rust/compiler/rustc_passes/src/stability.rs
Michael Goulet d46451ce2c
Rollup merge of #100431 - compiler-errors:enum-ctor-variant-stab, r=estebank
Enum variant ctor inherits the stability of the enum variant

Fixes #100399
Fixes #100420

Context #71481 for why enum variants don't need stability
2022-08-13 21:06:50 -07:00

1135 lines
44 KiB
Rust

//! A pass that annotates every item and method with its stability level,
//! propagating default levels lexically from parent to children ast nodes.
use rustc_attr::{
self as attr, ConstStability, Stability, StabilityLevel, Unstable, UnstableReason,
};
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
use rustc_errors::{struct_span_err, Applicability};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{LocalDefId, CRATE_DEF_ID};
use rustc_hir::hir_id::CRATE_HIR_ID;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{FieldDef, Item, ItemKind, TraitRef, Ty, TyKind, Variant};
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::privacy::AccessLevels;
use rustc_middle::middle::stability::{AllowUnstable, DeprecationEntry, Index};
use rustc_middle::ty::{query::Providers, TyCtxt};
use rustc_session::lint;
use rustc_session::lint::builtin::{INEFFECTIVE_UNSTABLE_TRAIT_IMPL, USELESS_DEPRECATED};
use rustc_session::Session;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::Span;
use rustc_target::spec::abi::Abi;
use std::cmp::Ordering;
use std::iter;
use std::mem::replace;
use std::num::NonZeroU32;
#[derive(PartialEq)]
enum AnnotationKind {
/// Annotation is required if not inherited from unstable parents.
Required,
/// Annotation is useless, reject it.
Prohibited,
/// Deprecation annotation is useless, reject it. (Stability attribute is still required.)
DeprecationProhibited,
/// Annotation itself is useless, but it can be propagated to children.
Container,
}
/// Whether to inherit deprecation flags for nested items. In most cases, we do want to inherit
/// deprecation, because nested items rarely have individual deprecation attributes, and so
/// should be treated as deprecated if their parent is. However, default generic parameters
/// have separate deprecation attributes from their parents, so we do not wish to inherit
/// deprecation in this case. For example, inheriting deprecation for `T` in `Foo<T>`
/// would cause a duplicate warning arising from both `Foo` and `T` being deprecated.
#[derive(Clone)]
enum InheritDeprecation {
Yes,
No,
}
impl InheritDeprecation {
fn yes(&self) -> bool {
matches!(self, InheritDeprecation::Yes)
}
}
/// Whether to inherit const stability flags for nested items. In most cases, we do not want to
/// inherit const stability: just because an enclosing `fn` is const-stable does not mean
/// all `extern` imports declared in it should be const-stable! However, trait methods
/// inherit const stability attributes from their parent and do not have their own.
enum InheritConstStability {
Yes,
No,
}
impl InheritConstStability {
fn yes(&self) -> bool {
matches!(self, InheritConstStability::Yes)
}
}
enum InheritStability {
Yes,
No,
}
impl InheritStability {
fn yes(&self) -> bool {
matches!(self, InheritStability::Yes)
}
}
/// A private tree-walker for producing an `Index`.
struct Annotator<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
index: &'a mut Index,
parent_stab: Option<Stability>,
parent_const_stab: Option<ConstStability>,
parent_depr: Option<DeprecationEntry>,
in_trait_impl: bool,
}
impl<'a, 'tcx> Annotator<'a, 'tcx> {
/// Determine the stability for a node based on its attributes and inherited stability. The
/// stability is recorded in the index and used as the parent. If the node is a function,
/// `fn_sig` is its signature.
fn annotate<F>(
&mut self,
def_id: LocalDefId,
item_sp: Span,
fn_sig: Option<&'tcx hir::FnSig<'tcx>>,
kind: AnnotationKind,
inherit_deprecation: InheritDeprecation,
inherit_const_stability: InheritConstStability,
inherit_from_parent: InheritStability,
visit_children: F,
) where
F: FnOnce(&mut Self),
{
let attrs = self.tcx.hir().attrs(self.tcx.hir().local_def_id_to_hir_id(def_id));
debug!("annotate(id = {:?}, attrs = {:?})", def_id, attrs);
let depr = attr::find_deprecation(&self.tcx.sess, attrs);
let mut is_deprecated = false;
if let Some((depr, span)) = &depr {
is_deprecated = true;
if kind == AnnotationKind::Prohibited || kind == AnnotationKind::DeprecationProhibited {
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
self.tcx.struct_span_lint_hir(USELESS_DEPRECATED, hir_id, *span, |lint| {
lint.build("this `#[deprecated]` annotation has no effect")
.span_suggestion_short(
*span,
"remove the unnecessary deprecation attribute",
"",
rustc_errors::Applicability::MachineApplicable,
)
.emit();
});
}
// `Deprecation` is just two pointers, no need to intern it
let depr_entry = DeprecationEntry::local(*depr, def_id);
self.index.depr_map.insert(def_id, depr_entry);
} else if let Some(parent_depr) = self.parent_depr {
if inherit_deprecation.yes() {
is_deprecated = true;
info!("tagging child {:?} as deprecated from parent", def_id);
self.index.depr_map.insert(def_id, parent_depr);
}
}
if !self.tcx.features().staged_api {
// Propagate unstability. This can happen even for non-staged-api crates in case
// -Zforce-unstable-if-unmarked is set.
if let Some(stab) = self.parent_stab {
if inherit_deprecation.yes() && stab.is_unstable() {
self.index.stab_map.insert(def_id, stab);
}
}
self.recurse_with_stability_attrs(
depr.map(|(d, _)| DeprecationEntry::local(d, def_id)),
None,
None,
visit_children,
);
return;
}
let (stab, const_stab, body_stab) = attr::find_stability(&self.tcx.sess, attrs, item_sp);
let mut const_span = None;
let const_stab = const_stab.map(|(const_stab, const_span_node)| {
self.index.const_stab_map.insert(def_id, const_stab);
const_span = Some(const_span_node);
const_stab
});
// If the current node is a function, has const stability attributes and if it doesn not have an intrinsic ABI,
// check if the function/method is const or the parent impl block is const
if let (Some(const_span), Some(fn_sig)) = (const_span, fn_sig) {
if fn_sig.header.abi != Abi::RustIntrinsic
&& fn_sig.header.abi != Abi::PlatformIntrinsic
&& !fn_sig.header.is_const()
{
if !self.in_trait_impl
|| (self.in_trait_impl && !self.tcx.is_const_fn_raw(def_id.to_def_id()))
{
missing_const_err(&self.tcx.sess, fn_sig.span, const_span);
}
}
}
// `impl const Trait for Type` items forward their const stability to their
// immediate children.
if const_stab.is_none() {
debug!("annotate: const_stab not found, parent = {:?}", self.parent_const_stab);
if let Some(parent) = self.parent_const_stab {
if parent.is_const_unstable() {
self.index.const_stab_map.insert(def_id, parent);
}
}
}
if let Some((rustc_attr::Deprecation { is_since_rustc_version: true, .. }, span)) = &depr {
if stab.is_none() {
struct_span_err!(
self.tcx.sess,
*span,
E0549,
"deprecated attribute must be paired with \
either stable or unstable attribute"
)
.emit();
}
}
if let Some((body_stab, _span)) = body_stab {
// FIXME: check that this item can have body stability
self.index.default_body_stab_map.insert(def_id, body_stab);
debug!(?self.index.default_body_stab_map);
}
let stab = stab.map(|(stab, span)| {
// Error if prohibited, or can't inherit anything from a container.
if kind == AnnotationKind::Prohibited
|| (kind == AnnotationKind::Container && stab.level.is_stable() && is_deprecated)
{
self.tcx.sess.struct_span_err(span,"this stability annotation is useless")
.span_label(span, "useless stability annotation")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
}
debug!("annotate: found {:?}", stab);
// Check if deprecated_since < stable_since. If it is,
// this is *almost surely* an accident.
if let (&Some(dep_since), &attr::Stable { since: stab_since, .. }) =
(&depr.as_ref().and_then(|(d, _)| d.since), &stab.level)
{
// Explicit version of iter::order::lt to handle parse errors properly
for (dep_v, stab_v) in
iter::zip(dep_since.as_str().split('.'), stab_since.as_str().split('.'))
{
match stab_v.parse::<u64>() {
Err(_) => {
self.tcx.sess.struct_span_err(span, "invalid stability version found")
.span_label(span, "invalid stability version")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
break;
}
Ok(stab_vp) => match dep_v.parse::<u64>() {
Ok(dep_vp) => match dep_vp.cmp(&stab_vp) {
Ordering::Less => {
self.tcx.sess.struct_span_err(span, "an API can't be stabilized after it is deprecated")
.span_label(span, "invalid version")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
break;
}
Ordering::Equal => continue,
Ordering::Greater => break,
},
Err(_) => {
if dep_v != "TBD" {
self.tcx.sess.struct_span_err(span, "invalid deprecation version found")
.span_label(span, "invalid deprecation version")
.span_label(item_sp, "the stability attribute annotates this item")
.emit();
}
break;
}
},
}
}
}
if let Stability { level: Unstable { implied_by: Some(implied_by), .. }, feature } = stab {
self.index.implications.insert(implied_by, feature);
}
self.index.stab_map.insert(def_id, stab);
stab
});
if stab.is_none() {
debug!("annotate: stab not found, parent = {:?}", self.parent_stab);
if let Some(stab) = self.parent_stab {
if inherit_deprecation.yes() && stab.is_unstable() || inherit_from_parent.yes() {
self.index.stab_map.insert(def_id, stab);
}
}
}
self.recurse_with_stability_attrs(
depr.map(|(d, _)| DeprecationEntry::local(d, def_id)),
stab,
if inherit_const_stability.yes() { const_stab } else { None },
visit_children,
);
}
fn recurse_with_stability_attrs(
&mut self,
depr: Option<DeprecationEntry>,
stab: Option<Stability>,
const_stab: Option<ConstStability>,
f: impl FnOnce(&mut Self),
) {
// These will be `Some` if this item changes the corresponding stability attribute.
let mut replaced_parent_depr = None;
let mut replaced_parent_stab = None;
let mut replaced_parent_const_stab = None;
if let Some(depr) = depr {
replaced_parent_depr = Some(replace(&mut self.parent_depr, Some(depr)));
}
if let Some(stab) = stab {
replaced_parent_stab = Some(replace(&mut self.parent_stab, Some(stab)));
}
if let Some(const_stab) = const_stab {
replaced_parent_const_stab =
Some(replace(&mut self.parent_const_stab, Some(const_stab)));
}
f(self);
if let Some(orig_parent_depr) = replaced_parent_depr {
self.parent_depr = orig_parent_depr;
}
if let Some(orig_parent_stab) = replaced_parent_stab {
self.parent_stab = orig_parent_stab;
}
if let Some(orig_parent_const_stab) = replaced_parent_const_stab {
self.parent_const_stab = orig_parent_const_stab;
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for Annotator<'a, 'tcx> {
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, i: &'tcx Item<'tcx>) {
let orig_in_trait_impl = self.in_trait_impl;
let mut kind = AnnotationKind::Required;
let mut const_stab_inherit = InheritConstStability::No;
let mut fn_sig = None;
match i.kind {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this instability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
hir::ItemKind::Impl(hir::Impl { of_trait: None, .. })
| hir::ItemKind::ForeignMod { .. } => {
self.in_trait_impl = false;
kind = AnnotationKind::Container;
}
hir::ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => {
self.in_trait_impl = true;
kind = AnnotationKind::DeprecationProhibited;
const_stab_inherit = InheritConstStability::Yes;
}
hir::ItemKind::Struct(ref sd, _) => {
if let Some(ctor_hir_id) = sd.ctor_hir_id() {
self.annotate(
self.tcx.hir().local_def_id(ctor_hir_id),
i.span,
None,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|_| {},
)
}
}
hir::ItemKind::Fn(ref item_fn_sig, _, _) => {
fn_sig = Some(item_fn_sig);
}
_ => {}
}
self.annotate(
i.def_id,
i.span,
fn_sig,
kind,
InheritDeprecation::Yes,
const_stab_inherit,
InheritStability::No,
|v| intravisit::walk_item(v, i),
);
self.in_trait_impl = orig_in_trait_impl;
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem<'tcx>) {
let fn_sig = match ti.kind {
hir::TraitItemKind::Fn(ref fn_sig, _) => Some(fn_sig),
_ => None,
};
self.annotate(
ti.def_id,
ti.span,
fn_sig,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_trait_item(v, ti);
},
);
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem<'tcx>) {
let kind =
if self.in_trait_impl { AnnotationKind::Prohibited } else { AnnotationKind::Required };
let fn_sig = match ii.kind {
hir::ImplItemKind::Fn(ref fn_sig, _) => Some(fn_sig),
_ => None,
};
self.annotate(
ii.def_id,
ii.span,
fn_sig,
kind,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_impl_item(v, ii);
},
);
}
fn visit_variant(&mut self, var: &'tcx Variant<'tcx>) {
self.annotate(
self.tcx.hir().local_def_id(var.id),
var.span,
None,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|v| {
if let Some(ctor_hir_id) = var.data.ctor_hir_id() {
v.annotate(
v.tcx.hir().local_def_id(ctor_hir_id),
var.span,
None,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|_| {},
);
}
intravisit::walk_variant(v, var)
},
)
}
fn visit_field_def(&mut self, s: &'tcx FieldDef<'tcx>) {
self.annotate(
self.tcx.hir().local_def_id(s.hir_id),
s.span,
None,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::Yes,
|v| {
intravisit::walk_field_def(v, s);
},
);
}
fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem<'tcx>) {
self.annotate(
i.def_id,
i.span,
None,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_foreign_item(v, i);
},
);
}
fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam<'tcx>) {
let kind = match &p.kind {
// Allow stability attributes on default generic arguments.
hir::GenericParamKind::Type { default: Some(_), .. }
| hir::GenericParamKind::Const { default: Some(_), .. } => AnnotationKind::Container,
_ => AnnotationKind::Prohibited,
};
self.annotate(
self.tcx.hir().local_def_id(p.hir_id),
p.span,
None,
kind,
InheritDeprecation::No,
InheritConstStability::No,
InheritStability::No,
|v| {
intravisit::walk_generic_param(v, p);
},
);
}
}
struct MissingStabilityAnnotations<'tcx> {
tcx: TyCtxt<'tcx>,
access_levels: &'tcx AccessLevels,
}
impl<'tcx> MissingStabilityAnnotations<'tcx> {
fn check_missing_stability(&self, def_id: LocalDefId, span: Span) {
let stab = self.tcx.stability().local_stability(def_id);
if !self.tcx.sess.opts.test && stab.is_none() && self.access_levels.is_reachable(def_id) {
let descr = self.tcx.def_kind(def_id).descr(def_id.to_def_id());
self.tcx.sess.span_err(span, &format!("{} has missing stability attribute", descr));
}
}
fn check_missing_const_stability(&self, def_id: LocalDefId, span: Span) {
if !self.tcx.features().staged_api {
return;
}
let is_const = self.tcx.is_const_fn(def_id.to_def_id())
|| self.tcx.is_const_trait_impl_raw(def_id.to_def_id());
let is_stable = self
.tcx
.lookup_stability(def_id)
.map_or(false, |stability| stability.level.is_stable());
let missing_const_stability_attribute = self.tcx.lookup_const_stability(def_id).is_none();
let is_reachable = self.access_levels.is_reachable(def_id);
if is_const && is_stable && missing_const_stability_attribute && is_reachable {
let descr = self.tcx.def_kind(def_id).descr(def_id.to_def_id());
self.tcx.sess.span_err(span, &format!("{descr} has missing const stability attribute"));
}
}
}
impl<'tcx> Visitor<'tcx> for MissingStabilityAnnotations<'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, i: &'tcx Item<'tcx>) {
// Inherent impls and foreign modules serve only as containers for other items,
// they don't have their own stability. They still can be annotated as unstable
// and propagate this instability to children, but this annotation is completely
// optional. They inherit stability from their parents when unannotated.
if !matches!(
i.kind,
hir::ItemKind::Impl(hir::Impl { of_trait: None, .. })
| hir::ItemKind::ForeignMod { .. }
) {
self.check_missing_stability(i.def_id, i.span);
}
// Ensure stable `const fn` have a const stability attribute.
self.check_missing_const_stability(i.def_id, i.span);
intravisit::walk_item(self, i)
}
fn visit_trait_item(&mut self, ti: &'tcx hir::TraitItem<'tcx>) {
self.check_missing_stability(ti.def_id, ti.span);
intravisit::walk_trait_item(self, ti);
}
fn visit_impl_item(&mut self, ii: &'tcx hir::ImplItem<'tcx>) {
let impl_def_id = self.tcx.hir().get_parent_item(ii.hir_id());
if self.tcx.impl_trait_ref(impl_def_id).is_none() {
self.check_missing_stability(ii.def_id, ii.span);
self.check_missing_const_stability(ii.def_id, ii.span);
}
intravisit::walk_impl_item(self, ii);
}
fn visit_variant(&mut self, var: &'tcx Variant<'tcx>) {
self.check_missing_stability(self.tcx.hir().local_def_id(var.id), var.span);
if let Some(ctor_hir_id) = var.data.ctor_hir_id() {
self.check_missing_stability(self.tcx.hir().local_def_id(ctor_hir_id), var.span);
}
intravisit::walk_variant(self, var);
}
fn visit_field_def(&mut self, s: &'tcx FieldDef<'tcx>) {
self.check_missing_stability(self.tcx.hir().local_def_id(s.hir_id), s.span);
intravisit::walk_field_def(self, s);
}
fn visit_foreign_item(&mut self, i: &'tcx hir::ForeignItem<'tcx>) {
self.check_missing_stability(i.def_id, i.span);
intravisit::walk_foreign_item(self, i);
}
// Note that we don't need to `check_missing_stability` for default generic parameters,
// as we assume that any default generic parameters without attributes are automatically
// stable (assuming they have not inherited instability from their parent).
}
fn stability_index(tcx: TyCtxt<'_>, (): ()) -> Index {
let mut index = Index {
stab_map: Default::default(),
const_stab_map: Default::default(),
default_body_stab_map: Default::default(),
depr_map: Default::default(),
implications: Default::default(),
};
{
let mut annotator = Annotator {
tcx,
index: &mut index,
parent_stab: None,
parent_const_stab: None,
parent_depr: None,
in_trait_impl: false,
};
// If the `-Z force-unstable-if-unmarked` flag is passed then we provide
// a parent stability annotation which indicates that this is private
// with the `rustc_private` feature. This is intended for use when
// compiling `librustc_*` crates themselves so we can leverage crates.io
// while maintaining the invariant that all sysroot crates are unstable
// by default and are unable to be used.
if tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
let stability = Stability {
level: attr::StabilityLevel::Unstable {
reason: UnstableReason::Default,
issue: NonZeroU32::new(27812),
is_soft: false,
implied_by: None,
},
feature: sym::rustc_private,
};
annotator.parent_stab = Some(stability);
}
annotator.annotate(
CRATE_DEF_ID,
tcx.hir().span(CRATE_HIR_ID),
None,
AnnotationKind::Required,
InheritDeprecation::Yes,
InheritConstStability::No,
InheritStability::No,
|v| tcx.hir().walk_toplevel_module(v),
);
}
index
}
/// Cross-references the feature names of unstable APIs with enabled
/// features and possibly prints errors.
fn check_mod_unstable_api_usage(tcx: TyCtxt<'_>, module_def_id: LocalDefId) {
tcx.hir().visit_item_likes_in_module(module_def_id, &mut Checker { tcx });
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers {
check_mod_unstable_api_usage,
stability_index,
stability_implications: |tcx, _| tcx.stability().implications.clone(),
lookup_stability: |tcx, id| tcx.stability().local_stability(id.expect_local()),
lookup_const_stability: |tcx, id| tcx.stability().local_const_stability(id.expect_local()),
lookup_default_body_stability: |tcx, id| {
tcx.stability().local_default_body_stability(id.expect_local())
},
lookup_deprecation_entry: |tcx, id| {
tcx.stability().local_deprecation_entry(id.expect_local())
},
..*providers
};
}
struct Checker<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> Visitor<'tcx> for Checker<'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
/// Because stability levels are scoped lexically, we want to walk
/// nested items in the context of the outer item, so enable
/// deep-walking.
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
match item.kind {
hir::ItemKind::ExternCrate(_) => {
// compiler-generated `extern crate` items have a dummy span.
// `std` is still checked for the `restricted-std` feature.
if item.span.is_dummy() && item.ident.name != sym::std {
return;
}
let Some(cnum) = self.tcx.extern_mod_stmt_cnum(item.def_id) else {
return;
};
let def_id = cnum.as_def_id();
self.tcx.check_stability(def_id, Some(item.hir_id()), item.span, None);
}
// For implementations of traits, check the stability of each item
// individually as it's possible to have a stable trait with unstable
// items.
hir::ItemKind::Impl(hir::Impl {
of_trait: Some(ref t),
self_ty,
items,
constness,
..
}) => {
let features = self.tcx.features();
if features.staged_api {
let attrs = self.tcx.hir().attrs(item.hir_id());
let (stab, const_stab, _) =
attr::find_stability(&self.tcx.sess, attrs, item.span);
// If this impl block has an #[unstable] attribute, give an
// error if all involved types and traits are stable, because
// it will have no effect.
// See: https://github.com/rust-lang/rust/issues/55436
if let Some((Stability { level: attr::Unstable { .. }, .. }, span)) = stab {
let mut c = CheckTraitImplStable { tcx: self.tcx, fully_stable: true };
c.visit_ty(self_ty);
c.visit_trait_ref(t);
if c.fully_stable {
self.tcx.struct_span_lint_hir(
INEFFECTIVE_UNSTABLE_TRAIT_IMPL,
item.hir_id(),
span,
|lint| {lint
.build("an `#[unstable]` annotation here has no effect")
.note("see issue #55436 <https://github.com/rust-lang/rust/issues/55436> for more information")
.emit();}
);
}
}
// `#![feature(const_trait_impl)]` is unstable, so any impl declared stable
// needs to have an error emitted.
if features.const_trait_impl
&& *constness == hir::Constness::Const
&& const_stab.map_or(false, |(stab, _)| stab.is_const_stable())
{
self.tcx
.sess
.struct_span_err(item.span, "trait implementations cannot be const stable yet")
.note("see issue #67792 <https://github.com/rust-lang/rust/issues/67792> for more information")
.emit();
}
}
for impl_item_ref in *items {
let impl_item = self.tcx.associated_item(impl_item_ref.id.def_id);
if let Some(def_id) = impl_item.trait_item_def_id {
// Pass `None` to skip deprecation warnings.
self.tcx.check_stability(def_id, None, impl_item_ref.span, None);
}
}
}
_ => (/* pass */),
}
intravisit::walk_item(self, item);
}
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, id: hir::HirId) {
if let Some(def_id) = path.res.opt_def_id() {
let method_span = path.segments.last().map(|s| s.ident.span);
let item_is_allowed = self.tcx.check_stability_allow_unstable(
def_id,
Some(id),
path.span,
method_span,
if is_unstable_reexport(self.tcx, id) {
AllowUnstable::Yes
} else {
AllowUnstable::No
},
);
let is_allowed_through_unstable_modules = |def_id| {
self.tcx
.lookup_stability(def_id)
.map(|stab| match stab.level {
StabilityLevel::Stable { allowed_through_unstable_modules, .. } => {
allowed_through_unstable_modules
}
_ => false,
})
.unwrap_or(false)
};
if item_is_allowed && !is_allowed_through_unstable_modules(def_id) {
// Check parent modules stability as well if the item the path refers to is itself
// stable. We only emit warnings for unstable path segments if the item is stable
// or allowed because stability is often inherited, so the most common case is that
// both the segments and the item are unstable behind the same feature flag.
//
// We check here rather than in `visit_path_segment` to prevent visiting the last
// path segment twice
//
// We include special cases via #[rustc_allowed_through_unstable_modules] for items
// that were accidentally stabilized through unstable paths before this check was
// added, such as `core::intrinsics::transmute`
let parents = path.segments.iter().rev().skip(1);
for path_segment in parents {
if let Some(def_id) = path_segment.res.as_ref().and_then(Res::opt_def_id) {
// use `None` for id to prevent deprecation check
self.tcx.check_stability_allow_unstable(
def_id,
None,
path.span,
None,
if is_unstable_reexport(self.tcx, id) {
AllowUnstable::Yes
} else {
AllowUnstable::No
},
);
}
}
}
}
intravisit::walk_path(self, path)
}
}
/// Check whether a path is a `use` item that has been marked as unstable.
///
/// See issue #94972 for details on why this is a special case
fn is_unstable_reexport<'tcx>(tcx: TyCtxt<'tcx>, id: hir::HirId) -> bool {
// Get the LocalDefId so we can lookup the item to check the kind.
let Some(def_id) = tcx.hir().opt_local_def_id(id) else { return false; };
let Some(stab) = tcx.stability().local_stability(def_id) else {
return false;
};
if stab.level.is_stable() {
// The re-export is not marked as unstable, don't override
return false;
}
// If this is a path that isn't a use, we don't need to do anything special
if !matches!(tcx.hir().item(hir::ItemId { def_id }).kind, ItemKind::Use(..)) {
return false;
}
true
}
struct CheckTraitImplStable<'tcx> {
tcx: TyCtxt<'tcx>,
fully_stable: bool,
}
impl<'tcx> Visitor<'tcx> for CheckTraitImplStable<'tcx> {
fn visit_path(&mut self, path: &'tcx hir::Path<'tcx>, _id: hir::HirId) {
if let Some(def_id) = path.res.opt_def_id() {
if let Some(stab) = self.tcx.lookup_stability(def_id) {
self.fully_stable &= stab.level.is_stable();
}
}
intravisit::walk_path(self, path)
}
fn visit_trait_ref(&mut self, t: &'tcx TraitRef<'tcx>) {
if let Res::Def(DefKind::Trait, trait_did) = t.path.res {
if let Some(stab) = self.tcx.lookup_stability(trait_did) {
self.fully_stable &= stab.level.is_stable();
}
}
intravisit::walk_trait_ref(self, t)
}
fn visit_ty(&mut self, t: &'tcx Ty<'tcx>) {
if let TyKind::Never = t.kind {
self.fully_stable = false;
}
intravisit::walk_ty(self, t)
}
}
/// Given the list of enabled features that were not language features (i.e., that
/// were expected to be library features), and the list of features used from
/// libraries, identify activated features that don't exist and error about them.
pub fn check_unused_or_stable_features(tcx: TyCtxt<'_>) {
let is_staged_api =
tcx.sess.opts.unstable_opts.force_unstable_if_unmarked || tcx.features().staged_api;
if is_staged_api {
let access_levels = &tcx.privacy_access_levels(());
let mut missing = MissingStabilityAnnotations { tcx, access_levels };
missing.check_missing_stability(CRATE_DEF_ID, tcx.hir().span(CRATE_HIR_ID));
tcx.hir().walk_toplevel_module(&mut missing);
tcx.hir().visit_all_item_likes_in_crate(&mut missing);
}
let declared_lang_features = &tcx.features().declared_lang_features;
let mut lang_features = FxHashSet::default();
for &(feature, span, since) in declared_lang_features {
if let Some(since) = since {
// Warn if the user has enabled an already-stable lang feature.
unnecessary_stable_feature_lint(tcx, span, feature, since);
}
if !lang_features.insert(feature) {
// Warn if the user enables a lang feature multiple times.
duplicate_feature_err(tcx.sess, span, feature);
}
}
let declared_lib_features = &tcx.features().declared_lib_features;
let mut remaining_lib_features = FxIndexMap::default();
for (feature, span) in declared_lib_features {
if !tcx.sess.opts.unstable_features.is_nightly_build() {
struct_span_err!(
tcx.sess,
*span,
E0554,
"`#![feature]` may not be used on the {} release channel",
env!("CFG_RELEASE_CHANNEL")
)
.emit();
}
if remaining_lib_features.contains_key(&feature) {
// Warn if the user enables a lib feature multiple times.
duplicate_feature_err(tcx.sess, *span, *feature);
}
remaining_lib_features.insert(feature, *span);
}
// `stdbuild` has special handling for `libc`, so we need to
// recognise the feature when building std.
// Likewise, libtest is handled specially, so `test` isn't
// available as we'd like it to be.
// FIXME: only remove `libc` when `stdbuild` is active.
// FIXME: remove special casing for `test`.
remaining_lib_features.remove(&sym::libc);
remaining_lib_features.remove(&sym::test);
/// For each feature in `defined_features`..
///
/// - If it is in `remaining_lib_features` (those features with `#![feature(..)]` attributes in
/// the current crate), check if it is stable (or partially stable) and thus an unnecessary
/// attribute.
/// - If it is in `remaining_implications` (a feature that is referenced by an `implied_by`
/// from the current crate), then remove it from the remaining implications.
///
/// Once this function has been invoked for every feature (local crate and all extern crates),
/// then..
///
/// - If features remain in `remaining_lib_features`, then the user has enabled a feature that
/// does not exist.
/// - If features remain in `remaining_implications`, the `implied_by` refers to a feature that
/// does not exist.
///
/// By structuring the code in this way: checking the features defined from each crate one at a
/// time, less loading from metadata is performed and thus compiler performance is improved.
fn check_features<'tcx>(
tcx: TyCtxt<'tcx>,
remaining_lib_features: &mut FxIndexMap<&Symbol, Span>,
remaining_implications: &mut FxHashMap<Symbol, Symbol>,
defined_features: &[(Symbol, Option<Symbol>)],
all_implications: &FxHashMap<Symbol, Symbol>,
) {
for (feature, since) in defined_features {
if let Some(since) = since && let Some(span) = remaining_lib_features.get(&feature) {
// Warn if the user has enabled an already-stable lib feature.
if let Some(implies) = all_implications.get(&feature) {
unnecessary_partially_stable_feature_lint(tcx, *span, *feature, *implies, *since);
} else {
unnecessary_stable_feature_lint(tcx, *span, *feature, *since);
}
}
remaining_lib_features.remove(feature);
// `feature` is the feature doing the implying, but `implied_by` is the feature with
// the attribute that establishes this relationship. `implied_by` is guaranteed to be a
// feature defined in the local crate because `remaining_implications` is only the
// implications from this crate.
remaining_implications.remove(feature);
if remaining_lib_features.is_empty() && remaining_implications.is_empty() {
break;
}
}
}
// All local crate implications need to have the feature that implies it confirmed to exist.
let mut remaining_implications =
tcx.stability_implications(rustc_hir::def_id::LOCAL_CRATE).clone();
// We always collect the lib features declared in the current crate, even if there are
// no unknown features, because the collection also does feature attribute validation.
let local_defined_features = tcx.lib_features(()).to_vec();
if !remaining_lib_features.is_empty() || !remaining_implications.is_empty() {
// Loading the implications of all crates is unavoidable to be able to emit the partial
// stabilization diagnostic, but it can be avoided when there are no
// `remaining_lib_features`.
let mut all_implications = remaining_implications.clone();
for &cnum in tcx.crates(()) {
all_implications.extend(tcx.stability_implications(cnum));
}
check_features(
tcx,
&mut remaining_lib_features,
&mut remaining_implications,
local_defined_features.as_slice(),
&all_implications,
);
for &cnum in tcx.crates(()) {
if remaining_lib_features.is_empty() && remaining_implications.is_empty() {
break;
}
check_features(
tcx,
&mut remaining_lib_features,
&mut remaining_implications,
tcx.defined_lib_features(cnum).to_vec().as_slice(),
&all_implications,
);
}
}
for (feature, span) in remaining_lib_features {
struct_span_err!(tcx.sess, span, E0635, "unknown feature `{}`", feature).emit();
}
for (implied_by, feature) in remaining_implications {
let local_defined_features = tcx.lib_features(());
let span = local_defined_features
.stable
.get(&feature)
.map(|(_, span)| span)
.or_else(|| local_defined_features.unstable.get(&feature))
.expect("feature that implied another does not exist");
tcx.sess
.struct_span_err(
*span,
format!("feature `{implied_by}` implying `{feature}` does not exist"),
)
.emit();
}
// FIXME(#44232): the `used_features` table no longer exists, so we
// don't lint about unused features. We should re-enable this one day!
}
fn unnecessary_partially_stable_feature_lint(
tcx: TyCtxt<'_>,
span: Span,
feature: Symbol,
implies: Symbol,
since: Symbol,
) {
tcx.struct_span_lint_hir(lint::builtin::STABLE_FEATURES, hir::CRATE_HIR_ID, span, |lint| {
lint.build(&format!(
"the feature `{feature}` has been partially stabilized since {since} and is succeeded \
by the feature `{implies}`"
))
.span_suggestion(
span,
&format!(
"if you are using features which are still unstable, change to using `{implies}`"
),
implies,
Applicability::MaybeIncorrect,
)
.span_suggestion(
tcx.sess.source_map().span_extend_to_line(span),
"if you are using features which are now stable, remove this line",
"",
Applicability::MaybeIncorrect,
)
.emit();
});
}
fn unnecessary_stable_feature_lint(tcx: TyCtxt<'_>, span: Span, feature: Symbol, since: Symbol) {
tcx.struct_span_lint_hir(lint::builtin::STABLE_FEATURES, hir::CRATE_HIR_ID, span, |lint| {
lint.build(&format!(
"the feature `{feature}` has been stable since {since} and no longer requires an \
attribute to enable",
))
.emit();
});
}
fn duplicate_feature_err(sess: &Session, span: Span, feature: Symbol) {
struct_span_err!(sess, span, E0636, "the feature `{}` has already been declared", feature)
.emit();
}
fn missing_const_err(session: &Session, fn_sig_span: Span, const_span: Span) {
const ERROR_MSG: &'static str = "attributes `#[rustc_const_unstable]` \
and `#[rustc_const_stable]` require \
the function or method to be `const`";
session
.struct_span_err(fn_sig_span, ERROR_MSG)
.span_help(fn_sig_span, "make the function or method const")
.span_label(const_span, "attribute specified here")
.emit();
}