map(|p| p.0),
|
|
rlib: lib.rlib.clone().map(|p| p.0),
|
|
rmeta: lib.rmeta.clone().map(|p| p.0),
|
|
})
|
|
} else {
|
|
None
|
|
};
|
|
// Maintain a reference to the top most crate.
|
|
let root = if root.is_some() { root } else { &crate_paths };
|
|
|
|
let Library { dylib, rlib, rmeta, metadata } = lib;
|
|
|
|
let cnum_map = self.resolve_crate_deps(root, &crate_root, &metadata, cnum, span, dep_kind);
|
|
|
|
let def_path_table = record_time(&self.sess.perf_stats.decode_def_path_tables_time, || {
|
|
crate_root.def_path_table.decode(&metadata)
|
|
});
|
|
|
|
let exported_symbols = crate_root.exported_symbols.decode(&metadata).collect();
|
|
|
|
let trait_impls = crate_root
|
|
.impls
|
|
.decode(&metadata)
|
|
.map(|trait_impls| (trait_impls.trait_id, trait_impls.impls))
|
|
.collect();
|
|
|
|
let mut cmeta = cstore::CrateMetadata {
|
|
name,
|
|
extern_crate: Cell::new(None),
|
|
def_path_table: Rc::new(def_path_table),
|
|
exported_symbols,
|
|
trait_impls,
|
|
proc_macros: crate_root.macro_derive_registrar.map(|_| {
|
|
self.load_derive_macros(&crate_root, dylib.clone().map(|p| p.0), span)
|
|
}),
|
|
root: crate_root,
|
|
blob: metadata,
|
|
cnum_map: RefCell::new(cnum_map),
|
|
cnum,
|
|
codemap_import_info: RefCell::new(vec![]),
|
|
attribute_cache: RefCell::new([Vec::new(), Vec::new()]),
|
|
dep_kind: Cell::new(dep_kind),
|
|
source: cstore::CrateSource {
|
|
dylib,
|
|
rlib,
|
|
rmeta,
|
|
},
|
|
// Initialize this with an empty set. The field is populated below
|
|
// after we were able to deserialize its contents.
|
|
dllimport_foreign_items: FxHashSet(),
|
|
};
|
|
|
|
let dllimports: FxHashSet<_> = cmeta
|
|
.root
|
|
.native_libraries
|
|
.decode(&cmeta)
|
|
.filter(|lib| relevant_lib(self.sess, lib) &&
|
|
lib.kind == cstore::NativeLibraryKind::NativeUnknown)
|
|
.flat_map(|lib| {
|
|
assert!(lib.foreign_items.iter().all(|def_id| def_id.krate == cnum));
|
|
lib.foreign_items.into_iter().map(|def_id| def_id.index)
|
|
})
|
|
.collect();
|
|
|
|
cmeta.dllimport_foreign_items = dllimports;
|
|
|
|
let cmeta = Rc::new(cmeta);
|
|
self.cstore.set_crate_data(cnum, cmeta.clone());
|
|
(cnum, cmeta)
|
|
}
|
|
|
|
fn resolve_crate(&mut self,
|
|
root: &Option<CratePaths>,
|
|
ident: Symbol,
|
|
name: Symbol,
|
|
hash: Option<&Svh>,
|
|
span: Span,
|
|
path_kind: PathKind,
|
|
mut dep_kind: DepKind)
|
|
-> (CrateNum, Rc<cstore::CrateMetadata>) {
|
|
info!("resolving crate `extern crate {} as {}`", name, ident);
|
|
let result = if let Some(cnum) = self.existing_match(name, hash, path_kind) {
|
|
LoadResult::Previous(cnum)
|
|
} else {
|
|
info!("falling back to a load");
|
|
let mut locate_ctxt = locator::Context {
|
|
sess: self.sess,
|
|
span,
|
|
ident,
|
|
crate_name: name,
|
|
hash: hash.map(|a| &*a),
|
|
filesearch: self.sess.target_filesearch(path_kind),
|
|
target: &self.sess.target.target,
|
|
triple: &self.sess.opts.target_triple,
|
|
root,
|
|
rejected_via_hash: vec![],
|
|
rejected_via_triple: vec![],
|
|
rejected_via_kind: vec![],
|
|
rejected_via_version: vec![],
|
|
rejected_via_filename: vec![],
|
|
should_match_name: true,
|
|
is_proc_macro: Some(false),
|
|
metadata_loader: &*self.cstore.metadata_loader,
|
|
};
|
|
|
|
self.load(&mut locate_ctxt).or_else(|| {
|
|
dep_kind = DepKind::UnexportedMacrosOnly;
|
|
|
|
let mut proc_macro_locator = locator::Context {
|
|
target: &self.sess.host,
|
|
triple: config::host_triple(),
|
|
filesearch: self.sess.host_filesearch(path_kind),
|
|
rejected_via_hash: vec![],
|
|
rejected_via_triple: vec![],
|
|
rejected_via_kind: vec![],
|
|
rejected_via_version: vec![],
|
|
rejected_via_filename: vec![],
|
|
is_proc_macro: Some(true),
|
|
..locate_ctxt
|
|
};
|
|
|
|
self.load(&mut proc_macro_locator)
|
|
}).unwrap_or_else(|| locate_ctxt.report_errs())
|
|
};
|
|
|
|
match result {
|
|
LoadResult::Previous(cnum) => {
|
|
let data = self.cstore.get_crate_data(cnum);
|
|
if data.root.macro_derive_registrar.is_some() {
|
|
dep_kind = DepKind::UnexportedMacrosOnly;
|
|
}
|
|
data.dep_kind.set(cmp::max(data.dep_kind.get(), dep_kind));
|
|
(cnum, data)
|
|
}
|
|
LoadResult::Loaded(library) => {
|
|
self.register_crate(root, ident, name, span, library, dep_kind)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn load(&mut self, locate_ctxt: &mut locator::Context) -> Option<LoadResult> {
|
|
let library = match locate_ctxt.maybe_load_library_crate() {
|
|
Some(lib) => lib,
|
|
None => return None,
|
|
};
|
|
|
|
// In the case that we're loading a crate, but not matching
|
|
// against a hash, we could load a crate which has the same hash
|
|
// as an already loaded crate. If this is the case prevent
|
|
// duplicates by just using the first crate.
|
|
//
|
|
// Note that we only do this for target triple crates, though, as we
|
|
// don't want to match a host crate against an equivalent target one
|
|
// already loaded.
|
|
let root = library.metadata.get_root();
|
|
if locate_ctxt.triple == self.sess.opts.target_triple {
|
|
let mut result = LoadResult::Loaded(library);
|
|
self.cstore.iter_crate_data(|cnum, data| {
|
|
if data.name() == root.name && root.hash == data.hash() {
|
|
assert!(locate_ctxt.hash.is_none());
|
|
info!("load success, going to previous cnum: {}", cnum);
|
|
result = LoadResult::Previous(cnum);
|
|
}
|
|
});
|
|
Some(result)
|
|
} else {
|
|
Some(LoadResult::Loaded(library))
|
|
}
|
|
}
|
|
|
|
fn update_extern_crate(&mut self,
|
|
cnum: CrateNum,
|
|
mut extern_crate: ExternCrate,
|
|
visited: &mut FxHashSet<(CrateNum, bool)>)
|
|
{
|
|
if !visited.insert((cnum, extern_crate.direct)) { return }
|
|
|
|
let cmeta = self.cstore.get_crate_data(cnum);
|
|
let old_extern_crate = cmeta.extern_crate.get();
|
|
|
|
// Prefer:
|
|
// - something over nothing (tuple.0);
|
|
// - direct extern crate to indirect (tuple.1);
|
|
// - shorter paths to longer (tuple.2).
|
|
let new_rank = (true, extern_crate.direct, !extern_crate.path_len);
|
|
let old_rank = match old_extern_crate {
|
|
None => (false, false, !0),
|
|
Some(ref c) => (true, c.direct, !c.path_len),
|
|
};
|
|
|
|
if old_rank >= new_rank {
|
|
return; // no change needed
|
|
}
|
|
|
|
cmeta.extern_crate.set(Some(extern_crate));
|
|
// Propagate the extern crate info to dependencies.
|
|
extern_crate.direct = false;
|
|
for &dep_cnum in cmeta.cnum_map.borrow().iter() {
|
|
self.update_extern_crate(dep_cnum, extern_crate, visited);
|
|
}
|
|
}
|
|
|
|
// Go through the crate metadata and load any crates that it references
|
|
fn resolve_crate_deps(&mut self,
|
|
root: &Option<CratePaths>,
|
|
crate_root: &CrateRoot,
|
|
metadata: &MetadataBlob,
|
|
krate: CrateNum,
|
|
span: Span,
|
|
dep_kind: DepKind)
|
|
-> cstore::CrateNumMap {
|
|
debug!("resolving deps of external crate");
|
|
if crate_root.macro_derive_registrar.is_some() {
|
|
return cstore::CrateNumMap::new();
|
|
}
|
|
|
|
// The map from crate numbers in the crate we're resolving to local crate numbers.
|
|
// We map 0 and all other holes in the map to our parent crate. The "additional"
|
|
// self-dependencies should be harmless.
|
|
::std::iter::once(krate).chain(crate_root.crate_deps
|
|
.decode(metadata)
|
|
.map(|dep| {
|
|
debug!("resolving dep crate {} hash: `{}`", dep.name, dep.hash);
|
|
if dep.kind == DepKind::UnexportedMacrosOnly {
|
|
return krate;
|
|
}
|
|
let dep_kind = match dep_kind {
|
|
DepKind::MacrosOnly => DepKind::MacrosOnly,
|
|
_ => dep.kind,
|
|
};
|
|
let (local_cnum, ..) = self.resolve_crate(
|
|
root, dep.name, dep.name, Some(&dep.hash), span, PathKind::Dependency, dep_kind,
|
|
);
|
|
local_cnum
|
|
})).collect()
|
|
}
|
|
|
|
fn read_extension_crate(&mut self, span: Span, info: &ExternCrateInfo) -> ExtensionCrate {
|
|
info!("read extension crate {} `extern crate {} as {}` dep_kind={:?}",
|
|
info.id, info.name, info.ident, info.dep_kind);
|
|
let target_triple = &self.sess.opts.target_triple[..];
|
|
let is_cross = target_triple != config::host_triple();
|
|
let mut target_only = false;
|
|
let mut locate_ctxt = locator::Context {
|
|
sess: self.sess,
|
|
span,
|
|
ident: info.ident,
|
|
crate_name: info.name,
|
|
hash: None,
|
|
filesearch: self.sess.host_filesearch(PathKind::Crate),
|
|
target: &self.sess.host,
|
|
triple: config::host_triple(),
|
|
root: &None,
|
|
rejected_via_hash: vec![],
|
|
rejected_via_triple: vec![],
|
|
rejected_via_kind: vec![],
|
|
rejected_via_version: vec![],
|
|
rejected_via_filename: vec![],
|
|
should_match_name: true,
|
|
is_proc_macro: None,
|
|
metadata_loader: &*self.cstore.metadata_loader,
|
|
};
|
|
let library = self.load(&mut locate_ctxt).or_else(|| {
|
|
if !is_cross {
|
|
return None
|
|
}
|
|
// Try loading from target crates. This will abort later if we
|
|
// try to load a plugin registrar function,
|
|
target_only = true;
|
|
|
|
locate_ctxt.target = &self.sess.target.target;
|
|
locate_ctxt.triple = target_triple;
|
|
locate_ctxt.filesearch = self.sess.target_filesearch(PathKind::Crate);
|
|
|
|
self.load(&mut locate_ctxt)
|
|
});
|
|
let library = match library {
|
|
Some(l) => l,
|
|
None => locate_ctxt.report_errs(),
|
|
};
|
|
|
|
let (dylib, metadata) = match library {
|
|
LoadResult::Previous(cnum) => {
|
|
let data = self.cstore.get_crate_data(cnum);
|
|
(data.source.dylib.clone(), PMDSource::Registered(data))
|
|
}
|
|
LoadResult::Loaded(library) => {
|
|
let dylib = library.dylib.clone();
|
|
let metadata = PMDSource::Owned(library);
|
|
(dylib, metadata)
|
|
}
|
|
};
|
|
|
|
ExtensionCrate {
|
|
metadata,
|
|
dylib: dylib.map(|p| p.0),
|
|
target_only,
|
|
}
|
|
}
|
|
|
|
/// Load custom derive macros.
|
|
///
|
|
/// Note that this is intentionally similar to how we load plugins today,
|
|
/// but also intentionally separate. Plugins are likely always going to be
|
|
/// implemented as dynamic libraries, but we have a possible future where
|
|
/// custom derive (and other macro-1.1 style features) are implemented via
|
|
/// executables and custom IPC.
|
|
fn load_derive_macros(&mut self, root: &CrateRoot, dylib: Option<PathBuf>, span: Span)
|
|
-> Vec<(ast::Name, Rc<SyntaxExtension>)> {
|
|
use std::{env, mem};
|
|
use proc_macro::TokenStream;
|
|
use proc_macro::__internal::Registry;
|
|
use rustc_back::dynamic_lib::DynamicLibrary;
|
|
use syntax_ext::deriving::custom::ProcMacroDerive;
|
|
use syntax_ext::proc_macro_impl::{AttrProcMacro, BangProcMacro};
|
|
|
|
let path = match dylib {
|
|
Some(dylib) => dylib,
|
|
None => span_bug!(span, "proc-macro crate not dylib"),
|
|
};
|
|
// Make sure the path contains a / or the linker will search for it.
|
|
let path = env::current_dir().unwrap().join(path);
|
|
let lib = match DynamicLibrary::open(Some(&path)) {
|
|
Ok(lib) => lib,
|
|
Err(err) => self.sess.span_fatal(span, &err),
|
|
};
|
|
|
|
let sym = self.sess.generate_derive_registrar_symbol(root.disambiguator,
|
|
root.macro_derive_registrar.unwrap());
|
|
let registrar = unsafe {
|
|
let sym = match lib.symbol(&sym) {
|
|
Ok(f) => f,
|
|
Err(err) => self.sess.span_fatal(span, &err),
|
|
};
|
|
mem::transmute::<*mut u8, fn(&mut Registry)>(sym)
|
|
};
|
|
|
|
struct MyRegistrar(Vec<(ast::Name, Rc<SyntaxExtension>)>);
|
|
|
|
impl Registry for MyRegistrar {
|
|
fn register_custom_derive(&mut self,
|
|
trait_name: &str,
|
|
expand: fn(TokenStream) -> TokenStream,
|
|
attributes: &[&'static str]) {
|
|
let attrs = attributes.iter().cloned().map(Symbol::intern).collect::<Vec<_>>();
|
|
let derive = ProcMacroDerive::new(expand, attrs.clone());
|
|
let derive = SyntaxExtension::ProcMacroDerive(Box::new(derive), attrs);
|
|
self.0.push((Symbol::intern(trait_name), Rc::new(derive)));
|
|
}
|
|
|
|
fn register_attr_proc_macro(&mut self,
|
|
name: &str,
|
|
expand: fn(TokenStream, TokenStream) -> TokenStream) {
|
|
let expand = SyntaxExtension::AttrProcMacro(
|
|
Box::new(AttrProcMacro { inner: expand })
|
|
);
|
|
self.0.push((Symbol::intern(name), Rc::new(expand)));
|
|
}
|
|
|
|
fn register_bang_proc_macro(&mut self,
|
|
name: &str,
|
|
expand: fn(TokenStream) -> TokenStream) {
|
|
let expand = SyntaxExtension::ProcMacro(
|
|
Box::new(BangProcMacro { inner: expand })
|
|
);
|
|
self.0.push((Symbol::intern(name), Rc::new(expand)));
|
|
}
|
|
}
|
|
|
|
let mut my_registrar = MyRegistrar(Vec::new());
|
|
registrar(&mut my_registrar);
|
|
|
|
// Intentionally leak the dynamic library. We can't ever unload it
|
|
// since the library can make things that will live arbitrarily long.
|
|
mem::forget(lib);
|
|
my_registrar.0
|
|
}
|
|
|
|
/// Look for a plugin registrar. Returns library path, crate
|
|
/// SVH and DefIndex of the registrar function.
|
|
pub fn find_plugin_registrar(&mut self,
|
|
span: Span,
|
|
name: &str)
|
|
-> Option<(PathBuf, Symbol, DefIndex)> {
|
|
let ekrate = self.read_extension_crate(span, &ExternCrateInfo {
|
|
name: Symbol::intern(name),
|
|
ident: Symbol::intern(name),
|
|
id: ast::DUMMY_NODE_ID,
|
|
dep_kind: DepKind::UnexportedMacrosOnly,
|
|
});
|
|
|
|
if ekrate.target_only {
|
|
// Need to abort before syntax expansion.
|
|
let message = format!("plugin `{}` is not available for triple `{}` \
|
|
(only found {})",
|
|
name,
|
|
config::host_triple(),
|
|
self.sess.opts.target_triple);
|
|
span_fatal!(self.sess, span, E0456, "{}", &message);
|
|
}
|
|
|
|
let root = ekrate.metadata.get_root();
|
|
match (ekrate.dylib.as_ref(), root.plugin_registrar_fn) {
|
|
(Some(dylib), Some(reg)) => {
|
|
Some((dylib.to_path_buf(), root.disambiguator, reg))
|
|
}
|
|
(None, Some(_)) => {
|
|
span_err!(self.sess, span, E0457,
|
|
"plugin `{}` only found in rlib format, but must be available \
|
|
in dylib format",
|
|
name);
|
|
// No need to abort because the loading code will just ignore this
|
|
// empty dylib.
|
|
None
|
|
}
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn inject_panic_runtime(&mut self, krate: &ast::Crate) {
|
|
// If we're only compiling an rlib, then there's no need to select a
|
|
// panic runtime, so we just skip this section entirely.
|
|
let any_non_rlib = self.sess.crate_types.borrow().iter().any(|ct| {
|
|
*ct != config::CrateTypeRlib
|
|
});
|
|
if !any_non_rlib {
|
|
info!("panic runtime injection skipped, only generating rlib");
|
|
return
|
|
}
|
|
|
|
// If we need a panic runtime, we try to find an existing one here. At
|
|
// the same time we perform some general validation of the DAG we've got
|
|
// going such as ensuring everything has a compatible panic strategy.
|
|
//
|
|
// The logic for finding the panic runtime here is pretty much the same
|
|
// as the allocator case with the only addition that the panic strategy
|
|
// compilation mode also comes into play.
|
|
let desired_strategy = self.sess.panic_strategy();
|
|
let mut runtime_found = false;
|
|
let mut needs_panic_runtime = attr::contains_name(&krate.attrs,
|
|
"needs_panic_runtime");
|
|
|
|
self.cstore.iter_crate_data(|cnum, data| {
|
|
needs_panic_runtime = needs_panic_runtime ||
|
|
data.needs_panic_runtime();
|
|
if data.is_panic_runtime() {
|
|
// Inject a dependency from all #![needs_panic_runtime] to this
|
|
// #![panic_runtime] crate.
|
|
self.inject_dependency_if(cnum, "a panic runtime",
|
|
&|data| data.needs_panic_runtime());
|
|
runtime_found = runtime_found || data.dep_kind.get() == DepKind::Explicit;
|
|
}
|
|
});
|
|
|
|
// If an explicitly linked and matching panic runtime was found, or if
|
|
// we just don't need one at all, then we're done here and there's
|
|
// nothing else to do.
|
|
if !needs_panic_runtime || runtime_found {
|
|
return
|
|
}
|
|
|
|
// By this point we know that we (a) need a panic runtime and (b) no
|
|
// panic runtime was explicitly linked. Here we just load an appropriate
|
|
// default runtime for our panic strategy and then inject the
|
|
// dependencies.
|
|
//
|
|
// We may resolve to an already loaded crate (as the crate may not have
|
|
// been explicitly linked prior to this) and we may re-inject
|
|
// dependencies again, but both of those situations are fine.
|
|
//
|
|
// Also note that we have yet to perform validation of the crate graph
|
|
// in terms of everyone has a compatible panic runtime format, that's
|
|
// performed later as part of the `dependency_format` module.
|
|
let name = match desired_strategy {
|
|
PanicStrategy::Unwind => Symbol::intern("panic_unwind"),
|
|
PanicStrategy::Abort => Symbol::intern("panic_abort"),
|
|
};
|
|
info!("panic runtime not found -- loading {}", name);
|
|
|
|
let dep_kind = DepKind::Implicit;
|
|
let (cnum, data) =
|
|
self.resolve_crate(&None, name, name, None, DUMMY_SP, PathKind::Crate, dep_kind);
|
|
|
|
// Sanity check the loaded crate to ensure it is indeed a panic runtime
|
|
// and the panic strategy is indeed what we thought it was.
|
|
if !data.is_panic_runtime() {
|
|
self.sess.err(&format!("the crate `{}` is not a panic runtime",
|
|
name));
|
|
}
|
|
if data.panic_strategy() != desired_strategy {
|
|
self.sess.err(&format!("the crate `{}` does not have the panic \
|
|
strategy `{}`",
|
|
name, desired_strategy.desc()));
|
|
}
|
|
|
|
self.sess.injected_panic_runtime.set(Some(cnum));
|
|
self.inject_dependency_if(cnum, "a panic runtime",
|
|
&|data| data.needs_panic_runtime());
|
|
}
|
|
|
|
fn inject_sanitizer_runtime(&mut self) {
|
|
if let Some(ref sanitizer) = self.sess.opts.debugging_opts.sanitizer {
|
|
// Sanitizers can only be used on some tested platforms with
|
|
// executables linked to `std`
|
|
const ASAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu",
|
|
"x86_64-apple-darwin"];
|
|
const TSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu",
|
|
"x86_64-apple-darwin"];
|
|
const LSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu"];
|
|
const MSAN_SUPPORTED_TARGETS: &[&str] = &["x86_64-unknown-linux-gnu"];
|
|
|
|
let supported_targets = match *sanitizer {
|
|
Sanitizer::Address => ASAN_SUPPORTED_TARGETS,
|
|
Sanitizer::Thread => TSAN_SUPPORTED_TARGETS,
|
|
Sanitizer::Leak => LSAN_SUPPORTED_TARGETS,
|
|
Sanitizer::Memory => MSAN_SUPPORTED_TARGETS,
|
|
};
|
|
if !supported_targets.contains(&&*self.sess.target.target.llvm_target) {
|
|
self.sess.err(&format!("{:?}Sanitizer only works with the `{}` target",
|
|
sanitizer,
|
|
supported_targets.join("` or `")
|
|
));
|
|
return
|
|
}
|
|
|
|
// firstyear 2017 - during testing I was unable to access an OSX machine
|
|
// to make this work on different crate types. As a result, today I have
|
|
// only been able to test and support linux as a target.
|
|
if self.sess.target.target.llvm_target == "x86_64-unknown-linux-gnu" {
|
|
if !self.sess.crate_types.borrow().iter().all(|ct| {
|
|
match *ct {
|
|
// Link the runtime
|
|
config::CrateTypeStaticlib |
|
|
config::CrateTypeExecutable => true,
|
|
// This crate will be compiled with the required
|
|
// instrumentation pass
|
|
config::CrateTypeRlib |
|
|
config::CrateTypeDylib |
|
|
config::CrateTypeCdylib =>
|
|
false,
|
|
_ => {
|
|
self.sess.err(&format!("Only executables, staticlibs, \
|
|
cdylibs, dylibs and rlibs can be compiled with \
|
|
`-Z sanitizer`"));
|
|
false
|
|
}
|
|
}
|
|
}) {
|
|
return
|
|
}
|
|
} else {
|
|
if !self.sess.crate_types.borrow().iter().all(|ct| {
|
|
match *ct {
|
|
// Link the runtime
|
|
config::CrateTypeExecutable => true,
|
|
// This crate will be compiled with the required
|
|
// instrumentation pass
|
|
config::CrateTypeRlib => false,
|
|
_ => {
|
|
self.sess.err(&format!("Only executables and rlibs can be \
|
|
compiled with `-Z sanitizer`"));
|
|
false
|
|
}
|
|
}
|
|
}) {
|
|
return
|
|
}
|
|
}
|
|
|
|
let mut uses_std = false;
|
|
self.cstore.iter_crate_data(|_, data| {
|
|
if data.name == "std" {
|
|
uses_std = true;
|
|
}
|
|
});
|
|
|
|
if uses_std {
|
|
let name = match *sanitizer {
|
|
Sanitizer::Address => "rustc_asan",
|
|
Sanitizer::Leak => "rustc_lsan",
|
|
Sanitizer::Memory => "rustc_msan",
|
|
Sanitizer::Thread => "rustc_tsan",
|
|
};
|
|
info!("loading sanitizer: {}", name);
|
|
|
|
let symbol = Symbol::intern(name);
|
|
let dep_kind = DepKind::Explicit;
|
|
let (_, data) =
|
|
self.resolve_crate(&None, symbol, symbol, None, DUMMY_SP,
|
|
PathKind::Crate, dep_kind);
|
|
|
|
// Sanity check the loaded crate to ensure it is indeed a sanitizer runtime
|
|
if !data.is_sanitizer_runtime() {
|
|
self.sess.err(&format!("the crate `{}` is not a sanitizer runtime",
|
|
name));
|
|
}
|
|
} else {
|
|
self.sess.err(&format!("Must link std to be compiled with `-Z sanitizer`"));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn inject_profiler_runtime(&mut self) {
|
|
if self.sess.opts.debugging_opts.profile {
|
|
info!("loading profiler");
|
|
|
|
let symbol = Symbol::intern("profiler_builtins");
|
|
let dep_kind = DepKind::Implicit;
|
|
let (_, data) =
|
|
self.resolve_crate(&None, symbol, symbol, None, DUMMY_SP,
|
|
PathKind::Crate, dep_kind);
|
|
|
|
// Sanity check the loaded crate to ensure it is indeed a profiler runtime
|
|
if !data.is_profiler_runtime() {
|
|
self.sess.err(&format!("the crate `profiler_builtins` is not \
|
|
a profiler runtime"));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn inject_allocator_crate(&mut self, krate: &ast::Crate) {
|
|
let has_global_allocator = has_global_allocator(krate);
|
|
if has_global_allocator {
|
|
self.sess.has_global_allocator.set(true);
|
|
}
|
|
|
|
// Check to see if we actually need an allocator. This desire comes
|
|
// about through the `#![needs_allocator]` attribute and is typically
|
|
// written down in liballoc.
|
|
let mut needs_allocator = attr::contains_name(&krate.attrs,
|
|
"needs_allocator");
|
|
self.cstore.iter_crate_data(|_, data| {
|
|
needs_allocator = needs_allocator || data.needs_allocator();
|
|
});
|
|
if !needs_allocator {
|
|
return
|
|
}
|
|
|
|
// At this point we've determined that we need an allocator. Let's see
|
|
// if our compilation session actually needs an allocator based on what
|
|
// we're emitting.
|
|
let mut need_lib_alloc = false;
|
|
let mut need_exe_alloc = false;
|
|
for ct in self.sess.crate_types.borrow().iter() {
|
|
match *ct {
|
|
config::CrateTypeExecutable => need_exe_alloc = true,
|
|
config::CrateTypeDylib |
|
|
config::CrateTypeProcMacro |
|
|
config::CrateTypeCdylib |
|
|
config::CrateTypeStaticlib => need_lib_alloc = true,
|
|
config::CrateTypeRlib => {}
|
|
}
|
|
}
|
|
if !need_lib_alloc && !need_exe_alloc {
|
|
return
|
|
}
|
|
|
|
// Ok, we need an allocator. Not only that but we're actually going to
|
|
// create an artifact that needs one linked in. Let's go find the one
|
|
// that we're going to link in.
|
|
//
|
|
// First up we check for global allocators. Look at the crate graph here
|
|
// and see what's a global allocator, including if we ourselves are a
|
|
// global allocator.
|
|
let mut global_allocator = if has_global_allocator {
|
|
Some(None)
|
|
} else {
|
|
None
|
|
};
|
|
self.cstore.iter_crate_data(|_, data| {
|
|
if !data.has_global_allocator() {
|
|
return
|
|
}
|
|
match global_allocator {
|
|
Some(Some(other_crate)) => {
|
|
self.sess.err(&format!("the #[global_allocator] in {} \
|
|
conflicts with this global \
|
|
allocator in: {}",
|
|
other_crate,
|
|
data.name()));
|
|
}
|
|
Some(None) => {
|
|
self.sess.err(&format!("the #[global_allocator] in this \
|
|
crate conflicts with global \
|
|
allocator in: {}", data.name()));
|
|
}
|
|
None => global_allocator = Some(Some(data.name())),
|
|
}
|
|
});
|
|
if global_allocator.is_some() {
|
|
self.sess.allocator_kind.set(Some(AllocatorKind::Global));
|
|
return
|
|
}
|
|
|
|
// Ok we haven't found a global allocator but we still need an
|
|
// allocator. At this point we'll either fall back to the "library
|
|
// allocator" or the "exe allocator" depending on a few variables. Let's
|
|
// figure out which one.
|
|
//
|
|
// Note that here we favor linking to the "library allocator" as much as
|
|
// possible. If we're not creating rustc's version of libstd
|
|
// (need_lib_alloc and prefer_dynamic) then we select `None`, and if the
|
|
// exe allocation crate doesn't exist for this target then we also
|
|
// select `None`.
|
|
let exe_allocation_crate_data =
|
|
if need_lib_alloc && !self.sess.opts.cg.prefer_dynamic {
|
|
None
|
|
} else {
|
|
self.sess
|
|
.target
|
|
.target
|
|
.options
|
|
.exe_allocation_crate
|
|
.as_ref()
|
|
.map(|name| {
|
|
// We've determined that we're injecting an "exe allocator" which means
|
|
// that we're going to load up a whole new crate. An example of this is
|
|
// that we're producing a normal binary on Linux which means we need to
|
|
// load the `alloc_jemalloc` crate to link as an allocator.
|
|
let name = Symbol::intern(name);
|
|
let (cnum, data) = self.resolve_crate(&None,
|
|
name,
|
|
name,
|
|
None,
|
|
DUMMY_SP,
|
|
PathKind::Crate,
|
|
DepKind::Implicit);
|
|
self.sess.injected_allocator.set(Some(cnum));
|
|
data
|
|
})
|
|
};
|
|
|
|
let allocation_crate_data = exe_allocation_crate_data.or_else(|| {
|
|
if attr::contains_name(&krate.attrs, "default_lib_allocator") {
|
|
// Prefer self as the allocator if there's a collision
|
|
return None;
|
|
}
|
|
// We're not actually going to inject an allocator, we're going to
|
|
// require that something in our crate graph is the default lib
|
|
// allocator. This is typically libstd, so this'll rarely be an
|
|
// error.
|
|
let mut allocator = None;
|
|
self.cstore.iter_crate_data(|_, data| {
|
|
if allocator.is_none() && data.has_default_lib_allocator() {
|
|
allocator = Some(data.clone());
|
|
}
|
|
});
|
|
allocator
|
|
});
|
|
|
|
match allocation_crate_data {
|
|
Some(data) => {
|
|
// We have an allocator. We detect separately what kind it is, to allow for some
|
|
// flexibility in misconfiguration.
|
|
let attrs = data.get_item_attrs(CRATE_DEF_INDEX);
|
|
let kind_interned = attr::first_attr_value_str_by_name(&attrs, "rustc_alloc_kind")
|
|
.map(Symbol::as_str);
|
|
let kind_str = kind_interned
|
|
.as_ref()
|
|
.map(|s| s as &str);
|
|
let alloc_kind = match kind_str {
|
|
None |
|
|
Some("lib") => AllocatorKind::DefaultLib,
|
|
Some("exe") => AllocatorKind::DefaultExe,
|
|
Some(other) => {
|
|
self.sess.err(&format!("Allocator kind {} not known", other));
|
|
return;
|
|
}
|
|
};
|
|
self.sess.allocator_kind.set(Some(alloc_kind));
|
|
},
|
|
None => {
|
|
if !attr::contains_name(&krate.attrs, "default_lib_allocator") {
|
|
self.sess.err("no #[default_lib_allocator] found but one is \
|
|
required; is libstd not linked?");
|
|
return;
|
|
}
|
|
self.sess.allocator_kind.set(Some(AllocatorKind::DefaultLib));
|
|
}
|
|
}
|
|
|
|
fn has_global_allocator(krate: &ast::Crate) -> bool {
|
|
struct Finder(bool);
|
|
let mut f = Finder(false);
|
|
visit::walk_crate(&mut f, krate);
|
|
return f.0;
|
|
|
|
impl<'ast> visit::Visitor<'ast> for Finder {
|
|
fn visit_item(&mut self, i: &'ast ast::Item) {
|
|
if attr::contains_name(&i.attrs, "global_allocator") {
|
|
self.0 = true;
|
|
}
|
|
visit::walk_item(self, i)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
fn inject_dependency_if(&self,
|
|
krate: CrateNum,
|
|
what: &str,
|
|
needs_dep: &Fn(&cstore::CrateMetadata) -> bool) {
|
|
// don't perform this validation if the session has errors, as one of
|
|
// those errors may indicate a circular dependency which could cause
|
|
// this to stack overflow.
|
|
if self.sess.has_errors() {
|
|
return
|
|
}
|
|
|
|
// Before we inject any dependencies, make sure we don't inject a
|
|
// circular dependency by validating that this crate doesn't
|
|
// transitively depend on any crates satisfying `needs_dep`.
|
|
for dep in self.cstore.crate_dependencies_in_rpo(krate) {
|
|
let data = self.cstore.get_crate_data(dep);
|
|
if needs_dep(&data) {
|
|
self.sess.err(&format!("the crate `{}` cannot depend \
|
|
on a crate that needs {}, but \
|
|
it depends on `{}`",
|
|
self.cstore.get_crate_data(krate).name(),
|
|
what,
|
|
data.name()));
|
|
}
|
|
}
|
|
|
|
// All crates satisfying `needs_dep` do not explicitly depend on the
|
|
// crate provided for this compile, but in order for this compilation to
|
|
// be successfully linked we need to inject a dependency (to order the
|
|
// crates on the command line correctly).
|
|
self.cstore.iter_crate_data(|cnum, data| {
|
|
if !needs_dep(data) {
|
|
return
|
|
}
|
|
|
|
info!("injecting a dep from {} to {}", cnum, krate);
|
|
data.cnum_map.borrow_mut().push(krate);
|
|
});
|
|
}
|
|
}
|
|
|
|
impl<'a> middle::cstore::CrateLoader for CrateLoader<'a> {
|
|
fn postprocess(&mut self, krate: &ast::Crate) {
|
|
// inject the sanitizer runtime before the allocator runtime because all
|
|
// sanitizers force the use of the `alloc_system` allocator
|
|
self.inject_sanitizer_runtime();
|
|
self.inject_profiler_runtime();
|
|
self.inject_allocator_crate(krate);
|
|
self.inject_panic_runtime(krate);
|
|
|
|
if log_enabled!(log::LogLevel::Info) {
|
|
dump_crates(&self.cstore);
|
|
}
|
|
}
|
|
|
|
fn process_item(&mut self, item: &ast::Item, definitions: &Definitions) {
|
|
match item.node {
|
|
ast::ItemKind::ExternCrate(_) => {
|
|
let info = self.extract_crate_info(item).unwrap();
|
|
let (cnum, ..) = self.resolve_crate(
|
|
&None, info.ident, info.name, None, item.span, PathKind::Crate, info.dep_kind,
|
|
);
|
|
|
|
let def_id = definitions.opt_local_def_id(item.id).unwrap();
|
|
let len = definitions.def_path(def_id.index).data.len();
|
|
|
|
let extern_crate =
|
|
ExternCrate { def_id: def_id, span: item.span, direct: true, path_len: len };
|
|
self.update_extern_crate(cnum, extern_crate, &mut FxHashSet());
|
|
self.cstore.add_extern_mod_stmt_cnum(info.id, cnum);
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|