1049 lines
41 KiB
Rust
1049 lines
41 KiB
Rust
use hir::def_id::DefId;
|
|
use rustc_hir as hir;
|
|
use rustc_index::bit_set::BitSet;
|
|
use rustc_index::vec::{IndexSlice, IndexVec};
|
|
use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal};
|
|
use rustc_middle::ty::layout::{
|
|
IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES,
|
|
};
|
|
use rustc_middle::ty::{
|
|
self, subst::SubstsRef, AdtDef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitableExt,
|
|
};
|
|
use rustc_session::{DataTypeKind, FieldInfo, FieldKind, SizeKind, VariantInfo};
|
|
use rustc_span::symbol::Symbol;
|
|
use rustc_span::DUMMY_SP;
|
|
use rustc_target::abi::*;
|
|
|
|
use std::fmt::Debug;
|
|
use std::iter;
|
|
|
|
use crate::errors::{
|
|
MultipleArrayFieldsSimdType, NonPrimitiveSimdType, OversizedSimdType, ZeroLengthSimdType,
|
|
};
|
|
use crate::layout_sanity_check::sanity_check_layout;
|
|
|
|
pub fn provide(providers: &mut ty::query::Providers) {
|
|
*providers = ty::query::Providers { layout_of, ..*providers };
|
|
}
|
|
|
|
#[instrument(skip(tcx, query), level = "debug")]
|
|
fn layout_of<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
|
|
) -> Result<TyAndLayout<'tcx>, LayoutError<'tcx>> {
|
|
let (param_env, ty) = query.into_parts();
|
|
debug!(?ty);
|
|
|
|
let param_env = param_env.with_reveal_all_normalized(tcx);
|
|
let unnormalized_ty = ty;
|
|
|
|
// FIXME: We might want to have two different versions of `layout_of`:
|
|
// One that can be called after typecheck has completed and can use
|
|
// `normalize_erasing_regions` here and another one that can be called
|
|
// before typecheck has completed and uses `try_normalize_erasing_regions`.
|
|
let ty = match tcx.try_normalize_erasing_regions(param_env, ty) {
|
|
Ok(t) => t,
|
|
Err(normalization_error) => {
|
|
return Err(LayoutError::NormalizationFailure(ty, normalization_error));
|
|
}
|
|
};
|
|
|
|
if ty != unnormalized_ty {
|
|
// Ensure this layout is also cached for the normalized type.
|
|
return tcx.layout_of(param_env.and(ty));
|
|
}
|
|
|
|
let cx = LayoutCx { tcx, param_env };
|
|
|
|
let layout = layout_of_uncached(&cx, ty)?;
|
|
let layout = TyAndLayout { ty, layout };
|
|
|
|
record_layout_for_printing(&cx, layout);
|
|
|
|
sanity_check_layout(&cx, &layout);
|
|
|
|
Ok(layout)
|
|
}
|
|
|
|
fn univariant_uninterned<'tcx>(
|
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|
ty: Ty<'tcx>,
|
|
fields: &IndexSlice<FieldIdx, Layout<'_>>,
|
|
repr: &ReprOptions,
|
|
kind: StructKind,
|
|
) -> Result<LayoutS, LayoutError<'tcx>> {
|
|
let dl = cx.data_layout();
|
|
let pack = repr.pack;
|
|
if pack.is_some() && repr.align.is_some() {
|
|
cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned");
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
|
|
cx.univariant(dl, fields, repr, kind).ok_or(LayoutError::SizeOverflow(ty))
|
|
}
|
|
|
|
fn layout_of_uncached<'tcx>(
|
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|
ty: Ty<'tcx>,
|
|
) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
|
|
let tcx = cx.tcx;
|
|
let param_env = cx.param_env;
|
|
let dl = cx.data_layout();
|
|
let scalar_unit = |value: Primitive| {
|
|
let size = value.size(dl);
|
|
assert!(size.bits() <= 128);
|
|
Scalar::Initialized { value, valid_range: WrappingRange::full(size) }
|
|
};
|
|
let scalar = |value: Primitive| tcx.mk_layout(LayoutS::scalar(cx, scalar_unit(value)));
|
|
|
|
let univariant = |fields: &IndexSlice<FieldIdx, Layout<'_>>, repr: &ReprOptions, kind| {
|
|
Ok(tcx.mk_layout(univariant_uninterned(cx, ty, fields, repr, kind)?))
|
|
};
|
|
debug_assert!(!ty.has_non_region_infer());
|
|
|
|
Ok(match *ty.kind() {
|
|
// Basic scalars.
|
|
ty::Bool => tcx.mk_layout(LayoutS::scalar(
|
|
cx,
|
|
Scalar::Initialized {
|
|
value: Int(I8, false),
|
|
valid_range: WrappingRange { start: 0, end: 1 },
|
|
},
|
|
)),
|
|
ty::Char => tcx.mk_layout(LayoutS::scalar(
|
|
cx,
|
|
Scalar::Initialized {
|
|
value: Int(I32, false),
|
|
valid_range: WrappingRange { start: 0, end: 0x10FFFF },
|
|
},
|
|
)),
|
|
ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)),
|
|
ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)),
|
|
ty::Float(fty) => scalar(match fty {
|
|
ty::FloatTy::F32 => F32,
|
|
ty::FloatTy::F64 => F64,
|
|
}),
|
|
ty::FnPtr(_) => {
|
|
let mut ptr = scalar_unit(Pointer(dl.instruction_address_space));
|
|
ptr.valid_range_mut().start = 1;
|
|
tcx.mk_layout(LayoutS::scalar(cx, ptr))
|
|
}
|
|
|
|
// The never type.
|
|
ty::Never => tcx.mk_layout(cx.layout_of_never_type()),
|
|
|
|
// Potentially-wide pointers.
|
|
ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => {
|
|
let mut data_ptr = scalar_unit(Pointer(AddressSpace::DATA));
|
|
if !ty.is_unsafe_ptr() {
|
|
data_ptr.valid_range_mut().start = 1;
|
|
}
|
|
|
|
let pointee = tcx.normalize_erasing_regions(param_env, pointee);
|
|
if pointee.is_sized(tcx, param_env) {
|
|
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
|
|
}
|
|
|
|
let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env);
|
|
|
|
let metadata = if let Some(metadata_def_id) = tcx.lang_items().metadata_type()
|
|
// Projection eagerly bails out when the pointee references errors,
|
|
// fall back to structurally deducing metadata.
|
|
&& !pointee.references_error()
|
|
{
|
|
let metadata_ty = tcx.normalize_erasing_regions(
|
|
param_env,
|
|
tcx.mk_projection(metadata_def_id, [pointee]),
|
|
);
|
|
let metadata_layout = cx.layout_of(metadata_ty)?;
|
|
// If the metadata is a 1-zst, then the pointer is thin.
|
|
if metadata_layout.is_zst() && metadata_layout.align.abi.bytes() == 1 {
|
|
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
|
|
}
|
|
|
|
let Abi::Scalar(metadata) = metadata_layout.abi else {
|
|
return Err(LayoutError::Unknown(unsized_part));
|
|
};
|
|
metadata
|
|
} else {
|
|
match unsized_part.kind() {
|
|
ty::Foreign(..) => {
|
|
return Ok(tcx.mk_layout(LayoutS::scalar(cx, data_ptr)));
|
|
}
|
|
ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)),
|
|
ty::Dynamic(..) => {
|
|
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
|
|
vtable.valid_range_mut().start = 1;
|
|
vtable
|
|
}
|
|
_ => {
|
|
return Err(LayoutError::Unknown(unsized_part));
|
|
}
|
|
}
|
|
};
|
|
|
|
// Effectively a (ptr, meta) tuple.
|
|
tcx.mk_layout(cx.scalar_pair(data_ptr, metadata))
|
|
}
|
|
|
|
ty::Dynamic(_, _, ty::DynStar) => {
|
|
let mut data = scalar_unit(Pointer(AddressSpace::DATA));
|
|
data.valid_range_mut().start = 0;
|
|
let mut vtable = scalar_unit(Pointer(AddressSpace::DATA));
|
|
vtable.valid_range_mut().start = 1;
|
|
tcx.mk_layout(cx.scalar_pair(data, vtable))
|
|
}
|
|
|
|
// Arrays and slices.
|
|
ty::Array(element, mut count) => {
|
|
if count.has_projections() {
|
|
count = tcx.normalize_erasing_regions(param_env, count);
|
|
if count.has_projections() {
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
}
|
|
|
|
let count =
|
|
count.try_eval_target_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?;
|
|
let element = cx.layout_of(element)?;
|
|
let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?;
|
|
|
|
let abi = if count != 0 && ty.is_privately_uninhabited(tcx, param_env) {
|
|
Abi::Uninhabited
|
|
} else {
|
|
Abi::Aggregate { sized: true }
|
|
};
|
|
|
|
let largest_niche = if count != 0 { element.largest_niche } else { None };
|
|
|
|
tcx.mk_layout(LayoutS {
|
|
variants: Variants::Single { index: FIRST_VARIANT },
|
|
fields: FieldsShape::Array { stride: element.size, count },
|
|
abi,
|
|
largest_niche,
|
|
align: element.align,
|
|
size,
|
|
})
|
|
}
|
|
ty::Slice(element) => {
|
|
let element = cx.layout_of(element)?;
|
|
tcx.mk_layout(LayoutS {
|
|
variants: Variants::Single { index: FIRST_VARIANT },
|
|
fields: FieldsShape::Array { stride: element.size, count: 0 },
|
|
abi: Abi::Aggregate { sized: false },
|
|
largest_niche: None,
|
|
align: element.align,
|
|
size: Size::ZERO,
|
|
})
|
|
}
|
|
ty::Str => tcx.mk_layout(LayoutS {
|
|
variants: Variants::Single { index: FIRST_VARIANT },
|
|
fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 },
|
|
abi: Abi::Aggregate { sized: false },
|
|
largest_niche: None,
|
|
align: dl.i8_align,
|
|
size: Size::ZERO,
|
|
}),
|
|
|
|
// Odd unit types.
|
|
ty::FnDef(..) => {
|
|
univariant(IndexSlice::empty(), &ReprOptions::default(), StructKind::AlwaysSized)?
|
|
}
|
|
ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => {
|
|
let mut unit = univariant_uninterned(
|
|
cx,
|
|
ty,
|
|
IndexSlice::empty(),
|
|
&ReprOptions::default(),
|
|
StructKind::AlwaysSized,
|
|
)?;
|
|
match unit.abi {
|
|
Abi::Aggregate { ref mut sized } => *sized = false,
|
|
_ => bug!(),
|
|
}
|
|
tcx.mk_layout(unit)
|
|
}
|
|
|
|
ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?,
|
|
|
|
ty::Closure(_, ref substs) => {
|
|
let tys = substs.as_closure().upvar_tys();
|
|
univariant(
|
|
&tys.map(|ty| Ok(cx.layout_of(ty)?.layout)).try_collect::<IndexVec<_, _>>()?,
|
|
&ReprOptions::default(),
|
|
StructKind::AlwaysSized,
|
|
)?
|
|
}
|
|
|
|
ty::Tuple(tys) => {
|
|
let kind =
|
|
if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized };
|
|
|
|
univariant(
|
|
&tys.iter().map(|k| Ok(cx.layout_of(k)?.layout)).try_collect::<IndexVec<_, _>>()?,
|
|
&ReprOptions::default(),
|
|
kind,
|
|
)?
|
|
}
|
|
|
|
// SIMD vector types.
|
|
ty::Adt(def, substs) if def.repr().simd() => {
|
|
if !def.is_struct() {
|
|
// Should have yielded E0517 by now.
|
|
tcx.sess.delay_span_bug(
|
|
DUMMY_SP,
|
|
"#[repr(simd)] was applied to an ADT that is not a struct",
|
|
);
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
|
|
let fields = &def.non_enum_variant().fields;
|
|
|
|
// Supported SIMD vectors are homogeneous ADTs with at least one field:
|
|
//
|
|
// * #[repr(simd)] struct S(T, T, T, T);
|
|
// * #[repr(simd)] struct S { x: T, y: T, z: T, w: T }
|
|
// * #[repr(simd)] struct S([T; 4])
|
|
//
|
|
// where T is a primitive scalar (integer/float/pointer).
|
|
|
|
// SIMD vectors with zero fields are not supported.
|
|
// (should be caught by typeck)
|
|
if fields.is_empty() {
|
|
tcx.sess.emit_fatal(ZeroLengthSimdType { ty })
|
|
}
|
|
|
|
// Type of the first ADT field:
|
|
let f0_ty = fields[FieldIdx::from_u32(0)].ty(tcx, substs);
|
|
|
|
// Heterogeneous SIMD vectors are not supported:
|
|
// (should be caught by typeck)
|
|
for fi in fields {
|
|
if fi.ty(tcx, substs) != f0_ty {
|
|
tcx.sess.delay_span_bug(
|
|
DUMMY_SP,
|
|
"#[repr(simd)] was applied to an ADT with heterogeneous field type",
|
|
);
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
}
|
|
|
|
// The element type and number of elements of the SIMD vector
|
|
// are obtained from:
|
|
//
|
|
// * the element type and length of the single array field, if
|
|
// the first field is of array type, or
|
|
//
|
|
// * the homogeneous field type and the number of fields.
|
|
let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() {
|
|
// First ADT field is an array:
|
|
|
|
// SIMD vectors with multiple array fields are not supported:
|
|
// Can't be caught by typeck with a generic simd type.
|
|
if def.non_enum_variant().fields.len() != 1 {
|
|
tcx.sess.emit_fatal(MultipleArrayFieldsSimdType { ty });
|
|
}
|
|
|
|
// Extract the number of elements from the layout of the array field:
|
|
let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else {
|
|
return Err(LayoutError::Unknown(ty));
|
|
};
|
|
|
|
(*e_ty, *count, true)
|
|
} else {
|
|
// First ADT field is not an array:
|
|
(f0_ty, def.non_enum_variant().fields.len() as _, false)
|
|
};
|
|
|
|
// SIMD vectors of zero length are not supported.
|
|
// Additionally, lengths are capped at 2^16 as a fixed maximum backends must
|
|
// support.
|
|
//
|
|
// Can't be caught in typeck if the array length is generic.
|
|
if e_len == 0 {
|
|
tcx.sess.emit_fatal(ZeroLengthSimdType { ty });
|
|
} else if e_len > MAX_SIMD_LANES {
|
|
tcx.sess.emit_fatal(OversizedSimdType { ty, max_lanes: MAX_SIMD_LANES });
|
|
}
|
|
|
|
// Compute the ABI of the element type:
|
|
let e_ly = cx.layout_of(e_ty)?;
|
|
let Abi::Scalar(e_abi) = e_ly.abi else {
|
|
// This error isn't caught in typeck, e.g., if
|
|
// the element type of the vector is generic.
|
|
tcx.sess.emit_fatal(NonPrimitiveSimdType { ty, e_ty });
|
|
};
|
|
|
|
// Compute the size and alignment of the vector:
|
|
let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?;
|
|
let align = dl.vector_align(size);
|
|
let size = size.align_to(align.abi);
|
|
|
|
// Compute the placement of the vector fields:
|
|
let fields = if is_array {
|
|
FieldsShape::Arbitrary { offsets: [Size::ZERO].into(), memory_index: [0].into() }
|
|
} else {
|
|
FieldsShape::Array { stride: e_ly.size, count: e_len }
|
|
};
|
|
|
|
tcx.mk_layout(LayoutS {
|
|
variants: Variants::Single { index: FIRST_VARIANT },
|
|
fields,
|
|
abi: Abi::Vector { element: e_abi, count: e_len },
|
|
largest_niche: e_ly.largest_niche,
|
|
size,
|
|
align,
|
|
})
|
|
}
|
|
|
|
// ADTs.
|
|
ty::Adt(def, substs) => {
|
|
// Cache the field layouts.
|
|
let variants = def
|
|
.variants()
|
|
.iter()
|
|
.map(|v| {
|
|
v.fields
|
|
.iter()
|
|
.map(|field| Ok(cx.layout_of(field.ty(tcx, substs))?.layout))
|
|
.try_collect::<IndexVec<_, _>>()
|
|
})
|
|
.try_collect::<IndexVec<VariantIdx, _>>()?;
|
|
|
|
if def.is_union() {
|
|
if def.repr().pack.is_some() && def.repr().align.is_some() {
|
|
cx.tcx.sess.delay_span_bug(
|
|
tcx.def_span(def.did()),
|
|
"union cannot be packed and aligned",
|
|
);
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
|
|
return Ok(tcx.mk_layout(
|
|
cx.layout_of_union(&def.repr(), &variants).ok_or(LayoutError::Unknown(ty))?,
|
|
));
|
|
}
|
|
|
|
tcx.mk_layout(
|
|
cx.layout_of_struct_or_enum(
|
|
&def.repr(),
|
|
&variants,
|
|
def.is_enum(),
|
|
def.is_unsafe_cell(),
|
|
tcx.layout_scalar_valid_range(def.did()),
|
|
|min, max| Integer::repr_discr(tcx, ty, &def.repr(), min, max),
|
|
def.is_enum()
|
|
.then(|| def.discriminants(tcx).map(|(v, d)| (v, d.val as i128)))
|
|
.into_iter()
|
|
.flatten(),
|
|
def.repr().inhibit_enum_layout_opt()
|
|
|| def
|
|
.variants()
|
|
.iter_enumerated()
|
|
.any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())),
|
|
{
|
|
let param_env = tcx.param_env(def.did());
|
|
def.is_struct()
|
|
&& match def.variants().iter().next().and_then(|x| x.fields.raw.last())
|
|
{
|
|
Some(last_field) => tcx
|
|
.type_of(last_field.did)
|
|
.subst_identity()
|
|
.is_sized(tcx, param_env),
|
|
None => false,
|
|
}
|
|
},
|
|
)
|
|
.ok_or(LayoutError::SizeOverflow(ty))?,
|
|
)
|
|
}
|
|
|
|
// Types with no meaningful known layout.
|
|
ty::Alias(..) => {
|
|
// NOTE(eddyb) `layout_of` query should've normalized these away,
|
|
// if that was possible, so there's no reason to try again here.
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
|
|
ty::Bound(..) | ty::GeneratorWitness(..) | ty::GeneratorWitnessMIR(..) | ty::Infer(_) => {
|
|
bug!("Layout::compute: unexpected type `{}`", ty)
|
|
}
|
|
|
|
ty::Placeholder(..) | ty::Param(_) | ty::Error(_) => {
|
|
return Err(LayoutError::Unknown(ty));
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Overlap eligibility and variant assignment for each GeneratorSavedLocal.
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
enum SavedLocalEligibility {
|
|
Unassigned,
|
|
Assigned(VariantIdx),
|
|
Ineligible(Option<FieldIdx>),
|
|
}
|
|
|
|
// When laying out generators, we divide our saved local fields into two
|
|
// categories: overlap-eligible and overlap-ineligible.
|
|
//
|
|
// Those fields which are ineligible for overlap go in a "prefix" at the
|
|
// beginning of the layout, and always have space reserved for them.
|
|
//
|
|
// Overlap-eligible fields are only assigned to one variant, so we lay
|
|
// those fields out for each variant and put them right after the
|
|
// prefix.
|
|
//
|
|
// Finally, in the layout details, we point to the fields from the
|
|
// variants they are assigned to. It is possible for some fields to be
|
|
// included in multiple variants. No field ever "moves around" in the
|
|
// layout; its offset is always the same.
|
|
//
|
|
// Also included in the layout are the upvars and the discriminant.
|
|
// These are included as fields on the "outer" layout; they are not part
|
|
// of any variant.
|
|
|
|
/// Compute the eligibility and assignment of each local.
|
|
fn generator_saved_local_eligibility(
|
|
info: &GeneratorLayout<'_>,
|
|
) -> (BitSet<GeneratorSavedLocal>, IndexVec<GeneratorSavedLocal, SavedLocalEligibility>) {
|
|
use SavedLocalEligibility::*;
|
|
|
|
let mut assignments: IndexVec<GeneratorSavedLocal, SavedLocalEligibility> =
|
|
IndexVec::from_elem(Unassigned, &info.field_tys);
|
|
|
|
// The saved locals not eligible for overlap. These will get
|
|
// "promoted" to the prefix of our generator.
|
|
let mut ineligible_locals = BitSet::new_empty(info.field_tys.len());
|
|
|
|
// Figure out which of our saved locals are fields in only
|
|
// one variant. The rest are deemed ineligible for overlap.
|
|
for (variant_index, fields) in info.variant_fields.iter_enumerated() {
|
|
for local in fields {
|
|
match assignments[*local] {
|
|
Unassigned => {
|
|
assignments[*local] = Assigned(variant_index);
|
|
}
|
|
Assigned(idx) => {
|
|
// We've already seen this local at another suspension
|
|
// point, so it is no longer a candidate.
|
|
trace!(
|
|
"removing local {:?} in >1 variant ({:?}, {:?})",
|
|
local,
|
|
variant_index,
|
|
idx
|
|
);
|
|
ineligible_locals.insert(*local);
|
|
assignments[*local] = Ineligible(None);
|
|
}
|
|
Ineligible(_) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Next, check every pair of eligible locals to see if they
|
|
// conflict.
|
|
for local_a in info.storage_conflicts.rows() {
|
|
let conflicts_a = info.storage_conflicts.count(local_a);
|
|
if ineligible_locals.contains(local_a) {
|
|
continue;
|
|
}
|
|
|
|
for local_b in info.storage_conflicts.iter(local_a) {
|
|
// local_a and local_b are storage live at the same time, therefore they
|
|
// cannot overlap in the generator layout. The only way to guarantee
|
|
// this is if they are in the same variant, or one is ineligible
|
|
// (which means it is stored in every variant).
|
|
if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] {
|
|
continue;
|
|
}
|
|
|
|
// If they conflict, we will choose one to make ineligible.
|
|
// This is not always optimal; it's just a greedy heuristic that
|
|
// seems to produce good results most of the time.
|
|
let conflicts_b = info.storage_conflicts.count(local_b);
|
|
let (remove, other) =
|
|
if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) };
|
|
ineligible_locals.insert(remove);
|
|
assignments[remove] = Ineligible(None);
|
|
trace!("removing local {:?} due to conflict with {:?}", remove, other);
|
|
}
|
|
}
|
|
|
|
// Count the number of variants in use. If only one of them, then it is
|
|
// impossible to overlap any locals in our layout. In this case it's
|
|
// always better to make the remaining locals ineligible, so we can
|
|
// lay them out with the other locals in the prefix and eliminate
|
|
// unnecessary padding bytes.
|
|
{
|
|
let mut used_variants = BitSet::new_empty(info.variant_fields.len());
|
|
for assignment in &assignments {
|
|
if let Assigned(idx) = assignment {
|
|
used_variants.insert(*idx);
|
|
}
|
|
}
|
|
if used_variants.count() < 2 {
|
|
for assignment in assignments.iter_mut() {
|
|
*assignment = Ineligible(None);
|
|
}
|
|
ineligible_locals.insert_all();
|
|
}
|
|
}
|
|
|
|
// Write down the order of our locals that will be promoted to the prefix.
|
|
{
|
|
for (idx, local) in ineligible_locals.iter().enumerate() {
|
|
assignments[local] = Ineligible(Some(FieldIdx::from_usize(idx)));
|
|
}
|
|
}
|
|
debug!("generator saved local assignments: {:?}", assignments);
|
|
|
|
(ineligible_locals, assignments)
|
|
}
|
|
|
|
/// Compute the full generator layout.
|
|
fn generator_layout<'tcx>(
|
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|
ty: Ty<'tcx>,
|
|
def_id: hir::def_id::DefId,
|
|
substs: SubstsRef<'tcx>,
|
|
) -> Result<Layout<'tcx>, LayoutError<'tcx>> {
|
|
use SavedLocalEligibility::*;
|
|
let tcx = cx.tcx;
|
|
let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs);
|
|
|
|
let Some(info) = tcx.generator_layout(def_id) else {
|
|
return Err(LayoutError::Unknown(ty));
|
|
};
|
|
let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info);
|
|
|
|
// Build a prefix layout, including "promoting" all ineligible
|
|
// locals as part of the prefix. We compute the layout of all of
|
|
// these fields at once to get optimal packing.
|
|
let tag_index = substs.as_generator().prefix_tys().count();
|
|
|
|
// `info.variant_fields` already accounts for the reserved variants, so no need to add them.
|
|
let max_discr = (info.variant_fields.len() - 1) as u128;
|
|
let discr_int = Integer::fit_unsigned(max_discr);
|
|
let tag = Scalar::Initialized {
|
|
value: Primitive::Int(discr_int, false),
|
|
valid_range: WrappingRange { start: 0, end: max_discr },
|
|
};
|
|
let tag_layout = cx.tcx.mk_layout(LayoutS::scalar(cx, tag));
|
|
|
|
let promoted_layouts = ineligible_locals
|
|
.iter()
|
|
.map(|local| subst_field(info.field_tys[local].ty))
|
|
.map(|ty| tcx.mk_maybe_uninit(ty))
|
|
.map(|ty| Ok(cx.layout_of(ty)?.layout));
|
|
let prefix_layouts = substs
|
|
.as_generator()
|
|
.prefix_tys()
|
|
.map(|ty| Ok(cx.layout_of(ty)?.layout))
|
|
.chain(iter::once(Ok(tag_layout)))
|
|
.chain(promoted_layouts)
|
|
.try_collect::<IndexVec<_, _>>()?;
|
|
let prefix = univariant_uninterned(
|
|
cx,
|
|
ty,
|
|
&prefix_layouts,
|
|
&ReprOptions::default(),
|
|
StructKind::AlwaysSized,
|
|
)?;
|
|
|
|
let (prefix_size, prefix_align) = (prefix.size, prefix.align);
|
|
|
|
// Split the prefix layout into the "outer" fields (upvars and
|
|
// discriminant) and the "promoted" fields. Promoted fields will
|
|
// get included in each variant that requested them in
|
|
// GeneratorLayout.
|
|
debug!("prefix = {:#?}", prefix);
|
|
let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields {
|
|
FieldsShape::Arbitrary { mut offsets, memory_index } => {
|
|
let mut inverse_memory_index = memory_index.invert_bijective_mapping();
|
|
|
|
// "a" (`0..b_start`) and "b" (`b_start..`) correspond to
|
|
// "outer" and "promoted" fields respectively.
|
|
let b_start = FieldIdx::from_usize(tag_index + 1);
|
|
let offsets_b = IndexVec::from_raw(offsets.raw.split_off(b_start.as_usize()));
|
|
let offsets_a = offsets;
|
|
|
|
// Disentangle the "a" and "b" components of `inverse_memory_index`
|
|
// by preserving the order but keeping only one disjoint "half" each.
|
|
// FIXME(eddyb) build a better abstraction for permutations, if possible.
|
|
let inverse_memory_index_b: IndexVec<u32, FieldIdx> = inverse_memory_index
|
|
.iter()
|
|
.filter_map(|&i| i.as_u32().checked_sub(b_start.as_u32()).map(FieldIdx::from_u32))
|
|
.collect();
|
|
inverse_memory_index.raw.retain(|&i| i < b_start);
|
|
let inverse_memory_index_a = inverse_memory_index;
|
|
|
|
// Since `inverse_memory_index_{a,b}` each only refer to their
|
|
// respective fields, they can be safely inverted
|
|
let memory_index_a = inverse_memory_index_a.invert_bijective_mapping();
|
|
let memory_index_b = inverse_memory_index_b.invert_bijective_mapping();
|
|
|
|
let outer_fields =
|
|
FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a };
|
|
(outer_fields, offsets_b, memory_index_b)
|
|
}
|
|
_ => bug!(),
|
|
};
|
|
|
|
let mut size = prefix.size;
|
|
let mut align = prefix.align;
|
|
let variants = info
|
|
.variant_fields
|
|
.iter_enumerated()
|
|
.map(|(index, variant_fields)| {
|
|
// Only include overlap-eligible fields when we compute our variant layout.
|
|
let variant_only_tys = variant_fields
|
|
.iter()
|
|
.filter(|local| match assignments[**local] {
|
|
Unassigned => bug!(),
|
|
Assigned(v) if v == index => true,
|
|
Assigned(_) => bug!("assignment does not match variant"),
|
|
Ineligible(_) => false,
|
|
})
|
|
.map(|local| subst_field(info.field_tys[*local].ty));
|
|
|
|
let mut variant = univariant_uninterned(
|
|
cx,
|
|
ty,
|
|
&variant_only_tys
|
|
.map(|ty| Ok(cx.layout_of(ty)?.layout))
|
|
.try_collect::<IndexVec<_, _>>()?,
|
|
&ReprOptions::default(),
|
|
StructKind::Prefixed(prefix_size, prefix_align.abi),
|
|
)?;
|
|
variant.variants = Variants::Single { index };
|
|
|
|
let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else {
|
|
bug!();
|
|
};
|
|
|
|
// Now, stitch the promoted and variant-only fields back together in
|
|
// the order they are mentioned by our GeneratorLayout.
|
|
// Because we only use some subset (that can differ between variants)
|
|
// of the promoted fields, we can't just pick those elements of the
|
|
// `promoted_memory_index` (as we'd end up with gaps).
|
|
// So instead, we build an "inverse memory_index", as if all of the
|
|
// promoted fields were being used, but leave the elements not in the
|
|
// subset as `INVALID_FIELD_IDX`, which we can filter out later to
|
|
// obtain a valid (bijective) mapping.
|
|
const INVALID_FIELD_IDX: FieldIdx = FieldIdx::MAX;
|
|
debug_assert!(variant_fields.next_index() <= INVALID_FIELD_IDX);
|
|
|
|
let mut combined_inverse_memory_index = IndexVec::from_elem_n(
|
|
INVALID_FIELD_IDX,
|
|
promoted_memory_index.len() + memory_index.len(),
|
|
);
|
|
let mut offsets_and_memory_index = iter::zip(offsets, memory_index);
|
|
let combined_offsets = variant_fields
|
|
.iter_enumerated()
|
|
.map(|(i, local)| {
|
|
let (offset, memory_index) = match assignments[*local] {
|
|
Unassigned => bug!(),
|
|
Assigned(_) => {
|
|
let (offset, memory_index) = offsets_and_memory_index.next().unwrap();
|
|
(offset, promoted_memory_index.len() as u32 + memory_index)
|
|
}
|
|
Ineligible(field_idx) => {
|
|
let field_idx = field_idx.unwrap();
|
|
(promoted_offsets[field_idx], promoted_memory_index[field_idx])
|
|
}
|
|
};
|
|
combined_inverse_memory_index[memory_index] = i;
|
|
offset
|
|
})
|
|
.collect();
|
|
|
|
// Remove the unused slots and invert the mapping to obtain the
|
|
// combined `memory_index` (also see previous comment).
|
|
combined_inverse_memory_index.raw.retain(|&i| i != INVALID_FIELD_IDX);
|
|
let combined_memory_index = combined_inverse_memory_index.invert_bijective_mapping();
|
|
|
|
variant.fields = FieldsShape::Arbitrary {
|
|
offsets: combined_offsets,
|
|
memory_index: combined_memory_index,
|
|
};
|
|
|
|
size = size.max(variant.size);
|
|
align = align.max(variant.align);
|
|
Ok(variant)
|
|
})
|
|
.try_collect::<IndexVec<VariantIdx, _>>()?;
|
|
|
|
size = size.align_to(align.abi);
|
|
|
|
let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi.is_uninhabited()) {
|
|
Abi::Uninhabited
|
|
} else {
|
|
Abi::Aggregate { sized: true }
|
|
};
|
|
|
|
let layout = tcx.mk_layout(LayoutS {
|
|
variants: Variants::Multiple {
|
|
tag,
|
|
tag_encoding: TagEncoding::Direct,
|
|
tag_field: tag_index,
|
|
variants,
|
|
},
|
|
fields: outer_fields,
|
|
abi,
|
|
largest_niche: prefix.largest_niche,
|
|
size,
|
|
align,
|
|
});
|
|
debug!("generator layout ({:?}): {:#?}", ty, layout);
|
|
Ok(layout)
|
|
}
|
|
|
|
/// This is invoked by the `layout_of` query to record the final
|
|
/// layout of each type.
|
|
#[inline(always)]
|
|
fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) {
|
|
// If we are running with `-Zprint-type-sizes`, maybe record layouts
|
|
// for dumping later.
|
|
if cx.tcx.sess.opts.unstable_opts.print_type_sizes {
|
|
record_layout_for_printing_outlined(cx, layout)
|
|
}
|
|
}
|
|
|
|
fn record_layout_for_printing_outlined<'tcx>(
|
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|
layout: TyAndLayout<'tcx>,
|
|
) {
|
|
// Ignore layouts that are done with non-empty environments or
|
|
// non-monomorphic layouts, as the user only wants to see the stuff
|
|
// resulting from the final codegen session.
|
|
if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() {
|
|
return;
|
|
}
|
|
|
|
// (delay format until we actually need it)
|
|
let record = |kind, packed, opt_discr_size, variants| {
|
|
let type_desc = format!("{:?}", layout.ty);
|
|
cx.tcx.sess.code_stats.record_type_size(
|
|
kind,
|
|
type_desc,
|
|
layout.align.abi,
|
|
layout.size,
|
|
packed,
|
|
opt_discr_size,
|
|
variants,
|
|
);
|
|
};
|
|
|
|
match *layout.ty.kind() {
|
|
ty::Adt(adt_def, _) => {
|
|
debug!("print-type-size t: `{:?}` process adt", layout.ty);
|
|
let adt_kind = adt_def.adt_kind();
|
|
let adt_packed = adt_def.repr().pack.is_some();
|
|
let (variant_infos, opt_discr_size) = variant_info_for_adt(cx, layout, adt_def);
|
|
record(adt_kind.into(), adt_packed, opt_discr_size, variant_infos);
|
|
}
|
|
|
|
ty::Generator(def_id, substs, _) => {
|
|
debug!("print-type-size t: `{:?}` record generator", layout.ty);
|
|
// Generators always have a begin/poisoned/end state with additional suspend points
|
|
let (variant_infos, opt_discr_size) =
|
|
variant_info_for_generator(cx, layout, def_id, substs);
|
|
record(DataTypeKind::Generator, false, opt_discr_size, variant_infos);
|
|
}
|
|
|
|
ty::Closure(..) => {
|
|
debug!("print-type-size t: `{:?}` record closure", layout.ty);
|
|
record(DataTypeKind::Closure, false, None, vec![]);
|
|
}
|
|
|
|
_ => {
|
|
debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty);
|
|
}
|
|
};
|
|
}
|
|
|
|
fn variant_info_for_adt<'tcx>(
|
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|
layout: TyAndLayout<'tcx>,
|
|
adt_def: AdtDef<'tcx>,
|
|
) -> (Vec<VariantInfo>, Option<Size>) {
|
|
let build_variant_info = |n: Option<Symbol>, flds: &[Symbol], layout: TyAndLayout<'tcx>| {
|
|
let mut min_size = Size::ZERO;
|
|
let field_info: Vec<_> = flds
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, &name)| {
|
|
let field_layout = layout.field(cx, i);
|
|
let offset = layout.fields.offset(i);
|
|
min_size = min_size.max(offset + field_layout.size);
|
|
FieldInfo {
|
|
kind: FieldKind::AdtField,
|
|
name,
|
|
offset: offset.bytes(),
|
|
size: field_layout.size.bytes(),
|
|
align: field_layout.align.abi.bytes(),
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
VariantInfo {
|
|
name: n,
|
|
kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact },
|
|
align: layout.align.abi.bytes(),
|
|
size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() },
|
|
fields: field_info,
|
|
}
|
|
};
|
|
|
|
match layout.variants {
|
|
Variants::Single { index } => {
|
|
if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive {
|
|
debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name);
|
|
let variant_def = &adt_def.variant(index);
|
|
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
|
|
(vec![build_variant_info(Some(variant_def.name), &fields, layout)], None)
|
|
} else {
|
|
(vec![], None)
|
|
}
|
|
}
|
|
|
|
Variants::Multiple { tag, ref tag_encoding, .. } => {
|
|
debug!(
|
|
"print-type-size `{:#?}` adt general variants def {}",
|
|
layout.ty,
|
|
adt_def.variants().len()
|
|
);
|
|
let variant_infos: Vec<_> = adt_def
|
|
.variants()
|
|
.iter_enumerated()
|
|
.map(|(i, variant_def)| {
|
|
let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect();
|
|
build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i))
|
|
})
|
|
.collect();
|
|
|
|
(
|
|
variant_infos,
|
|
match tag_encoding {
|
|
TagEncoding::Direct => Some(tag.size(cx)),
|
|
_ => None,
|
|
},
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn variant_info_for_generator<'tcx>(
|
|
cx: &LayoutCx<'tcx, TyCtxt<'tcx>>,
|
|
layout: TyAndLayout<'tcx>,
|
|
def_id: DefId,
|
|
substs: ty::SubstsRef<'tcx>,
|
|
) -> (Vec<VariantInfo>, Option<Size>) {
|
|
let Variants::Multiple { tag, ref tag_encoding, tag_field, .. } = layout.variants else {
|
|
return (vec![], None);
|
|
};
|
|
|
|
let (generator, state_specific_names) = cx.tcx.generator_layout_and_saved_local_names(def_id);
|
|
let upvar_names = cx.tcx.closure_saved_names_of_captured_variables(def_id);
|
|
|
|
let mut upvars_size = Size::ZERO;
|
|
let upvar_fields: Vec<_> = substs
|
|
.as_generator()
|
|
.upvar_tys()
|
|
.zip(upvar_names)
|
|
.enumerate()
|
|
.map(|(field_idx, (_, name))| {
|
|
let field_layout = layout.field(cx, field_idx);
|
|
let offset = layout.fields.offset(field_idx);
|
|
upvars_size = upvars_size.max(offset + field_layout.size);
|
|
FieldInfo {
|
|
kind: FieldKind::Upvar,
|
|
name: Symbol::intern(&name),
|
|
offset: offset.bytes(),
|
|
size: field_layout.size.bytes(),
|
|
align: field_layout.align.abi.bytes(),
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
let mut variant_infos: Vec<_> = generator
|
|
.variant_fields
|
|
.iter_enumerated()
|
|
.map(|(variant_idx, variant_def)| {
|
|
let variant_layout = layout.for_variant(cx, variant_idx);
|
|
let mut variant_size = Size::ZERO;
|
|
let fields = variant_def
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(field_idx, local)| {
|
|
let field_layout = variant_layout.field(cx, field_idx);
|
|
let offset = variant_layout.fields.offset(field_idx);
|
|
// The struct is as large as the last field's end
|
|
variant_size = variant_size.max(offset + field_layout.size);
|
|
FieldInfo {
|
|
kind: FieldKind::GeneratorLocal,
|
|
name: state_specific_names.get(*local).copied().flatten().unwrap_or(
|
|
Symbol::intern(&format!(".generator_field{}", local.as_usize())),
|
|
),
|
|
offset: offset.bytes(),
|
|
size: field_layout.size.bytes(),
|
|
align: field_layout.align.abi.bytes(),
|
|
}
|
|
})
|
|
.chain(upvar_fields.iter().copied())
|
|
.collect();
|
|
|
|
// If the variant has no state-specific fields, then it's the size of the upvars.
|
|
if variant_size == Size::ZERO {
|
|
variant_size = upvars_size;
|
|
}
|
|
|
|
// This `if` deserves some explanation.
|
|
//
|
|
// The layout code has a choice of where to place the discriminant of this generator.
|
|
// If the discriminant of the generator is placed early in the layout (before the
|
|
// variant's own fields), then it'll implicitly be counted towards the size of the
|
|
// variant, since we use the maximum offset to calculate size.
|
|
// (side-note: I know this is a bit problematic given upvars placement, etc).
|
|
//
|
|
// This is important, since the layout printing code always subtracts this discriminant
|
|
// size from the variant size if the struct is "enum"-like, so failing to account for it
|
|
// will either lead to numerical underflow, or an underreported variant size...
|
|
//
|
|
// However, if the discriminant is placed past the end of the variant, then we need
|
|
// to factor in the size of the discriminant manually. This really should be refactored
|
|
// better, but this "works" for now.
|
|
if layout.fields.offset(tag_field) >= variant_size {
|
|
variant_size += match tag_encoding {
|
|
TagEncoding::Direct => tag.size(cx),
|
|
_ => Size::ZERO,
|
|
};
|
|
}
|
|
|
|
VariantInfo {
|
|
name: Some(Symbol::intern(&ty::GeneratorSubsts::variant_name(variant_idx))),
|
|
kind: SizeKind::Exact,
|
|
size: variant_size.bytes(),
|
|
align: variant_layout.align.abi.bytes(),
|
|
fields,
|
|
}
|
|
})
|
|
.collect();
|
|
|
|
// The first three variants are hardcoded to be `UNRESUMED`, `RETURNED` and `POISONED`.
|
|
// We will move the `RETURNED` and `POISONED` elements to the end so we
|
|
// are left with a sorting order according to the generators yield points:
|
|
// First `Unresumed`, then the `SuspendN` followed by `Returned` and `Panicked` (POISONED).
|
|
let end_states = variant_infos.drain(1..=2);
|
|
let end_states: Vec<_> = end_states.collect();
|
|
variant_infos.extend(end_states);
|
|
|
|
(
|
|
variant_infos,
|
|
match tag_encoding {
|
|
TagEncoding::Direct => Some(tag.size(cx)),
|
|
_ => None,
|
|
},
|
|
)
|
|
}
|