260 lines
10 KiB
Rust
260 lines
10 KiB
Rust
//! Candidate selection. See the [rustc dev guide] for more information on how this works.
|
|
//!
|
|
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
|
|
|
|
use self::EvaluationResult::*;
|
|
|
|
use super::{SelectionError, SelectionResult};
|
|
|
|
use crate::ty;
|
|
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_query_system::cache::Cache;
|
|
|
|
pub type SelectionCache<'tcx> = Cache<
|
|
ty::ParamEnvAnd<'tcx, ty::TraitRef<'tcx>>,
|
|
SelectionResult<'tcx, SelectionCandidate<'tcx>>,
|
|
>;
|
|
|
|
pub type EvaluationCache<'tcx> =
|
|
Cache<ty::ParamEnvAnd<'tcx, ty::PolyTraitRef<'tcx>>, EvaluationResult>;
|
|
|
|
/// The selection process begins by considering all impls, where
|
|
/// clauses, and so forth that might resolve an obligation. Sometimes
|
|
/// we'll be able to say definitively that (e.g.) an impl does not
|
|
/// apply to the obligation: perhaps it is defined for `usize` but the
|
|
/// obligation is for `i32`. In that case, we drop the impl out of the
|
|
/// list. But the other cases are considered *candidates*.
|
|
///
|
|
/// For selection to succeed, there must be exactly one matching
|
|
/// candidate. If the obligation is fully known, this is guaranteed
|
|
/// by coherence. However, if the obligation contains type parameters
|
|
/// or variables, there may be multiple such impls.
|
|
///
|
|
/// It is not a real problem if multiple matching impls exist because
|
|
/// of type variables - it just means the obligation isn't sufficiently
|
|
/// elaborated. In that case we report an ambiguity, and the caller can
|
|
/// try again after more type information has been gathered or report a
|
|
/// "type annotations needed" error.
|
|
///
|
|
/// However, with type parameters, this can be a real problem - type
|
|
/// parameters don't unify with regular types, but they *can* unify
|
|
/// with variables from blanket impls, and (unless we know its bounds
|
|
/// will always be satisfied) picking the blanket impl will be wrong
|
|
/// for at least *some* substitutions. To make this concrete, if we have
|
|
///
|
|
/// ```rust, ignore
|
|
/// trait AsDebug { type Out: fmt::Debug; fn debug(self) -> Self::Out; }
|
|
/// impl<T: fmt::Debug> AsDebug for T {
|
|
/// type Out = T;
|
|
/// fn debug(self) -> fmt::Debug { self }
|
|
/// }
|
|
/// fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
|
|
/// ```
|
|
///
|
|
/// we can't just use the impl to resolve the `<T as AsDebug>` obligation
|
|
/// -- a type from another crate (that doesn't implement `fmt::Debug`) could
|
|
/// implement `AsDebug`.
|
|
///
|
|
/// Because where-clauses match the type exactly, multiple clauses can
|
|
/// only match if there are unresolved variables, and we can mostly just
|
|
/// report this ambiguity in that case. This is still a problem - we can't
|
|
/// *do anything* with ambiguities that involve only regions. This is issue
|
|
/// #21974.
|
|
///
|
|
/// If a single where-clause matches and there are no inference
|
|
/// variables left, then it definitely matches and we can just select
|
|
/// it.
|
|
///
|
|
/// In fact, we even select the where-clause when the obligation contains
|
|
/// inference variables. The can lead to inference making "leaps of logic",
|
|
/// for example in this situation:
|
|
///
|
|
/// ```rust, ignore
|
|
/// pub trait Foo<T> { fn foo(&self) -> T; }
|
|
/// impl<T> Foo<()> for T { fn foo(&self) { } }
|
|
/// impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
|
|
///
|
|
/// pub fn foo<T>(t: T) where T: Foo<bool> {
|
|
/// println!("{:?}", <T as Foo<_>>::foo(&t));
|
|
/// }
|
|
/// fn main() { foo(false); }
|
|
/// ```
|
|
///
|
|
/// Here the obligation `<T as Foo<$0>>` can be matched by both the blanket
|
|
/// impl and the where-clause. We select the where-clause and unify `$0=bool`,
|
|
/// so the program prints "false". However, if the where-clause is omitted,
|
|
/// the blanket impl is selected, we unify `$0=()`, and the program prints
|
|
/// "()".
|
|
///
|
|
/// Exactly the same issues apply to projection and object candidates, except
|
|
/// that we can have both a projection candidate and a where-clause candidate
|
|
/// for the same obligation. In that case either would do (except that
|
|
/// different "leaps of logic" would occur if inference variables are
|
|
/// present), and we just pick the where-clause. This is, for example,
|
|
/// required for associated types to work in default impls, as the bounds
|
|
/// are visible both as projection bounds and as where-clauses from the
|
|
/// parameter environment.
|
|
#[derive(PartialEq, Eq, Debug, Clone, TypeFoldable)]
|
|
pub enum SelectionCandidate<'tcx> {
|
|
BuiltinCandidate {
|
|
/// `false` if there are no *further* obligations.
|
|
has_nested: bool,
|
|
},
|
|
ParamCandidate(ty::ConstnessAnd<ty::PolyTraitRef<'tcx>>),
|
|
ImplCandidate(DefId),
|
|
AutoImplCandidate(DefId),
|
|
|
|
/// This is a trait matching with a projected type as `Self`, and we found
|
|
/// an applicable bound in the trait definition. The `usize` is an index
|
|
/// into the list returned by `tcx.item_bounds`.
|
|
ProjectionCandidate(usize),
|
|
|
|
/// Implementation of a `Fn`-family trait by one of the anonymous types
|
|
/// generated for a `||` expression.
|
|
ClosureCandidate,
|
|
|
|
/// Implementation of a `Generator` trait by one of the anonymous types
|
|
/// generated for a generator.
|
|
GeneratorCandidate,
|
|
|
|
/// Implementation of a `Fn`-family trait by one of the anonymous
|
|
/// types generated for a fn pointer type (e.g., `fn(int) -> int`)
|
|
FnPointerCandidate,
|
|
|
|
/// Builtin implementation of `DiscriminantKind`.
|
|
DiscriminantKindCandidate,
|
|
|
|
TraitAliasCandidate(DefId),
|
|
|
|
/// Matching `dyn Trait` with a supertrait of `Trait`. The index is the
|
|
/// position in the iterator returned by
|
|
/// `rustc_infer::traits::util::supertraits`.
|
|
ObjectCandidate(usize),
|
|
|
|
BuiltinObjectCandidate,
|
|
|
|
BuiltinUnsizeCandidate,
|
|
}
|
|
|
|
/// The result of trait evaluation. The order is important
|
|
/// here as the evaluation of a list is the maximum of the
|
|
/// evaluations.
|
|
///
|
|
/// The evaluation results are ordered:
|
|
/// - `EvaluatedToOk` implies `EvaluatedToOkModuloRegions`
|
|
/// implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
|
|
/// - `EvaluatedToErr` implies `EvaluatedToRecur`
|
|
/// - the "union" of evaluation results is equal to their maximum -
|
|
/// all the "potential success" candidates can potentially succeed,
|
|
/// so they are noops when unioned with a definite error, and within
|
|
/// the categories it's easy to see that the unions are correct.
|
|
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq, HashStable)]
|
|
pub enum EvaluationResult {
|
|
/// Evaluation successful.
|
|
EvaluatedToOk,
|
|
/// Evaluation successful, but there were unevaluated region obligations.
|
|
EvaluatedToOkModuloRegions,
|
|
/// Evaluation is known to be ambiguous -- it *might* hold for some
|
|
/// assignment of inference variables, but it might not.
|
|
///
|
|
/// While this has the same meaning as `EvaluatedToUnknown` -- we can't
|
|
/// know whether this obligation holds or not -- it is the result we
|
|
/// would get with an empty stack, and therefore is cacheable.
|
|
EvaluatedToAmbig,
|
|
/// Evaluation failed because of recursion involving inference
|
|
/// variables. We are somewhat imprecise there, so we don't actually
|
|
/// know the real result.
|
|
///
|
|
/// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
|
|
EvaluatedToUnknown,
|
|
/// Evaluation failed because we encountered an obligation we are already
|
|
/// trying to prove on this branch.
|
|
///
|
|
/// We know this branch can't be a part of a minimal proof-tree for
|
|
/// the "root" of our cycle, because then we could cut out the recursion
|
|
/// and maintain a valid proof tree. However, this does not mean
|
|
/// that all the obligations on this branch do not hold -- it's possible
|
|
/// that we entered this branch "speculatively", and that there
|
|
/// might be some other way to prove this obligation that does not
|
|
/// go through this cycle -- so we can't cache this as a failure.
|
|
///
|
|
/// For example, suppose we have this:
|
|
///
|
|
/// ```rust,ignore (pseudo-Rust)
|
|
/// pub trait Trait { fn xyz(); }
|
|
/// // This impl is "useless", but we can still have
|
|
/// // an `impl Trait for SomeUnsizedType` somewhere.
|
|
/// impl<T: Trait + Sized> Trait for T { fn xyz() {} }
|
|
///
|
|
/// pub fn foo<T: Trait + ?Sized>() {
|
|
/// <T as Trait>::xyz();
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// When checking `foo`, we have to prove `T: Trait`. This basically
|
|
/// translates into this:
|
|
///
|
|
/// ```plain,ignore
|
|
/// (T: Trait + Sized →_\impl T: Trait), T: Trait ⊢ T: Trait
|
|
/// ```
|
|
///
|
|
/// When we try to prove it, we first go the first option, which
|
|
/// recurses. This shows us that the impl is "useless" -- it won't
|
|
/// tell us that `T: Trait` unless it already implemented `Trait`
|
|
/// by some other means. However, that does not prevent `T: Trait`
|
|
/// does not hold, because of the bound (which can indeed be satisfied
|
|
/// by `SomeUnsizedType` from another crate).
|
|
//
|
|
// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
|
|
// ought to convert it to an `EvaluatedToErr`, because we know
|
|
// there definitely isn't a proof tree for that obligation. Not
|
|
// doing so is still sound -- there isn't any proof tree, so the
|
|
// branch still can't be a part of a minimal one -- but does not re-enable caching.
|
|
EvaluatedToRecur,
|
|
/// Evaluation failed.
|
|
EvaluatedToErr,
|
|
}
|
|
|
|
impl EvaluationResult {
|
|
/// Returns `true` if this evaluation result is known to apply, even
|
|
/// considering outlives constraints.
|
|
pub fn must_apply_considering_regions(self) -> bool {
|
|
self == EvaluatedToOk
|
|
}
|
|
|
|
/// Returns `true` if this evaluation result is known to apply, ignoring
|
|
/// outlives constraints.
|
|
pub fn must_apply_modulo_regions(self) -> bool {
|
|
self <= EvaluatedToOkModuloRegions
|
|
}
|
|
|
|
pub fn may_apply(self) -> bool {
|
|
match self {
|
|
EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToUnknown => {
|
|
true
|
|
}
|
|
|
|
EvaluatedToErr | EvaluatedToRecur => false,
|
|
}
|
|
}
|
|
|
|
pub fn is_stack_dependent(self) -> bool {
|
|
match self {
|
|
EvaluatedToUnknown | EvaluatedToRecur => true,
|
|
|
|
EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToErr => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicates that trait evaluation caused overflow.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable)]
|
|
pub struct OverflowError;
|
|
|
|
impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
|
|
fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
|
|
SelectionError::Overflow
|
|
}
|
|
}
|