rust/src/librustc_trans/trans/monomorphize.rs
Sean Patrick Santos b5499775d6 Structural changes for associated constants
Introduces new variants and types in syntax::ast, middle::ty, and middle::def.
2015-04-23 21:02:25 -06:00

348 lines
12 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::link::exported_name;
use session;
use llvm::ValueRef;
use llvm;
use middle::infer;
use middle::subst;
use middle::subst::{Subst, Substs};
use middle::traits;
use middle::ty_fold::{TypeFolder, TypeFoldable};
use trans::attributes;
use trans::base::{trans_enum_variant, push_ctxt, get_item_val};
use trans::base::trans_fn;
use trans::base;
use trans::common::*;
use trans::declare;
use trans::foreign;
use middle::ty::{self, HasProjectionTypes, Ty};
use util::ppaux::Repr;
use syntax::abi;
use syntax::ast;
use syntax::ast_map;
use syntax::ast_util::local_def;
use syntax::attr;
use syntax::codemap::DUMMY_SP;
use std::hash::{Hasher, Hash, SipHasher};
pub fn monomorphic_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn_id: ast::DefId,
psubsts: &'tcx subst::Substs<'tcx>,
ref_id: Option<ast::NodeId>)
-> (ValueRef, Ty<'tcx>, bool) {
debug!("monomorphic_fn(\
fn_id={}, \
real_substs={}, \
ref_id={:?})",
fn_id.repr(ccx.tcx()),
psubsts.repr(ccx.tcx()),
ref_id);
assert!(psubsts.types.all(|t| {
!ty::type_needs_infer(*t) && !ty::type_has_params(*t)
}));
let _icx = push_ctxt("monomorphic_fn");
let hash_id = MonoId {
def: fn_id,
params: &psubsts.types
};
let item_ty = ty::lookup_item_type(ccx.tcx(), fn_id).ty;
let mono_ty = item_ty.subst(ccx.tcx(), psubsts);
match ccx.monomorphized().borrow().get(&hash_id) {
Some(&val) => {
debug!("leaving monomorphic fn {}",
ty::item_path_str(ccx.tcx(), fn_id));
return (val, mono_ty, false);
}
None => ()
}
debug!("monomorphic_fn(\
fn_id={}, \
psubsts={}, \
hash_id={:?})",
fn_id.repr(ccx.tcx()),
psubsts.repr(ccx.tcx()),
hash_id);
let map_node = session::expect(
ccx.sess(),
ccx.tcx().map.find(fn_id.node),
|| {
format!("while monomorphizing {:?}, couldn't find it in \
the item map (may have attempted to monomorphize \
an item defined in a different crate?)",
fn_id)
});
if let ast_map::NodeForeignItem(_) = map_node {
if ccx.tcx().map.get_foreign_abi(fn_id.node) != abi::RustIntrinsic {
// Foreign externs don't have to be monomorphized.
return (get_item_val(ccx, fn_id.node), mono_ty, true);
}
}
debug!("monomorphic_fn about to subst into {}", item_ty.repr(ccx.tcx()));
debug!("mono_ty = {} (post-substitution)", mono_ty.repr(ccx.tcx()));
let mono_ty = normalize_associated_type(ccx.tcx(), &mono_ty);
debug!("mono_ty = {} (post-normalization)", mono_ty.repr(ccx.tcx()));
ccx.stats().n_monos.set(ccx.stats().n_monos.get() + 1);
let depth;
{
let mut monomorphizing = ccx.monomorphizing().borrow_mut();
depth = match monomorphizing.get(&fn_id) {
Some(&d) => d, None => 0
};
// Random cut-off -- code that needs to instantiate the same function
// recursively more than thirty times can probably safely be assumed
// to be causing an infinite expansion.
if depth > ccx.sess().recursion_limit.get() {
ccx.sess().span_fatal(ccx.tcx().map.span(fn_id.node),
"reached the recursion limit during monomorphization");
}
monomorphizing.insert(fn_id, depth + 1);
}
let hash;
let s = {
let mut state = SipHasher::new();
hash_id.hash(&mut state);
mono_ty.hash(&mut state);
hash = format!("h{}", state.finish());
ccx.tcx().map.with_path(fn_id.node, |path| {
exported_name(path, &hash[..])
})
};
debug!("monomorphize_fn mangled to {}", s);
// This shouldn't need to option dance.
let mut hash_id = Some(hash_id);
let mut mk_lldecl = |abi: abi::Abi| {
let lldecl = if abi != abi::Rust {
foreign::decl_rust_fn_with_foreign_abi(ccx, mono_ty, &s[..])
} else {
// FIXME(nagisa): perhaps needs a more fine grained selection? See setup_lldecl below.
declare::define_internal_rust_fn(ccx, &s[..], mono_ty).unwrap_or_else(||{
ccx.sess().bug(&format!("symbol `{}` already defined", s));
})
};
ccx.monomorphized().borrow_mut().insert(hash_id.take().unwrap(), lldecl);
lldecl
};
let setup_lldecl = |lldecl, attrs: &[ast::Attribute]| {
base::update_linkage(ccx, lldecl, None, base::OriginalTranslation);
attributes::from_fn_attrs(ccx, attrs, lldecl);
let is_first = !ccx.available_monomorphizations().borrow().contains(&s);
if is_first {
ccx.available_monomorphizations().borrow_mut().insert(s.clone());
}
let trans_everywhere = attr::requests_inline(attrs);
if trans_everywhere && !is_first {
llvm::SetLinkage(lldecl, llvm::AvailableExternallyLinkage);
}
// If `true`, then `lldecl` should be given a function body.
// Otherwise, it should be left as a declaration of an external
// function, with no definition in the current compilation unit.
trans_everywhere || is_first
};
let lldecl = match map_node {
ast_map::NodeItem(i) => {
match *i {
ast::Item {
node: ast::ItemFn(ref decl, _, abi, _, ref body),
..
} => {
let d = mk_lldecl(abi);
let needs_body = setup_lldecl(d, &i.attrs);
if needs_body {
if abi != abi::Rust {
foreign::trans_rust_fn_with_foreign_abi(
ccx, &**decl, &**body, &[], d, psubsts, fn_id.node,
Some(&hash[..]));
} else {
trans_fn(ccx, &**decl, &**body, d, psubsts, fn_id.node, &[]);
}
}
d
}
_ => {
ccx.sess().bug("Can't monomorphize this kind of item")
}
}
}
ast_map::NodeVariant(v) => {
let parent = ccx.tcx().map.get_parent(fn_id.node);
let tvs = ty::enum_variants(ccx.tcx(), local_def(parent));
let this_tv = tvs.iter().find(|tv| { tv.id.node == fn_id.node}).unwrap();
let d = mk_lldecl(abi::Rust);
attributes::inline(d, attributes::InlineAttr::Hint);
match v.node.kind {
ast::TupleVariantKind(ref args) => {
trans_enum_variant(ccx,
parent,
&*v,
&args[..],
this_tv.disr_val,
psubsts,
d);
}
ast::StructVariantKind(_) =>
ccx.sess().bug("can't monomorphize struct variants"),
}
d
}
ast_map::NodeImplItem(impl_item) => {
match impl_item.node {
ast::MethodImplItem(ref sig, ref body) => {
let d = mk_lldecl(abi::Rust);
let needs_body = setup_lldecl(d, &impl_item.attrs);
if needs_body {
trans_fn(ccx,
&sig.decl,
body,
d,
psubsts,
impl_item.id,
&[]);
}
d
}
_ => {
ccx.sess().bug(&format!("can't monomorphize a {:?}",
map_node))
}
}
}
ast_map::NodeTraitItem(trait_item) => {
match trait_item.node {
ast::MethodTraitItem(ref sig, Some(ref body)) => {
let d = mk_lldecl(abi::Rust);
let needs_body = setup_lldecl(d, &trait_item.attrs);
if needs_body {
trans_fn(ccx, &sig.decl, body, d,
psubsts, trait_item.id, &[]);
}
d
}
_ => {
ccx.sess().bug(&format!("can't monomorphize a {:?}",
map_node))
}
}
}
ast_map::NodeStructCtor(struct_def) => {
let d = mk_lldecl(abi::Rust);
attributes::inline(d, attributes::InlineAttr::Hint);
base::trans_tuple_struct(ccx,
&struct_def.fields,
struct_def.ctor_id.expect("ast-mapped tuple struct \
didn't have a ctor id"),
psubsts,
d);
d
}
// Ugh -- but this ensures any new variants won't be forgotten
ast_map::NodeForeignItem(..) |
ast_map::NodeLifetime(..) |
ast_map::NodeExpr(..) |
ast_map::NodeStmt(..) |
ast_map::NodeArg(..) |
ast_map::NodeBlock(..) |
ast_map::NodePat(..) |
ast_map::NodeLocal(..) => {
ccx.sess().bug(&format!("can't monomorphize a {:?}",
map_node))
}
};
ccx.monomorphizing().borrow_mut().insert(fn_id, depth);
debug!("leaving monomorphic fn {}", ty::item_path_str(ccx.tcx(), fn_id));
(lldecl, mono_ty, true)
}
#[derive(PartialEq, Eq, Hash, Debug)]
pub struct MonoId<'tcx> {
pub def: ast::DefId,
pub params: &'tcx subst::VecPerParamSpace<Ty<'tcx>>
}
/// Monomorphizes a type from the AST by first applying the in-scope
/// substitutions and then normalizing any associated types.
pub fn apply_param_substs<'tcx,T>(tcx: &ty::ctxt<'tcx>,
param_substs: &Substs<'tcx>,
value: &T)
-> T
where T : TypeFoldable<'tcx> + Repr<'tcx> + HasProjectionTypes + Clone
{
let substituted = value.subst(tcx, param_substs);
normalize_associated_type(tcx, &substituted)
}
/// Removes associated types, if any. Since this during
/// monomorphization, we know that only concrete types are involved,
/// and hence we can be sure that all associated types will be
/// completely normalized away.
pub fn normalize_associated_type<'tcx,T>(tcx: &ty::ctxt<'tcx>, value: &T) -> T
where T : TypeFoldable<'tcx> + Repr<'tcx> + HasProjectionTypes + Clone
{
debug!("normalize_associated_type(t={})", value.repr(tcx));
let value = erase_regions(tcx, value);
if !value.has_projection_types() {
return value;
}
// FIXME(#20304) -- cache
let infcx = infer::new_infer_ctxt(tcx);
let typer = NormalizingClosureTyper::new(tcx);
let mut selcx = traits::SelectionContext::new(&infcx, &typer);
let cause = traits::ObligationCause::dummy();
let traits::Normalized { value: result, obligations } =
traits::normalize(&mut selcx, cause, &value);
debug!("normalize_associated_type: result={} obligations={}",
result.repr(tcx),
obligations.repr(tcx));
let mut fulfill_cx = traits::FulfillmentContext::new();
for obligation in obligations {
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
let result = drain_fulfillment_cx_or_panic(DUMMY_SP, &infcx, &mut fulfill_cx, &result);
result
}