rust/src/libsyntax_pos/lib.rs
2019-11-17 22:37:13 +01:00

1565 lines
51 KiB
Rust

//! The source positions and related helper functions.
//!
//! ## Note
//!
//! This API is completely unstable and subject to change.
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/")]
#![feature(const_fn)]
#![feature(crate_visibility_modifier)]
#![feature(nll)]
#![feature(optin_builtin_traits)]
#![feature(rustc_attrs)]
#![feature(specialization)]
#![feature(step_trait)]
use rustc_serialize::{Encodable, Decodable, Encoder, Decoder};
use rustc_macros::HashStable_Generic;
pub mod source_map;
pub mod edition;
use edition::Edition;
pub mod hygiene;
pub use hygiene::{ExpnId, SyntaxContext, ExpnData, ExpnKind, MacroKind, DesugaringKind};
use hygiene::Transparency;
mod span_encoding;
pub use span_encoding::{Span, DUMMY_SP};
pub mod symbol;
pub use symbol::{Symbol, sym};
mod analyze_source_file;
pub mod fatal_error;
use rustc_data_structures::stable_hasher::StableHasher;
use rustc_data_structures::sync::{Lrc, Lock};
use std::borrow::Cow;
use std::cell::Cell;
use std::cmp::{self, Ordering};
use std::fmt;
use std::hash::{Hasher, Hash};
use std::ops::{Add, Sub};
use std::path::PathBuf;
#[cfg(test)]
mod tests;
pub struct Globals {
symbol_interner: Lock<symbol::Interner>,
span_interner: Lock<span_encoding::SpanInterner>,
hygiene_data: Lock<hygiene::HygieneData>,
}
impl Globals {
pub fn new(edition: Edition) -> Globals {
Globals {
symbol_interner: Lock::new(symbol::Interner::fresh()),
span_interner: Lock::new(span_encoding::SpanInterner::default()),
hygiene_data: Lock::new(hygiene::HygieneData::new(edition)),
}
}
}
scoped_tls::scoped_thread_local!(pub static GLOBALS: Globals);
/// Differentiates between real files and common virtual files.
#[derive(Debug, Eq, PartialEq, Clone, Ord, PartialOrd, Hash,
RustcDecodable, RustcEncodable, HashStable_Generic)]
pub enum FileName {
Real(PathBuf),
/// A macro. This includes the full name of the macro, so that there are no clashes.
Macros(String),
/// Call to `quote!`.
QuoteExpansion(u64),
/// Command line.
Anon(u64),
/// Hack in `src/libsyntax/parse.rs`.
// FIXME(jseyfried)
MacroExpansion(u64),
ProcMacroSourceCode(u64),
/// Strings provided as `--cfg [cfgspec]` stored in a `crate_cfg`.
CfgSpec(u64),
/// Strings provided as crate attributes in the CLI.
CliCrateAttr(u64),
/// Custom sources for explicit parser calls from plugins and drivers.
Custom(String),
DocTest(PathBuf, isize),
}
impl std::fmt::Display for FileName {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
use FileName::*;
match *self {
Real(ref path) => write!(fmt, "{}", path.display()),
Macros(ref name) => write!(fmt, "<{} macros>", name),
QuoteExpansion(_) => write!(fmt, "<quote expansion>"),
MacroExpansion(_) => write!(fmt, "<macro expansion>"),
Anon(_) => write!(fmt, "<anon>"),
ProcMacroSourceCode(_) =>
write!(fmt, "<proc-macro source code>"),
CfgSpec(_) => write!(fmt, "<cfgspec>"),
CliCrateAttr(_) => write!(fmt, "<crate attribute>"),
Custom(ref s) => write!(fmt, "<{}>", s),
DocTest(ref path, _) => write!(fmt, "{}", path.display()),
}
}
}
impl From<PathBuf> for FileName {
fn from(p: PathBuf) -> Self {
assert!(!p.to_string_lossy().ends_with('>'));
FileName::Real(p)
}
}
impl FileName {
pub fn is_real(&self) -> bool {
use FileName::*;
match *self {
Real(_) => true,
Macros(_) |
Anon(_) |
MacroExpansion(_) |
ProcMacroSourceCode(_) |
CfgSpec(_) |
CliCrateAttr(_) |
Custom(_) |
QuoteExpansion(_) |
DocTest(_, _) => false,
}
}
pub fn is_macros(&self) -> bool {
use FileName::*;
match *self {
Real(_) |
Anon(_) |
MacroExpansion(_) |
ProcMacroSourceCode(_) |
CfgSpec(_) |
CliCrateAttr(_) |
Custom(_) |
QuoteExpansion(_) |
DocTest(_, _) => false,
Macros(_) => true,
}
}
pub fn quote_expansion_source_code(src: &str) -> FileName {
let mut hasher = StableHasher::new();
src.hash(&mut hasher);
FileName::QuoteExpansion(hasher.finish())
}
pub fn macro_expansion_source_code(src: &str) -> FileName {
let mut hasher = StableHasher::new();
src.hash(&mut hasher);
FileName::MacroExpansion(hasher.finish())
}
pub fn anon_source_code(src: &str) -> FileName {
let mut hasher = StableHasher::new();
src.hash(&mut hasher);
FileName::Anon(hasher.finish())
}
pub fn proc_macro_source_code(src: &str) -> FileName {
let mut hasher = StableHasher::new();
src.hash(&mut hasher);
FileName::ProcMacroSourceCode(hasher.finish())
}
pub fn cfg_spec_source_code(src: &str) -> FileName {
let mut hasher = StableHasher::new();
src.hash(&mut hasher);
FileName::QuoteExpansion(hasher.finish())
}
pub fn cli_crate_attr_source_code(src: &str) -> FileName {
let mut hasher = StableHasher::new();
src.hash(&mut hasher);
FileName::CliCrateAttr(hasher.finish())
}
pub fn doc_test_source_code(path: PathBuf, line: isize) -> FileName{
FileName::DocTest(path, line)
}
}
/// Spans represent a region of code, used for error reporting. Positions in spans
/// are *absolute* positions from the beginning of the source_map, not positions
/// relative to `SourceFile`s. Methods on the `SourceMap` can be used to relate spans back
/// to the original source.
/// You must be careful if the span crosses more than one file - you will not be
/// able to use many of the functions on spans in source_map and you cannot assume
/// that the length of the `span = hi - lo`; there may be space in the `BytePos`
/// range between files.
///
/// `SpanData` is public because `Span` uses a thread-local interner and can't be
/// sent to other threads, but some pieces of performance infra run in a separate thread.
/// Using `Span` is generally preferred.
#[derive(Clone, Copy, Hash, PartialEq, Eq, Ord, PartialOrd)]
pub struct SpanData {
pub lo: BytePos,
pub hi: BytePos,
/// Information about where the macro came from, if this piece of
/// code was created by a macro expansion.
pub ctxt: SyntaxContext,
}
impl SpanData {
#[inline]
pub fn with_lo(&self, lo: BytePos) -> Span {
Span::new(lo, self.hi, self.ctxt)
}
#[inline]
pub fn with_hi(&self, hi: BytePos) -> Span {
Span::new(self.lo, hi, self.ctxt)
}
#[inline]
pub fn with_ctxt(&self, ctxt: SyntaxContext) -> Span {
Span::new(self.lo, self.hi, ctxt)
}
}
// The interner is pointed to by a thread local value which is only set on the main thread
// with parallelization is disabled. So we don't allow `Span` to transfer between threads
// to avoid panics and other errors, even though it would be memory safe to do so.
#[cfg(not(parallel_compiler))]
impl !Send for Span {}
#[cfg(not(parallel_compiler))]
impl !Sync for Span {}
impl PartialOrd for Span {
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
PartialOrd::partial_cmp(&self.data(), &rhs.data())
}
}
impl Ord for Span {
fn cmp(&self, rhs: &Self) -> Ordering {
Ord::cmp(&self.data(), &rhs.data())
}
}
/// A collection of spans. Spans have two orthogonal attributes:
///
/// - They can be *primary spans*. In this case they are the locus of
/// the error, and would be rendered with `^^^`.
/// - They can have a *label*. In this case, the label is written next
/// to the mark in the snippet when we render.
#[derive(Clone, Debug, Hash, PartialEq, Eq, RustcEncodable, RustcDecodable)]
pub struct MultiSpan {
primary_spans: Vec<Span>,
span_labels: Vec<(Span, String)>,
}
impl Span {
#[inline]
pub fn lo(self) -> BytePos {
self.data().lo
}
#[inline]
pub fn with_lo(self, lo: BytePos) -> Span {
self.data().with_lo(lo)
}
#[inline]
pub fn hi(self) -> BytePos {
self.data().hi
}
#[inline]
pub fn with_hi(self, hi: BytePos) -> Span {
self.data().with_hi(hi)
}
#[inline]
pub fn ctxt(self) -> SyntaxContext {
self.data().ctxt
}
#[inline]
pub fn with_ctxt(self, ctxt: SyntaxContext) -> Span {
self.data().with_ctxt(ctxt)
}
/// Returns `true` if this is a dummy span with any hygienic context.
#[inline]
pub fn is_dummy(self) -> bool {
let span = self.data();
span.lo.0 == 0 && span.hi.0 == 0
}
/// Returns `true` if this span comes from a macro or desugaring.
#[inline]
pub fn from_expansion(self) -> bool {
self.ctxt() != SyntaxContext::root()
}
#[inline]
pub fn with_root_ctxt(lo: BytePos, hi: BytePos) -> Span {
Span::new(lo, hi, SyntaxContext::root())
}
/// Returns a new span representing an empty span at the beginning of this span
#[inline]
pub fn shrink_to_lo(self) -> Span {
let span = self.data();
span.with_hi(span.lo)
}
/// Returns a new span representing an empty span at the end of this span.
#[inline]
pub fn shrink_to_hi(self) -> Span {
let span = self.data();
span.with_lo(span.hi)
}
/// Returns `self` if `self` is not the dummy span, and `other` otherwise.
pub fn substitute_dummy(self, other: Span) -> Span {
if self.is_dummy() { other } else { self }
}
/// Returns `true` if `self` fully encloses `other`.
pub fn contains(self, other: Span) -> bool {
let span = self.data();
let other = other.data();
span.lo <= other.lo && other.hi <= span.hi
}
/// Returns `true` if `self` touches `other`.
pub fn overlaps(self, other: Span) -> bool {
let span = self.data();
let other = other.data();
span.lo < other.hi && other.lo < span.hi
}
/// Returns `true` if the spans are equal with regards to the source text.
///
/// Use this instead of `==` when either span could be generated code,
/// and you only care that they point to the same bytes of source text.
pub fn source_equal(&self, other: &Span) -> bool {
let span = self.data();
let other = other.data();
span.lo == other.lo && span.hi == other.hi
}
/// Returns `Some(span)`, where the start is trimmed by the end of `other`.
pub fn trim_start(self, other: Span) -> Option<Span> {
let span = self.data();
let other = other.data();
if span.hi > other.hi {
Some(span.with_lo(cmp::max(span.lo, other.hi)))
} else {
None
}
}
/// Returns the source span -- this is either the supplied span, or the span for
/// the macro callsite that expanded to it.
pub fn source_callsite(self) -> Span {
let expn_data = self.ctxt().outer_expn_data();
if !expn_data.is_root() { expn_data.call_site.source_callsite() } else { self }
}
/// The `Span` for the tokens in the previous macro expansion from which `self` was generated,
/// if any.
pub fn parent(self) -> Option<Span> {
let expn_data = self.ctxt().outer_expn_data();
if !expn_data.is_root() { Some(expn_data.call_site) } else { None }
}
/// Edition of the crate from which this span came.
pub fn edition(self) -> edition::Edition {
self.ctxt().outer_expn_data().edition
}
#[inline]
pub fn rust_2015(&self) -> bool {
self.edition() == edition::Edition::Edition2015
}
#[inline]
pub fn rust_2018(&self) -> bool {
self.edition() >= edition::Edition::Edition2018
}
/// Returns the source callee.
///
/// Returns `None` if the supplied span has no expansion trace,
/// else returns the `ExpnData` for the macro definition
/// corresponding to the source callsite.
pub fn source_callee(self) -> Option<ExpnData> {
fn source_callee(expn_data: ExpnData) -> ExpnData {
let next_expn_data = expn_data.call_site.ctxt().outer_expn_data();
if !next_expn_data.is_root() { source_callee(next_expn_data) } else { expn_data }
}
let expn_data = self.ctxt().outer_expn_data();
if !expn_data.is_root() { Some(source_callee(expn_data)) } else { None }
}
/// Checks if a span is "internal" to a macro in which `#[unstable]`
/// items can be used (that is, a macro marked with
/// `#[allow_internal_unstable]`).
pub fn allows_unstable(&self, feature: Symbol) -> bool {
self.ctxt().outer_expn_data().allow_internal_unstable.map_or(false, |features| {
features.iter().any(|&f| {
f == feature || f == sym::allow_internal_unstable_backcompat_hack
})
})
}
/// Checks if this span arises from a compiler desugaring of kind `kind`.
pub fn is_desugaring(&self, kind: DesugaringKind) -> bool {
match self.ctxt().outer_expn_data().kind {
ExpnKind::Desugaring(k) => k == kind,
_ => false,
}
}
/// Returns the compiler desugaring that created this span, or `None`
/// if this span is not from a desugaring.
pub fn desugaring_kind(&self) -> Option<DesugaringKind> {
match self.ctxt().outer_expn_data().kind {
ExpnKind::Desugaring(k) => Some(k),
_ => None
}
}
/// Checks if a span is "internal" to a macro in which `unsafe`
/// can be used without triggering the `unsafe_code` lint
// (that is, a macro marked with `#[allow_internal_unsafe]`).
pub fn allows_unsafe(&self) -> bool {
self.ctxt().outer_expn_data().allow_internal_unsafe
}
pub fn macro_backtrace(mut self) -> Vec<MacroBacktrace> {
let mut prev_span = DUMMY_SP;
let mut result = vec![];
loop {
let expn_data = self.ctxt().outer_expn_data();
if expn_data.is_root() {
break;
}
// Don't print recursive invocations.
if !expn_data.call_site.source_equal(&prev_span) {
let (pre, post) = match expn_data.kind {
ExpnKind::Root => break,
ExpnKind::Desugaring(..) => ("desugaring of ", ""),
ExpnKind::AstPass(..) => ("", ""),
ExpnKind::Macro(macro_kind, _) => match macro_kind {
MacroKind::Bang => ("", "!"),
MacroKind::Attr => ("#[", "]"),
MacroKind::Derive => ("#[derive(", ")]"),
}
};
result.push(MacroBacktrace {
call_site: expn_data.call_site,
macro_decl_name: format!("{}{}{}", pre, expn_data.kind.descr(), post),
def_site_span: expn_data.def_site,
});
}
prev_span = self;
self = expn_data.call_site;
}
result
}
/// Returns a `Span` that would enclose both `self` and `end`.
pub fn to(self, end: Span) -> Span {
let span_data = self.data();
let end_data = end.data();
// FIXME(jseyfried): `self.ctxt` should always equal `end.ctxt` here (cf. issue #23480).
// Return the macro span on its own to avoid weird diagnostic output. It is preferable to
// have an incomplete span than a completely nonsensical one.
if span_data.ctxt != end_data.ctxt {
if span_data.ctxt == SyntaxContext::root() {
return end;
} else if end_data.ctxt == SyntaxContext::root() {
return self;
}
// Both spans fall within a macro.
// FIXME(estebank): check if it is the *same* macro.
}
Span::new(
cmp::min(span_data.lo, end_data.lo),
cmp::max(span_data.hi, end_data.hi),
if span_data.ctxt == SyntaxContext::root() { end_data.ctxt } else { span_data.ctxt },
)
}
/// Returns a `Span` between the end of `self` to the beginning of `end`.
pub fn between(self, end: Span) -> Span {
let span = self.data();
let end = end.data();
Span::new(
span.hi,
end.lo,
if end.ctxt == SyntaxContext::root() { end.ctxt } else { span.ctxt },
)
}
/// Returns a `Span` between the beginning of `self` to the beginning of `end`.
pub fn until(self, end: Span) -> Span {
let span = self.data();
let end = end.data();
Span::new(
span.lo,
end.lo,
if end.ctxt == SyntaxContext::root() { end.ctxt } else { span.ctxt },
)
}
pub fn from_inner(self, inner: InnerSpan) -> Span {
let span = self.data();
Span::new(span.lo + BytePos::from_usize(inner.start),
span.lo + BytePos::from_usize(inner.end),
span.ctxt)
}
/// Equivalent of `Span::def_site` from the proc macro API,
/// except that the location is taken from the `self` span.
pub fn with_def_site_ctxt(self, expn_id: ExpnId) -> Span {
self.with_ctxt_from_mark(expn_id, Transparency::Opaque)
}
/// Equivalent of `Span::call_site` from the proc macro API,
/// except that the location is taken from the `self` span.
pub fn with_call_site_ctxt(&self, expn_id: ExpnId) -> Span {
self.with_ctxt_from_mark(expn_id, Transparency::Transparent)
}
/// Equivalent of `Span::mixed_site` from the proc macro API,
/// except that the location is taken from the `self` span.
pub fn with_mixed_site_ctxt(&self, expn_id: ExpnId) -> Span {
self.with_ctxt_from_mark(expn_id, Transparency::SemiTransparent)
}
/// Produces a span with the same location as `self` and context produced by a macro with the
/// given ID and transparency, assuming that macro was defined directly and not produced by
/// some other macro (which is the case for built-in and procedural macros).
pub fn with_ctxt_from_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
self.with_ctxt(SyntaxContext::root().apply_mark(expn_id, transparency))
}
#[inline]
pub fn apply_mark(self, expn_id: ExpnId, transparency: Transparency) -> Span {
let span = self.data();
span.with_ctxt(span.ctxt.apply_mark(expn_id, transparency))
}
#[inline]
pub fn remove_mark(&mut self) -> ExpnId {
let mut span = self.data();
let mark = span.ctxt.remove_mark();
*self = Span::new(span.lo, span.hi, span.ctxt);
mark
}
#[inline]
pub fn adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
let mut span = self.data();
let mark = span.ctxt.adjust(expn_id);
*self = Span::new(span.lo, span.hi, span.ctxt);
mark
}
#[inline]
pub fn modernize_and_adjust(&mut self, expn_id: ExpnId) -> Option<ExpnId> {
let mut span = self.data();
let mark = span.ctxt.modernize_and_adjust(expn_id);
*self = Span::new(span.lo, span.hi, span.ctxt);
mark
}
#[inline]
pub fn glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span) -> Option<Option<ExpnId>> {
let mut span = self.data();
let mark = span.ctxt.glob_adjust(expn_id, glob_span);
*self = Span::new(span.lo, span.hi, span.ctxt);
mark
}
#[inline]
pub fn reverse_glob_adjust(&mut self, expn_id: ExpnId, glob_span: Span)
-> Option<Option<ExpnId>> {
let mut span = self.data();
let mark = span.ctxt.reverse_glob_adjust(expn_id, glob_span);
*self = Span::new(span.lo, span.hi, span.ctxt);
mark
}
#[inline]
pub fn modern(self) -> Span {
let span = self.data();
span.with_ctxt(span.ctxt.modern())
}
#[inline]
pub fn modern_and_legacy(self) -> Span {
let span = self.data();
span.with_ctxt(span.ctxt.modern_and_legacy())
}
}
#[derive(Clone, Debug)]
pub struct SpanLabel {
/// The span we are going to include in the final snippet.
pub span: Span,
/// Is this a primary span? This is the "locus" of the message,
/// and is indicated with a `^^^^` underline, versus `----`.
pub is_primary: bool,
/// What label should we attach to this span (if any)?
pub label: Option<String>,
}
impl Default for Span {
fn default() -> Self {
DUMMY_SP
}
}
impl rustc_serialize::UseSpecializedEncodable for Span {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
let span = self.data();
s.emit_struct("Span", 2, |s| {
s.emit_struct_field("lo", 0, |s| {
span.lo.encode(s)
})?;
s.emit_struct_field("hi", 1, |s| {
span.hi.encode(s)
})
})
}
}
impl rustc_serialize::UseSpecializedDecodable for Span {
fn default_decode<D: Decoder>(d: &mut D) -> Result<Span, D::Error> {
d.read_struct("Span", 2, |d| {
let lo = d.read_struct_field("lo", 0, Decodable::decode)?;
let hi = d.read_struct_field("hi", 1, Decodable::decode)?;
Ok(Span::with_root_ctxt(lo, hi))
})
}
}
pub fn default_span_debug(span: Span, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Span")
.field("lo", &span.lo())
.field("hi", &span.hi())
.field("ctxt", &span.ctxt())
.finish()
}
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
SPAN_DEBUG.with(|span_debug| span_debug.get()(*self, f))
}
}
impl fmt::Debug for SpanData {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
SPAN_DEBUG.with(|span_debug| span_debug.get()(Span::new(self.lo, self.hi, self.ctxt), f))
}
}
impl MultiSpan {
#[inline]
pub fn new() -> MultiSpan {
MultiSpan {
primary_spans: vec![],
span_labels: vec![]
}
}
pub fn from_span(primary_span: Span) -> MultiSpan {
MultiSpan {
primary_spans: vec![primary_span],
span_labels: vec![]
}
}
pub fn from_spans(vec: Vec<Span>) -> MultiSpan {
MultiSpan {
primary_spans: vec,
span_labels: vec![]
}
}
pub fn push_span_label(&mut self, span: Span, label: String) {
self.span_labels.push((span, label));
}
/// Selects the first primary span (if any).
pub fn primary_span(&self) -> Option<Span> {
self.primary_spans.first().cloned()
}
/// Returns all primary spans.
pub fn primary_spans(&self) -> &[Span] {
&self.primary_spans
}
/// Returns `true` if any of the primary spans are displayable.
pub fn has_primary_spans(&self) -> bool {
self.primary_spans.iter().any(|sp| !sp.is_dummy())
}
/// Returns `true` if this contains only a dummy primary span with any hygienic context.
pub fn is_dummy(&self) -> bool {
let mut is_dummy = true;
for span in &self.primary_spans {
if !span.is_dummy() {
is_dummy = false;
}
}
is_dummy
}
/// Replaces all occurrences of one Span with another. Used to move `Span`s in areas that don't
/// display well (like std macros). Returns whether replacements occurred.
pub fn replace(&mut self, before: Span, after: Span) -> bool {
let mut replacements_occurred = false;
for primary_span in &mut self.primary_spans {
if *primary_span == before {
*primary_span = after;
replacements_occurred = true;
}
}
for span_label in &mut self.span_labels {
if span_label.0 == before {
span_label.0 = after;
replacements_occurred = true;
}
}
replacements_occurred
}
/// Returns the strings to highlight. We always ensure that there
/// is an entry for each of the primary spans -- for each primary
/// span `P`, if there is at least one label with span `P`, we return
/// those labels (marked as primary). But otherwise we return
/// `SpanLabel` instances with empty labels.
pub fn span_labels(&self) -> Vec<SpanLabel> {
let is_primary = |span| self.primary_spans.contains(&span);
let mut span_labels = self.span_labels.iter().map(|&(span, ref label)|
SpanLabel {
span,
is_primary: is_primary(span),
label: Some(label.clone())
}
).collect::<Vec<_>>();
for &span in &self.primary_spans {
if !span_labels.iter().any(|sl| sl.span == span) {
span_labels.push(SpanLabel {
span,
is_primary: true,
label: None
});
}
}
span_labels
}
/// Returns `true` if any of the span labels is displayable.
pub fn has_span_labels(&self) -> bool {
self.span_labels.iter().any(|(sp, _)| !sp.is_dummy())
}
}
impl From<Span> for MultiSpan {
fn from(span: Span) -> MultiSpan {
MultiSpan::from_span(span)
}
}
impl From<Vec<Span>> for MultiSpan {
fn from(spans: Vec<Span>) -> MultiSpan {
MultiSpan::from_spans(spans)
}
}
/// Identifies an offset of a multi-byte character in a `SourceFile`.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Eq, PartialEq, Debug)]
pub struct MultiByteChar {
/// The absolute offset of the character in the `SourceMap`.
pub pos: BytePos,
/// The number of bytes, `>= 2`.
pub bytes: u8,
}
/// Identifies an offset of a non-narrow character in a `SourceFile`.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Eq, PartialEq, Debug)]
pub enum NonNarrowChar {
/// Represents a zero-width character.
ZeroWidth(BytePos),
/// Represents a wide (full-width) character.
Wide(BytePos),
/// Represents a tab character, represented visually with a width of 4 characters.
Tab(BytePos),
}
impl NonNarrowChar {
fn new(pos: BytePos, width: usize) -> Self {
match width {
0 => NonNarrowChar::ZeroWidth(pos),
2 => NonNarrowChar::Wide(pos),
4 => NonNarrowChar::Tab(pos),
_ => panic!("width {} given for non-narrow character", width),
}
}
/// Returns the absolute offset of the character in the `SourceMap`.
pub fn pos(&self) -> BytePos {
match *self {
NonNarrowChar::ZeroWidth(p) |
NonNarrowChar::Wide(p) |
NonNarrowChar::Tab(p) => p,
}
}
/// Returns the width of the character, 0 (zero-width) or 2 (wide).
pub fn width(&self) -> usize {
match *self {
NonNarrowChar::ZeroWidth(_) => 0,
NonNarrowChar::Wide(_) => 2,
NonNarrowChar::Tab(_) => 4,
}
}
}
impl Add<BytePos> for NonNarrowChar {
type Output = Self;
fn add(self, rhs: BytePos) -> Self {
match self {
NonNarrowChar::ZeroWidth(pos) => NonNarrowChar::ZeroWidth(pos + rhs),
NonNarrowChar::Wide(pos) => NonNarrowChar::Wide(pos + rhs),
NonNarrowChar::Tab(pos) => NonNarrowChar::Tab(pos + rhs),
}
}
}
impl Sub<BytePos> for NonNarrowChar {
type Output = Self;
fn sub(self, rhs: BytePos) -> Self {
match self {
NonNarrowChar::ZeroWidth(pos) => NonNarrowChar::ZeroWidth(pos - rhs),
NonNarrowChar::Wide(pos) => NonNarrowChar::Wide(pos - rhs),
NonNarrowChar::Tab(pos) => NonNarrowChar::Tab(pos - rhs),
}
}
}
/// Identifies an offset of a character that was normalized away from `SourceFile`.
#[derive(Copy, Clone, RustcEncodable, RustcDecodable, Eq, PartialEq, Debug)]
pub struct NormalizedPos {
/// The absolute offset of the character in the `SourceMap`.
pub pos: BytePos,
/// The difference between original and normalized string at position.
pub diff: u32,
}
/// The state of the lazy external source loading mechanism of a `SourceFile`.
#[derive(PartialEq, Eq, Clone)]
pub enum ExternalSource {
/// The external source has been loaded already.
Present(String),
/// No attempt has been made to load the external source.
AbsentOk,
/// A failed attempt has been made to load the external source.
AbsentErr,
/// No external source has to be loaded, since the `SourceFile` represents a local crate.
Unneeded,
}
impl ExternalSource {
pub fn is_absent(&self) -> bool {
match *self {
ExternalSource::Present(_) => false,
_ => true,
}
}
pub fn get_source(&self) -> Option<&str> {
match *self {
ExternalSource::Present(ref src) => Some(src),
_ => None,
}
}
}
#[derive(Debug)]
pub struct OffsetOverflowError;
/// A single source in the `SourceMap`.
#[derive(Clone)]
pub struct SourceFile {
/// The name of the file that the source came from. Source that doesn't
/// originate from files has names between angle brackets by convention
/// (e.g., `<anon>`).
pub name: FileName,
/// `true` if the `name` field above has been modified by `--remap-path-prefix`.
pub name_was_remapped: bool,
/// The unmapped path of the file that the source came from.
/// Set to `None` if the `SourceFile` was imported from an external crate.
pub unmapped_path: Option<FileName>,
/// Indicates which crate this `SourceFile` was imported from.
pub crate_of_origin: u32,
/// The complete source code.
pub src: Option<Lrc<String>>,
/// The source code's hash.
pub src_hash: u128,
/// The external source code (used for external crates, which will have a `None`
/// value as `self.src`.
pub external_src: Lock<ExternalSource>,
/// The start position of this source in the `SourceMap`.
pub start_pos: BytePos,
/// The end position of this source in the `SourceMap`.
pub end_pos: BytePos,
/// Locations of lines beginnings in the source code.
pub lines: Vec<BytePos>,
/// Locations of multi-byte characters in the source code.
pub multibyte_chars: Vec<MultiByteChar>,
/// Width of characters that are not narrow in the source code.
pub non_narrow_chars: Vec<NonNarrowChar>,
/// Locations of characters removed during normalization.
pub normalized_pos: Vec<NormalizedPos>,
/// A hash of the filename, used for speeding up hashing in incremental compilation.
pub name_hash: u128,
}
impl Encodable for SourceFile {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_struct("SourceFile", 8, |s| {
s.emit_struct_field("name", 0, |s| self.name.encode(s))?;
s.emit_struct_field("name_was_remapped", 1, |s| self.name_was_remapped.encode(s))?;
s.emit_struct_field("src_hash", 2, |s| self.src_hash.encode(s))?;
s.emit_struct_field("start_pos", 3, |s| self.start_pos.encode(s))?;
s.emit_struct_field("end_pos", 4, |s| self.end_pos.encode(s))?;
s.emit_struct_field("lines", 5, |s| {
let lines = &self.lines[..];
// Store the length.
s.emit_u32(lines.len() as u32)?;
if !lines.is_empty() {
// In order to preserve some space, we exploit the fact that
// the lines list is sorted and individual lines are
// probably not that long. Because of that we can store lines
// as a difference list, using as little space as possible
// for the differences.
let max_line_length = if lines.len() == 1 {
0
} else {
lines.windows(2)
.map(|w| w[1] - w[0])
.map(|bp| bp.to_usize())
.max()
.unwrap()
};
let bytes_per_diff: u8 = match max_line_length {
0 ..= 0xFF => 1,
0x100 ..= 0xFFFF => 2,
_ => 4
};
// Encode the number of bytes used per diff.
bytes_per_diff.encode(s)?;
// Encode the first element.
lines[0].encode(s)?;
let diff_iter = (&lines[..]).windows(2)
.map(|w| (w[1] - w[0]));
match bytes_per_diff {
1 => for diff in diff_iter { (diff.0 as u8).encode(s)? },
2 => for diff in diff_iter { (diff.0 as u16).encode(s)? },
4 => for diff in diff_iter { diff.0.encode(s)? },
_ => unreachable!()
}
}
Ok(())
})?;
s.emit_struct_field("multibyte_chars", 6, |s| {
self.multibyte_chars.encode(s)
})?;
s.emit_struct_field("non_narrow_chars", 7, |s| {
self.non_narrow_chars.encode(s)
})?;
s.emit_struct_field("name_hash", 8, |s| {
self.name_hash.encode(s)
})?;
s.emit_struct_field("normalized_pos", 9, |s| {
self.normalized_pos.encode(s)
})
})
}
}
impl Decodable for SourceFile {
fn decode<D: Decoder>(d: &mut D) -> Result<SourceFile, D::Error> {
d.read_struct("SourceFile", 8, |d| {
let name: FileName = d.read_struct_field("name", 0, |d| Decodable::decode(d))?;
let name_was_remapped: bool =
d.read_struct_field("name_was_remapped", 1, |d| Decodable::decode(d))?;
let src_hash: u128 =
d.read_struct_field("src_hash", 2, |d| Decodable::decode(d))?;
let start_pos: BytePos =
d.read_struct_field("start_pos", 3, |d| Decodable::decode(d))?;
let end_pos: BytePos = d.read_struct_field("end_pos", 4, |d| Decodable::decode(d))?;
let lines: Vec<BytePos> = d.read_struct_field("lines", 5, |d| {
let num_lines: u32 = Decodable::decode(d)?;
let mut lines = Vec::with_capacity(num_lines as usize);
if num_lines > 0 {
// Read the number of bytes used per diff.
let bytes_per_diff: u8 = Decodable::decode(d)?;
// Read the first element.
let mut line_start: BytePos = Decodable::decode(d)?;
lines.push(line_start);
for _ in 1..num_lines {
let diff = match bytes_per_diff {
1 => d.read_u8()? as u32,
2 => d.read_u16()? as u32,
4 => d.read_u32()?,
_ => unreachable!()
};
line_start = line_start + BytePos(diff);
lines.push(line_start);
}
}
Ok(lines)
})?;
let multibyte_chars: Vec<MultiByteChar> =
d.read_struct_field("multibyte_chars", 6, |d| Decodable::decode(d))?;
let non_narrow_chars: Vec<NonNarrowChar> =
d.read_struct_field("non_narrow_chars", 7, |d| Decodable::decode(d))?;
let name_hash: u128 =
d.read_struct_field("name_hash", 8, |d| Decodable::decode(d))?;
let normalized_pos: Vec<NormalizedPos> =
d.read_struct_field("normalized_pos", 9, |d| Decodable::decode(d))?;
Ok(SourceFile {
name,
name_was_remapped,
unmapped_path: None,
// `crate_of_origin` has to be set by the importer.
// This value matches up with `rustc::hir::def_id::INVALID_CRATE`.
// That constant is not available here, unfortunately.
crate_of_origin: std::u32::MAX - 1,
start_pos,
end_pos,
src: None,
src_hash,
external_src: Lock::new(ExternalSource::AbsentOk),
lines,
multibyte_chars,
non_narrow_chars,
normalized_pos,
name_hash,
})
})
}
}
impl fmt::Debug for SourceFile {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "SourceFile({})", self.name)
}
}
impl SourceFile {
pub fn new(name: FileName,
name_was_remapped: bool,
unmapped_path: FileName,
mut src: String,
start_pos: BytePos) -> Result<SourceFile, OffsetOverflowError> {
let normalized_pos = normalize_src(&mut src, start_pos);
let src_hash = {
let mut hasher: StableHasher = StableHasher::new();
hasher.write(src.as_bytes());
hasher.finish::<u128>()
};
let name_hash = {
let mut hasher: StableHasher = StableHasher::new();
name.hash(&mut hasher);
hasher.finish::<u128>()
};
let end_pos = start_pos.to_usize() + src.len();
if end_pos > u32::max_value() as usize {
return Err(OffsetOverflowError);
}
let (lines, multibyte_chars, non_narrow_chars) =
analyze_source_file::analyze_source_file(&src[..], start_pos);
Ok(SourceFile {
name,
name_was_remapped,
unmapped_path: Some(unmapped_path),
crate_of_origin: 0,
src: Some(Lrc::new(src)),
src_hash,
external_src: Lock::new(ExternalSource::Unneeded),
start_pos,
end_pos: Pos::from_usize(end_pos),
lines,
multibyte_chars,
non_narrow_chars,
normalized_pos,
name_hash,
})
}
/// Returns the `BytePos` of the beginning of the current line.
pub fn line_begin_pos(&self, pos: BytePos) -> BytePos {
let line_index = self.lookup_line(pos).unwrap();
self.lines[line_index]
}
/// Add externally loaded source.
/// If the hash of the input doesn't match or no input is supplied via None,
/// it is interpreted as an error and the corresponding enum variant is set.
/// The return value signifies whether some kind of source is present.
pub fn add_external_src<F>(&self, get_src: F) -> bool
where F: FnOnce() -> Option<String>
{
if *self.external_src.borrow() == ExternalSource::AbsentOk {
let src = get_src();
let mut external_src = self.external_src.borrow_mut();
// Check that no-one else have provided the source while we were getting it
if *external_src == ExternalSource::AbsentOk {
if let Some(src) = src {
let mut hasher: StableHasher = StableHasher::new();
hasher.write(src.as_bytes());
if hasher.finish::<u128>() == self.src_hash {
*external_src = ExternalSource::Present(src);
return true;
}
} else {
*external_src = ExternalSource::AbsentErr;
}
false
} else {
self.src.is_some() || external_src.get_source().is_some()
}
} else {
self.src.is_some() || self.external_src.borrow().get_source().is_some()
}
}
/// Gets a line from the list of pre-computed line-beginnings.
/// The line number here is 0-based.
pub fn get_line(&self, line_number: usize) -> Option<Cow<'_, str>> {
fn get_until_newline(src: &str, begin: usize) -> &str {
// We can't use `lines.get(line_number+1)` because we might
// be parsing when we call this function and thus the current
// line is the last one we have line info for.
let slice = &src[begin..];
match slice.find('\n') {
Some(e) => &slice[..e],
None => slice
}
}
let begin = {
let line = if let Some(line) = self.lines.get(line_number) {
line
} else {
return None;
};
let begin: BytePos = *line - self.start_pos;
begin.to_usize()
};
if let Some(ref src) = self.src {
Some(Cow::from(get_until_newline(src, begin)))
} else if let Some(src) = self.external_src.borrow().get_source() {
Some(Cow::Owned(String::from(get_until_newline(src, begin))))
} else {
None
}
}
pub fn is_real_file(&self) -> bool {
self.name.is_real()
}
pub fn is_imported(&self) -> bool {
self.src.is_none()
}
pub fn byte_length(&self) -> u32 {
self.end_pos.0 - self.start_pos.0
}
pub fn count_lines(&self) -> usize {
self.lines.len()
}
/// Finds the line containing the given position. The return value is the
/// index into the `lines` array of this `SourceFile`, not the 1-based line
/// number. If the source_file is empty or the position is located before the
/// first line, `None` is returned.
pub fn lookup_line(&self, pos: BytePos) -> Option<usize> {
if self.lines.len() == 0 {
return None;
}
let line_index = lookup_line(&self.lines[..], pos);
assert!(line_index < self.lines.len() as isize);
if line_index >= 0 {
Some(line_index as usize)
} else {
None
}
}
pub fn line_bounds(&self, line_index: usize) -> (BytePos, BytePos) {
if self.start_pos == self.end_pos {
return (self.start_pos, self.end_pos);
}
assert!(line_index < self.lines.len());
if line_index == (self.lines.len() - 1) {
(self.lines[line_index], self.end_pos)
} else {
(self.lines[line_index], self.lines[line_index + 1])
}
}
#[inline]
pub fn contains(&self, byte_pos: BytePos) -> bool {
byte_pos >= self.start_pos && byte_pos <= self.end_pos
}
/// Calculates the original byte position relative to the start of the file
/// based on the given byte position.
pub fn original_relative_byte_pos(&self, pos: BytePos) -> BytePos {
// Diff before any records is 0. Otherwise use the previously recorded
// diff as that applies to the following characters until a new diff
// is recorded.
let diff = match self.normalized_pos.binary_search_by(
|np| np.pos.cmp(&pos)) {
Ok(i) => self.normalized_pos[i].diff,
Err(i) if i == 0 => 0,
Err(i) => self.normalized_pos[i-1].diff,
};
BytePos::from_u32(pos.0 - self.start_pos.0 + diff)
}
}
/// Normalizes the source code and records the normalizations.
fn normalize_src(src: &mut String, start_pos: BytePos) -> Vec<NormalizedPos> {
let mut normalized_pos = vec![];
remove_bom(src, &mut normalized_pos);
normalize_newlines(src, &mut normalized_pos);
// Offset all the positions by start_pos to match the final file positions.
for np in &mut normalized_pos {
np.pos.0 += start_pos.0;
}
normalized_pos
}
/// Removes UTF-8 BOM, if any.
fn remove_bom(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
if src.starts_with("\u{feff}") {
src.drain(..3);
normalized_pos.push(NormalizedPos { pos: BytePos(0), diff: 3 });
}
}
/// Replaces `\r\n` with `\n` in-place in `src`.
///
/// Returns error if there's a lone `\r` in the string
fn normalize_newlines(src: &mut String, normalized_pos: &mut Vec<NormalizedPos>) {
if !src.as_bytes().contains(&b'\r') {
return;
}
// We replace `\r\n` with `\n` in-place, which doesn't break utf-8 encoding.
// While we *can* call `as_mut_vec` and do surgery on the live string
// directly, let's rather steal the contents of `src`. This makes the code
// safe even if a panic occurs.
let mut buf = std::mem::replace(src, String::new()).into_bytes();
let mut gap_len = 0;
let mut tail = buf.as_mut_slice();
let mut cursor = 0;
let original_gap = normalized_pos.last().map_or(0, |l| l.diff);
loop {
let idx = match find_crlf(&tail[gap_len..]) {
None => tail.len(),
Some(idx) => idx + gap_len,
};
tail.copy_within(gap_len..idx, 0);
tail = &mut tail[idx - gap_len..];
if tail.len() == gap_len {
break;
}
cursor += idx - gap_len;
gap_len += 1;
normalized_pos.push(NormalizedPos {
pos: BytePos::from_usize(cursor + 1),
diff: original_gap + gap_len as u32,
});
}
// Account for removed `\r`.
// After `set_len`, `buf` is guaranteed to contain utf-8 again.
let new_len = buf.len() - gap_len;
unsafe {
buf.set_len(new_len);
*src = String::from_utf8_unchecked(buf);
}
fn find_crlf(src: &[u8]) -> Option<usize> {
let mut search_idx = 0;
while let Some(idx) = find_cr(&src[search_idx..]) {
if src[search_idx..].get(idx + 1) != Some(&b'\n') {
search_idx += idx + 1;
continue;
}
return Some(search_idx + idx);
}
None
}
fn find_cr(src: &[u8]) -> Option<usize> {
src.iter().position(|&b| b == b'\r')
}
}
// _____________________________________________________________________________
// Pos, BytePos, CharPos
//
pub trait Pos {
fn from_usize(n: usize) -> Self;
fn to_usize(&self) -> usize;
fn from_u32(n: u32) -> Self;
fn to_u32(&self) -> u32;
}
/// A byte offset. Keep this small (currently 32-bits), as AST contains
/// a lot of them.
#[derive(Clone, Copy, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
pub struct BytePos(pub u32);
/// A character offset. Because of multibyte UTF-8 characters, a byte offset
/// is not equivalent to a character offset. The `SourceMap` will convert `BytePos`
/// values to `CharPos` values as necessary.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct CharPos(pub usize);
// FIXME: lots of boilerplate in these impls, but so far my attempts to fix
// have been unsuccessful.
impl Pos for BytePos {
#[inline(always)]
fn from_usize(n: usize) -> BytePos { BytePos(n as u32) }
#[inline(always)]
fn to_usize(&self) -> usize { self.0 as usize }
#[inline(always)]
fn from_u32(n: u32) -> BytePos { BytePos(n) }
#[inline(always)]
fn to_u32(&self) -> u32 { self.0 }
}
impl Add for BytePos {
type Output = BytePos;
#[inline(always)]
fn add(self, rhs: BytePos) -> BytePos {
BytePos((self.to_usize() + rhs.to_usize()) as u32)
}
}
impl Sub for BytePos {
type Output = BytePos;
#[inline(always)]
fn sub(self, rhs: BytePos) -> BytePos {
BytePos((self.to_usize() - rhs.to_usize()) as u32)
}
}
impl Encodable for BytePos {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_u32(self.0)
}
}
impl Decodable for BytePos {
fn decode<D: Decoder>(d: &mut D) -> Result<BytePos, D::Error> {
Ok(BytePos(d.read_u32()?))
}
}
impl Pos for CharPos {
#[inline(always)]
fn from_usize(n: usize) -> CharPos { CharPos(n) }
#[inline(always)]
fn to_usize(&self) -> usize { self.0 }
#[inline(always)]
fn from_u32(n: u32) -> CharPos { CharPos(n as usize) }
#[inline(always)]
fn to_u32(&self) -> u32 { self.0 as u32}
}
impl Add for CharPos {
type Output = CharPos;
#[inline(always)]
fn add(self, rhs: CharPos) -> CharPos {
CharPos(self.to_usize() + rhs.to_usize())
}
}
impl Sub for CharPos {
type Output = CharPos;
#[inline(always)]
fn sub(self, rhs: CharPos) -> CharPos {
CharPos(self.to_usize() - rhs.to_usize())
}
}
// _____________________________________________________________________________
// Loc, SourceFileAndLine, SourceFileAndBytePos
//
/// A source code location used for error reporting.
#[derive(Debug, Clone)]
pub struct Loc {
/// Information about the original source.
pub file: Lrc<SourceFile>,
/// The (1-based) line number.
pub line: usize,
/// The (0-based) column offset.
pub col: CharPos,
/// The (0-based) column offset when displayed.
pub col_display: usize,
}
// Used to be structural records.
#[derive(Debug)]
pub struct SourceFileAndLine { pub sf: Lrc<SourceFile>, pub line: usize }
#[derive(Debug)]
pub struct SourceFileAndBytePos { pub sf: Lrc<SourceFile>, pub pos: BytePos }
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct LineInfo {
/// Index of line, starting from 0.
pub line_index: usize,
/// Column in line where span begins, starting from 0.
pub start_col: CharPos,
/// Column in line where span ends, starting from 0, exclusive.
pub end_col: CharPos,
}
pub struct FileLines {
pub file: Lrc<SourceFile>,
pub lines: Vec<LineInfo>
}
thread_local!(pub static SPAN_DEBUG: Cell<fn(Span, &mut fmt::Formatter<'_>) -> fmt::Result> =
Cell::new(default_span_debug));
#[derive(Debug)]
pub struct MacroBacktrace {
/// span where macro was applied to generate this code
pub call_site: Span,
/// name of macro that was applied (e.g., "foo!" or "#[derive(Eq)]")
pub macro_decl_name: String,
/// span where macro was defined (possibly dummy)
pub def_site_span: Span,
}
// _____________________________________________________________________________
// SpanLinesError, SpanSnippetError, DistinctSources, MalformedSourceMapPositions
//
pub type FileLinesResult = Result<FileLines, SpanLinesError>;
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum SpanLinesError {
DistinctSources(DistinctSources),
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum SpanSnippetError {
IllFormedSpan(Span),
DistinctSources(DistinctSources),
MalformedForSourcemap(MalformedSourceMapPositions),
SourceNotAvailable { filename: FileName }
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct DistinctSources {
pub begin: (FileName, BytePos),
pub end: (FileName, BytePos)
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct MalformedSourceMapPositions {
pub name: FileName,
pub source_len: usize,
pub begin_pos: BytePos,
pub end_pos: BytePos
}
/// Range inside of a `Span` used for diagnostics when we only have access to relative positions.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct InnerSpan {
pub start: usize,
pub end: usize,
}
impl InnerSpan {
pub fn new(start: usize, end: usize) -> InnerSpan {
InnerSpan { start, end }
}
}
// Given a slice of line start positions and a position, returns the index of
// the line the position is on. Returns -1 if the position is located before
// the first line.
fn lookup_line(lines: &[BytePos], pos: BytePos) -> isize {
match lines.binary_search(&pos) {
Ok(line) => line as isize,
Err(line) => line as isize - 1
}
}