rust/src/libstd/io/timer.rs
Aaron Turon 15966c3c1f Remove iotest macro
This commit removes the `iotest!` macro from `std::io`. The macro was
primarily used to ensure that all io-related tests were run on both
libnative and libgreen/librustuv. However, now that the librustuv stack
is being removed, the macro is no longer needed.

See the [runtime removal
RFC](https://github.com/rust-lang/rfcs/pull/230) for more context.

[breaking-change]
2014-10-01 10:34:39 -07:00

487 lines
14 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Synchronous Timers
This module exposes the functionality to create timers, block the current task,
and create receivers which will receive notifications after a period of time.
*/
// FIXME: These functions take Durations but only pass ms to the backend impls.
use comm::{Receiver, Sender, channel};
use time::Duration;
use io::{IoResult, IoError};
use kinds::Send;
use boxed::Box;
use rt::rtio::{IoFactory, LocalIo, RtioTimer, Callback};
/// A synchronous timer object
///
/// Values of this type can be used to put the current task to sleep for a
/// period of time. Handles to this timer can also be created in the form of
/// receivers which will receive notifications over time.
///
/// # Example
///
/// ```
/// # fn main() {}
/// # fn foo() {
/// use std::io::Timer;
/// use std::time::Duration;
///
/// let mut timer = Timer::new().unwrap();
/// timer.sleep(Duration::milliseconds(10)); // block the task for awhile
///
/// let timeout = timer.oneshot(Duration::milliseconds(10));
/// // do some work
/// timeout.recv(); // wait for the timeout to expire
///
/// let periodic = timer.periodic(Duration::milliseconds(10));
/// loop {
/// periodic.recv();
/// // this loop is only executed once every 10ms
/// }
/// # }
/// ```
///
/// If only sleeping is necessary, then a convenience API is provided through
/// the `io::timer` module.
///
/// ```
/// # fn main() {}
/// # fn foo() {
/// use std::io::timer;
/// use std::time::Duration;
///
/// // Put this task to sleep for 5 seconds
/// timer::sleep(Duration::seconds(5));
/// # }
/// ```
pub struct Timer {
obj: Box<RtioTimer + Send>,
}
struct TimerCallback { tx: Sender<()> }
/// Sleep the current task for the specified duration.
///
/// When provided a zero or negative `duration`, the function will
/// return immediately.
pub fn sleep(duration: Duration) {
let timer = Timer::new();
let mut timer = timer.ok().expect("timer::sleep: could not create a Timer");
timer.sleep(duration)
}
impl Timer {
/// Creates a new timer which can be used to put the current task to sleep
/// for a number of milliseconds, or to possibly create channels which will
/// get notified after an amount of time has passed.
pub fn new() -> IoResult<Timer> {
LocalIo::maybe_raise(|io| {
io.timer_init().map(|t| Timer { obj: t })
}).map_err(IoError::from_rtio_error)
}
/// Blocks the current task for the specified duration.
///
/// Note that this function will cause any other receivers for this timer to
/// be invalidated (the other end will be closed).
///
/// When provided a zero or negative `duration`, the function will
/// return immediately.
pub fn sleep(&mut self, duration: Duration) {
// Short-circuit the timer backend for 0 duration
let ms = in_ms_u64(duration);
if ms == 0 { return }
self.obj.sleep(ms);
}
/// Creates a oneshot receiver which will have a notification sent when
/// the specified duration has elapsed.
///
/// This does *not* block the current task, but instead returns immediately.
///
/// Note that this invalidates any previous receiver which has been created
/// by this timer, and that the returned receiver will be invalidated once
/// the timer is destroyed (when it falls out of scope). In particular, if
/// this is called in method-chaining style, the receiver will be
/// invalidated at the end of that statement, and all `recv` calls will
/// fail.
///
/// # Example
///
/// ```rust
/// use std::io::Timer;
/// use std::time::Duration;
///
/// let mut timer = Timer::new().unwrap();
/// let ten_milliseconds = timer.oneshot(Duration::milliseconds(10));
///
/// for _ in range(0u, 100) { /* do work */ }
///
/// // blocks until 10 ms after the `oneshot` call
/// ten_milliseconds.recv();
/// ```
///
/// ```rust
/// use std::io::Timer;
/// use std::time::Duration;
///
/// // Incorrect, method chaining-style:
/// let mut five_ms = Timer::new().unwrap().oneshot(Duration::milliseconds(5));
/// // The timer object was destroyed, so this will always fail:
/// // five_ms.recv()
/// ```
///
/// When provided a zero or negative `duration`, the message will
/// be sent immediately.
pub fn oneshot(&mut self, duration: Duration) -> Receiver<()> {
let (tx, rx) = channel();
// Short-circuit the timer backend for 0 duration
if in_ms_u64(duration) != 0 {
self.obj.oneshot(in_ms_u64(duration), box TimerCallback { tx: tx });
} else {
tx.send(());
}
return rx
}
/// Creates a receiver which will have a continuous stream of notifications
/// being sent each time the specified duration has elapsed.
///
/// This does *not* block the current task, but instead returns
/// immediately. The first notification will not be received immediately,
/// but rather after the first duration.
///
/// Note that this invalidates any previous receiver which has been created
/// by this timer, and that the returned receiver will be invalidated once
/// the timer is destroyed (when it falls out of scope). In particular, if
/// this is called in method-chaining style, the receiver will be
/// invalidated at the end of that statement, and all `recv` calls will
/// fail.
///
/// # Example
///
/// ```rust
/// use std::io::Timer;
/// use std::time::Duration;
///
/// let mut timer = Timer::new().unwrap();
/// let ten_milliseconds = timer.periodic(Duration::milliseconds(10));
///
/// for _ in range(0u, 100) { /* do work */ }
///
/// // blocks until 10 ms after the `periodic` call
/// ten_milliseconds.recv();
///
/// for _ in range(0u, 100) { /* do work */ }
///
/// // blocks until 20 ms after the `periodic` call (*not* 10ms after the
/// // previous `recv`)
/// ten_milliseconds.recv();
/// ```
///
/// ```rust
/// use std::io::Timer;
/// use std::time::Duration;
///
/// // Incorrect, method chaining-style.
/// let mut five_ms = Timer::new().unwrap().periodic(Duration::milliseconds(5));
/// // The timer object was destroyed, so this will always fail:
/// // five_ms.recv()
/// ```
///
/// When provided a zero or negative `duration`, the messages will
/// be sent without delay.
pub fn periodic(&mut self, duration: Duration) -> Receiver<()> {
let ms = in_ms_u64(duration);
// FIXME: The backend implementations don't ever send a message
// if given a 0 ms duration. Temporarily using 1ms. It's
// not clear what use a 0ms period is anyway...
let ms = if ms == 0 { 1 } else { ms };
let (tx, rx) = channel();
self.obj.period(ms, box TimerCallback { tx: tx });
return rx
}
}
impl Callback for TimerCallback {
fn call(&mut self) {
let _ = self.tx.send_opt(());
}
}
fn in_ms_u64(d: Duration) -> u64 {
let ms = d.num_milliseconds();
if ms < 0 { return 0 };
return ms as u64;
}
#[cfg(test)]
mod test {
use super::*;
use time::Duration;
use task::spawn;
use io::*;
use prelude::*;
#[test]
fn test_io_timer_sleep_simple() {
let mut timer = Timer::new().unwrap();
timer.sleep(Duration::milliseconds(1));
}
#[test]
fn test_io_timer_sleep_oneshot() {
let mut timer = Timer::new().unwrap();
timer.oneshot(Duration::milliseconds(1)).recv();
}
#[test]
fn test_io_timer_sleep_oneshot_forget() {
let mut timer = Timer::new().unwrap();
timer.oneshot(Duration::milliseconds(100000000));
}
#[test]
fn oneshot_twice() {
let mut timer = Timer::new().unwrap();
let rx1 = timer.oneshot(Duration::milliseconds(10000));
let rx = timer.oneshot(Duration::milliseconds(1));
rx.recv();
assert_eq!(rx1.recv_opt(), Err(()));
}
#[test]
fn test_io_timer_oneshot_then_sleep() {
let mut timer = Timer::new().unwrap();
let rx = timer.oneshot(Duration::milliseconds(100000000));
timer.sleep(Duration::milliseconds(1)); // this should invalidate rx
assert_eq!(rx.recv_opt(), Err(()));
}
#[test]
fn test_io_timer_sleep_periodic() {
let mut timer = Timer::new().unwrap();
let rx = timer.periodic(Duration::milliseconds(1));
rx.recv();
rx.recv();
rx.recv();
}
#[test]
fn test_io_timer_sleep_periodic_forget() {
let mut timer = Timer::new().unwrap();
timer.periodic(Duration::milliseconds(100000000));
}
#[test]
fn test_io_timer_sleep_standalone() {
super::sleep(Duration::milliseconds(1))
}
#[test]
fn oneshot() {
let mut timer = Timer::new().unwrap();
let rx = timer.oneshot(Duration::milliseconds(1));
rx.recv();
assert!(rx.recv_opt().is_err());
let rx = timer.oneshot(Duration::milliseconds(1));
rx.recv();
assert!(rx.recv_opt().is_err());
}
#[test]
fn override() {
let mut timer = Timer::new().unwrap();
let orx = timer.oneshot(Duration::milliseconds(100));
let prx = timer.periodic(Duration::milliseconds(100));
timer.sleep(Duration::milliseconds(1));
assert_eq!(orx.recv_opt(), Err(()));
assert_eq!(prx.recv_opt(), Err(()));
timer.oneshot(Duration::milliseconds(1)).recv();
}
#[test]
fn period() {
let mut timer = Timer::new().unwrap();
let rx = timer.periodic(Duration::milliseconds(1));
rx.recv();
rx.recv();
let rx2 = timer.periodic(Duration::milliseconds(1));
rx2.recv();
rx2.recv();
}
#[test]
fn sleep() {
let mut timer = Timer::new().unwrap();
timer.sleep(Duration::milliseconds(1));
timer.sleep(Duration::milliseconds(1));
}
#[test]
#[should_fail]
fn oneshot_fail() {
let mut timer = Timer::new().unwrap();
let _rx = timer.oneshot(Duration::milliseconds(1));
fail!();
}
#[test]
#[should_fail]
fn period_fail() {
let mut timer = Timer::new().unwrap();
let _rx = timer.periodic(Duration::milliseconds(1));
fail!();
}
#[test]
#[should_fail]
fn normal_fail() {
let _timer = Timer::new().unwrap();
fail!();
}
#[test]
fn closing_channel_during_drop_doesnt_kill_everything() {
// see issue #10375
let mut timer = Timer::new().unwrap();
let timer_rx = timer.periodic(Duration::milliseconds(1000));
spawn(proc() {
let _ = timer_rx.recv_opt();
});
// when we drop the TimerWatcher we're going to destroy the channel,
// which must wake up the task on the other end
}
#[test]
fn reset_doesnt_switch_tasks() {
// similar test to the one above.
let mut timer = Timer::new().unwrap();
let timer_rx = timer.periodic(Duration::milliseconds(1000));
spawn(proc() {
let _ = timer_rx.recv_opt();
});
timer.oneshot(Duration::milliseconds(1));
}
#[test]
fn reset_doesnt_switch_tasks2() {
// similar test to the one above.
let mut timer = Timer::new().unwrap();
let timer_rx = timer.periodic(Duration::milliseconds(1000));
spawn(proc() {
let _ = timer_rx.recv_opt();
});
timer.sleep(Duration::milliseconds(1));
}
#[test]
fn sender_goes_away_oneshot() {
let rx = {
let mut timer = Timer::new().unwrap();
timer.oneshot(Duration::milliseconds(1000))
};
assert_eq!(rx.recv_opt(), Err(()));
}
#[test]
fn sender_goes_away_period() {
let rx = {
let mut timer = Timer::new().unwrap();
timer.periodic(Duration::milliseconds(1000))
};
assert_eq!(rx.recv_opt(), Err(()));
}
#[test]
fn receiver_goes_away_oneshot() {
let mut timer1 = Timer::new().unwrap();
timer1.oneshot(Duration::milliseconds(1));
let mut timer2 = Timer::new().unwrap();
// while sleeping, the previous timer should fire and not have its
// callback do something terrible.
timer2.sleep(Duration::milliseconds(2));
}
#[test]
fn receiver_goes_away_period() {
let mut timer1 = Timer::new().unwrap();
timer1.periodic(Duration::milliseconds(1));
let mut timer2 = Timer::new().unwrap();
// while sleeping, the previous timer should fire and not have its
// callback do something terrible.
timer2.sleep(Duration::milliseconds(2));
}
#[test]
fn sleep_zero() {
let mut timer = Timer::new().unwrap();
timer.sleep(Duration::milliseconds(0));
}
#[test]
fn sleep_negative() {
let mut timer = Timer::new().unwrap();
timer.sleep(Duration::milliseconds(-1000000));
}
#[test]
fn oneshot_zero() {
let mut timer = Timer::new().unwrap();
let rx = timer.oneshot(Duration::milliseconds(0));
rx.recv();
}
#[test]
fn oneshot_negative() {
let mut timer = Timer::new().unwrap();
let rx = timer.oneshot(Duration::milliseconds(-1000000));
rx.recv();
}
#[test]
fn periodic_zero() {
let mut timer = Timer::new().unwrap();
let rx = timer.periodic(Duration::milliseconds(0));
rx.recv();
rx.recv();
rx.recv();
rx.recv();
}
#[test]
fn periodic_negative() {
let mut timer = Timer::new().unwrap();
let rx = timer.periodic(Duration::milliseconds(-1000000));
rx.recv();
rx.recv();
rx.recv();
rx.recv();
}
}