rust/src/libcompiler_builtins/lib.rs
est31 3e2046214c Try to fix some things
* shift so that no panics are generated (otherwise results in linker error)
* no_std as insurance to not get into issues with errors like "cannot satisfy dependencies so `rustc_i128` only shows up once" (pure guessing here, but it doesn't hurt...)
2016-12-30 15:17:28 +01:00

676 lines
20 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(compiler_builtins)]
#![no_std]
#![compiler_builtins]
#![unstable(feature = "compiler_builtins_lib",
reason = "internal implementation detail of rustc right now",
issue = "0")]
#![crate_name = "compiler_builtins"]
#![crate_type = "rlib"]
#![feature(staged_api)]
#![cfg_attr(any(target_pointer_width="32", target_pointer_width="16", target_os="windows",
target_arch="mips64"),
feature(core_intrinsics, core_float))]
#![feature(associated_consts)]
#![cfg_attr(not(stage0), feature(i128_type))]
#![allow(non_camel_case_types, unused_variables)]
#[cfg(any(target_pointer_width="32", target_pointer_width="16", target_os="windows",
target_arch="mips64"))]
pub mod reimpls {
#![allow(unused_comparisons)]
use core::intrinsics::unchecked_div;
use core::intrinsics::unchecked_rem;
use core::ptr;
// C API is expected to tolerate some amount of size mismatch in ABI. Hopefully the amount of
// handling is sufficient for bootstrapping.
#[cfg(stage0)]
type u128_ = u64;
#[cfg(stage0)]
type i128_ = i64;
#[cfg(not(stage0))]
type u128_ = u128;
#[cfg(not(stage0))]
type i128_ = i128;
fn unimplemented() -> ! {
unsafe { ::core::intrinsics::abort() }
}
macro_rules! ashl {
($a:expr, $b:expr, $ty:ty) => {{
let (a, b) = ($a, $b);
let bits = (::core::mem::size_of::<$ty>() * 8) as $ty;
let half_bits = bits / 2;
if b & half_bits != 0 {
<$ty>::from_parts(0, a.low() << (b - half_bits))
} else if b == 0 {
a
} else {
<$ty>::from_parts(a.low() << b, (a.high() << b) | (a.low() >> (half_bits - b)))
}
}}
}
#[export_name="__ashlti3"]
pub extern fn shl(a: u128_, b: u128_) -> u128_ {
ashl!(a, b, u128_)
}
macro_rules! ashr {
($a: expr, $b: expr, $ty:ty) => {{
let (a, b) = ($a, $b);
let bits = (::core::mem::size_of::<$ty>() * 8) as $ty;
let half_bits = bits >> 1;
if b & half_bits != 0 {
<$ty>::from_parts((a.high() >> (b - half_bits)) as <$ty as LargeInt>::LowHalf,
a.high() >> (half_bits - 1))
} else if b == 0 {
a
} else {
let high_unsigned = a.high() as <$ty as LargeInt>::LowHalf;
<$ty>::from_parts((high_unsigned << (half_bits - b)) | (a.low() >> b),
a.high() >> b)
}
}}
}
#[export_name="__ashrti3"]
pub extern fn shr(a: i128_, b: i128_) -> i128_ {
ashr!(a, b, i128_)
}
macro_rules! lshr {
($a: expr, $b: expr, $ty:ty) => {{
let (a, b) = ($a, $b);
let bits = (::core::mem::size_of::<$ty>() * 8) as $ty;
let half_bits = bits >> 1;
if b & half_bits != 0 {
<$ty>::from_parts(a.high() >> (b - half_bits), 0)
} else if b == 0 {
a
} else {
<$ty>::from_parts((a.high() << (half_bits - b)) | (a.low() >> b), a.high() >> b)
}
}}
}
#[export_name="__lshrti3"]
pub extern fn lshr(a: u128_, b: u128_) -> u128_ {
lshr!(a, b, u128_)
}
#[cfg(stage0)]
#[export_name="__udivmodti4"]
pub extern fn u128_div_mod(n: u128_, d: u128_, rem: *mut u128_) -> u128_ {
unsafe {
if !rem.is_null() {
*rem = unchecked_rem(n, d);
}
unchecked_div(n, d)
}
}
#[cfg(not(stage0))]
#[export_name="__udivmodti4"]
pub extern fn u128_div_mod(n: u128_, d: u128_, rem: *mut u128_) -> u128_ {
// Translated from Figure 3-40 of The PowerPC Compiler Writer's Guide
unsafe {
// special cases, X is unknown, K != 0
if n.high() == 0 {
if d.high() == 0 {
// 0 X
// ---
// 0 X
if !rem.is_null() {
*rem = u128::from(unchecked_rem(n.low(), d.low()));
}
return u128::from(unchecked_div(n.low(), d.low()));
} else {
// 0 X
// ---
// K X
if !rem.is_null() {
*rem = n;
}
return 0;
};
}
let mut sr;
let mut q;
let mut r;
if d.low() == 0 {
if d.high() == 0 {
// K X
// ---
// 0 0
if !rem.is_null() {
*rem = u128::from(unchecked_rem(n.high(), d.low()));
}
return u128::from(unchecked_div(n.high(), d.low()));
}
if n.low() == 0 {
// K 0
// ---
// K 0
if !rem.is_null() {
*rem = u128::from_parts(0, unchecked_rem(n.high(), d.high()));
}
return u128::from(unchecked_div(n.high(), d.high()));
}
// K K
// ---
// K 0
if d.high().is_power_of_two() {
if !rem.is_null() {
*rem = u128::from_parts(n.low(), n.high() & (d.high() - 1));
}
return u128::from(n.high() >> d.high().trailing_zeros());
}
// K K
// ---
// K 0
sr = d.high().leading_zeros().wrapping_sub(n.high().leading_zeros());
// D > N
if sr > 64 - 2 {
if !rem.is_null() {
*rem = n;
}
return 0;
}
sr += 1;
// 1 <= sr <= u64::bits() - 1
q = n << (64 - sr);
r = n >> sr;
} else {
if d.high() == 0 {
// K X
// ---
// 0 K
if d.low().is_power_of_two() {
if !rem.is_null() {
*rem = u128::from(n.low() & (d.low() - 1));
}
if d.low() == 1 {
return n;
} else {
let sr = d.low().trailing_zeros();
return n >> sr;
};
}
sr = 1 + 64 + d.low().leading_zeros() - n.high().leading_zeros();
// 2 <= sr <= u64::bits() - 1
q = n << (128 - sr);
r = n >> sr;
// FIXME the C compiler-rt implementation has something here
// that looks like a speed optimisation.
// It would be worth a try to port it to Rust too and
// compare the speed.
} else {
// K X
// ---
// K K
sr = d.high().leading_zeros().wrapping_sub(n.high().leading_zeros());
// D > N
if sr > 64 - 1 {
if !rem.is_null() {
*rem = n;
}
return 0;
}
sr += 1;
// 1 <= sr <= u32::bits()
q = n << (128 - sr);
r = n >> sr;
}
}
// Not a special case
// q and r are initialized with
// q = n << (u64::bits() - sr)
// r = n >> sr
// 1 <= sr <= u64::bits() - 1
let mut carry = 0;
for _ in 0..sr {
// r:q = ((r:q) << 1) | carry
r = (r << 1) | (q >> (128 - 1));
q = (q << 1) | carry as u128;
// carry = 0
// if r >= d {
// r -= d;
// carry = 1;
// }
let s = (d.wrapping_sub(r).wrapping_sub(1)) as i128 >> (128 - 1);
carry = (s & 1) as u64;
r -= d & s as u128;
}
if !rem.is_null() {
*rem = r;
}
(q << 1) | carry as u128
}
}
#[export_name="__umodti3"]
pub extern fn u128_mod(a: u128_, b: u128_) -> u128_ {
unsafe {
let mut r = ::core::mem::zeroed();
u128_div_mod(a, b, &mut r);
r
}
}
#[export_name="__modti3"]
pub extern fn i128_mod(a: i128_, b: i128_) -> i128_ {
let b = b.uabs();
let sa = a.signum();
let a = a.uabs();
unsafe {
let mut r = ::core::mem::zeroed();
u128_div_mod(a, b, &mut r);
if sa == -1 { -(r as i128_) } else { r as i128_ }
}
}
#[export_name="__divti3"]
pub extern fn i128_div(a: i128_, b: i128_) -> i128_ {
let sa = a.signum();
let sb = b.signum();
let a = a.uabs();
let b = b.uabs();
let sr = sa * sb; // sign of quotient
if sr == -1 {
-(u128_div_mod(a, b, ptr::null_mut()) as i128_)
} else {
u128_div_mod(a, b, ptr::null_mut()) as i128_
}
}
#[export_name="__udivti3"]
pub extern fn u128_div(a: u128_, b: u128_) -> u128_ {
u128_div_mod(a, b, ptr::null_mut())
}
macro_rules! mulo {
($a:expr, $b:expr, $o: expr, $ty: ty) => {{
let (a, b, overflow) = ($a, $b, $o);
*overflow = 0;
let result = a.wrapping_mul(b);
if a == <$ty>::min_value() {
if b != 0 && b != 1 {
*overflow = 1;
}
return result;
}
if b == <$ty>::min_value() {
if a != 0 && a != 1 {
*overflow = 1;
}
return result;
}
let sa = a.signum();
let abs_a = a.iabs();
let sb = b.signum();
let abs_b = b.iabs();
if abs_a < 2 || abs_b < 2 {
return result;
}
unsafe {
if sa == sb {
if abs_a > unchecked_div(<$ty>::max_value(), abs_b) {
*overflow = 1;
}
} else {
if abs_a > unchecked_div(<$ty>::min_value(), -abs_b) {
*overflow = 1;
}
}
}
result
}}
}
// FIXME: i32 here should be c_int.
#[export_name="__muloti4"]
pub extern fn i128_mul_oflow(a: i128_, b: i128_, o: &mut i32) -> i128_ {
mulo!(a, b, o, i128_)
}
pub trait LargeInt {
type LowHalf;
type HighHalf;
fn low(self) -> Self::LowHalf;
fn high(self) -> Self::HighHalf;
fn from_parts(low: Self::LowHalf, high: Self::HighHalf) -> Self;
}
impl LargeInt for u64 {
type LowHalf = u32;
type HighHalf = u32;
fn low(self) -> u32 {
self as u32
}
fn high(self) -> u32 {
(self >> 32) as u32
}
fn from_parts(low: u32, high: u32) -> u64 {
low as u64 | ((high as u64) << 32)
}
}
impl LargeInt for i64 {
type LowHalf = u32;
type HighHalf = i32;
fn low(self) -> u32 {
self as u32
}
fn high(self) -> i32 {
(self >> 32) as i32
}
fn from_parts(low: u32, high: i32) -> i64 {
low as i64 | ((high as i64) << 32)
}
}
#[cfg(not(stage0))]
impl LargeInt for u128 {
type LowHalf = u64;
type HighHalf = u64;
fn low(self) -> u64 {
self as u64
}
fn high(self) -> u64 {
unsafe { *(&self as *const u128 as *const u64).offset(1) }
}
fn from_parts(low: u64, high: u64) -> u128 {
#[repr(C, packed)] struct Parts(u64, u64);
unsafe { ::core::mem::transmute(Parts(low, high)) }
}
}
#[cfg(not(stage0))]
impl LargeInt for i128 {
type LowHalf = u64;
type HighHalf = i64;
fn low(self) -> u64 {
self as u64
}
fn high(self) -> i64 {
unsafe { *(&self as *const i128 as *const i64).offset(1) }
}
fn from_parts(low: u64, high: i64) -> i128 {
u128::from_parts(low, high as u64) as i128
}
}
macro_rules! mul {
($a:expr, $b:expr, $ty: ty, $tyh: ty) => {{
let (a, b) = ($a, $b);
let half_bits = (::core::mem::size_of::<$tyh>() * 8) / 2;
let lower_mask = !0 >> half_bits;
let mut low = (a.low() & lower_mask) * (b.low() & lower_mask);
let mut t = low >> half_bits;
low &= lower_mask;
t += (a.low() >> half_bits) * (b.low() & lower_mask);
low += (t & lower_mask) << half_bits;
let mut high = (t >> half_bits) as $tyh;
t = low >> half_bits;
low &= lower_mask;
t += (b.low() >> half_bits) * (a.low() & lower_mask);
low += (t & lower_mask) << half_bits;
high += (t >> half_bits) as $tyh;
high += ((a.low() >> half_bits) * (b.low() >> half_bits)) as $tyh;
high = high
.wrapping_add(a.high()
.wrapping_mul(b.low() as $tyh))
.wrapping_add((a.low() as $tyh)
.wrapping_mul(b.high()));
<$ty>::from_parts(low, high)
}}
}
#[cfg(stage0)]
#[export_name="__multi3"]
pub extern fn u128_mul(a: i128_, b: i128_) -> i128_ {
(a as i64 * b as i64) as i128_
}
#[cfg(not(stage0))]
#[export_name="__multi3"]
pub extern fn u128_mul(a: i128_, b: i128_) -> i128_ {
mul!(a, b, i128_, i64)
}
trait AbsExt: Sized {
fn uabs(self) -> u128_ {
self.iabs() as u128_
}
fn iabs(self) -> i128_;
}
impl AbsExt for i128_ {
fn iabs(self) -> i128_ {
((self ^ self).wrapping_sub(self))
}
}
trait FloatStuff: Sized {
type ToBytes;
const MANTISSA_BITS: u32;
const MAX_EXP: i32;
const EXP_MASK: Self::ToBytes;
const MANTISSA_MASK: Self::ToBytes;
const MANTISSA_LEAD_BIT: Self::ToBytes;
fn to_bytes(self) -> Self::ToBytes;
fn get_exponent(self) -> i32;
}
impl FloatStuff for f32 {
type ToBytes = u32;
const MANTISSA_BITS: u32 = 23;
const MAX_EXP: i32 = 127;
const EXP_MASK: u32 = 0x7F80_0000;
const MANTISSA_MASK: u32 = 0x007F_FFFF;
const MANTISSA_LEAD_BIT: u32 = 0x0080_0000;
fn to_bytes(self) -> u32 { unsafe { ::core::mem::transmute(self) } }
fn get_exponent(self) -> i32 {
(((self.to_bytes() & Self::EXP_MASK) >> Self::MANTISSA_BITS) as i32) - Self::MAX_EXP
}
}
impl FloatStuff for f64 {
type ToBytes = u64;
const MANTISSA_BITS: u32 = 52;
const MAX_EXP: i32 = 1023;
const EXP_MASK: u64 = 0x7FF0_0000_0000_0000;
const MANTISSA_MASK: u64 = 0x000F_FFFF_FFFF_FFFF;
const MANTISSA_LEAD_BIT: u64 = 0x0010_0000_0000_0000;
fn to_bytes(self) -> u64 { unsafe { ::core::mem::transmute(self) } }
fn get_exponent(self) -> i32 {
(((self.to_bytes() & Self::EXP_MASK) >> Self::MANTISSA_BITS) as i32) - Self::MAX_EXP
}
}
macro_rules! float_as_unsigned {
($from: expr, $fromty: ty, $outty: ty) => { {
use core::num::Float;
let repr = $from.to_bytes();
let sign = $from.signum();
let exponent = $from.get_exponent();
let mantissa_fraction = repr & <$fromty as FloatStuff>::MANTISSA_MASK;
let mantissa = mantissa_fraction | <$fromty as FloatStuff>::MANTISSA_LEAD_BIT;
if sign == -1.0 || exponent < 0 { return 0; }
if exponent > ::core::mem::size_of::<$outty>() as i32 * 8 {
return !0;
}
if exponent < (<$fromty as FloatStuff>::MANTISSA_BITS) as i32 {
mantissa as $outty >> (<$fromty as FloatStuff>::MANTISSA_BITS as i32 - exponent)
} else {
mantissa as $outty << (exponent - <$fromty as FloatStuff>::MANTISSA_BITS as i32)
}
} }
}
#[export_name="__fixunsdfti"]
pub extern fn f64_as_u128(a: f64) -> u128_ {
float_as_unsigned!(a, f64, u128_)
}
#[export_name="__fixunssfti"]
pub extern fn f32_as_u128(a: f32) -> u128_ {
float_as_unsigned!(a, f32, u128_)
}
macro_rules! float_as_signed {
($from: expr, $fromty: ty, $outty: ty) => {{
use core::num::Float;
let repr = $from.to_bytes();
let sign = $from.signum();
let exponent = $from.get_exponent();
let mantissa_fraction = repr & <$fromty as FloatStuff>::MANTISSA_MASK;
let mantissa = mantissa_fraction | <$fromty as FloatStuff>::MANTISSA_LEAD_BIT;
if exponent < 0 { return 0; }
if exponent > ::core::mem::size_of::<$outty>() as i32 * 8 {
return if sign > 0.0 { <$outty>::max_value() } else { <$outty>::min_value() };
}
let r = if exponent < (<$fromty as FloatStuff>::MANTISSA_BITS) as i32 {
mantissa as $outty >> (<$fromty as FloatStuff>::MANTISSA_BITS as i32 - exponent)
} else {
mantissa as $outty << (exponent - <$fromty as FloatStuff>::MANTISSA_BITS as i32)
};
if sign >= 0.0 { r } else { -r }
}}
}
#[export_name="__fixdfti"]
pub extern fn f64_as_i128(a: f64) -> i128_ {
float_as_signed!(a, f64, i128_)
}
#[export_name="__fixsfti"]
pub extern fn f32_as_i128(a: f32) -> i128_ {
float_as_signed!(a, f32, i128_)
}
#[export_name="__floattidf"]
pub extern fn i128_as_f64(a: i128_) -> f64 {
match a.signum() {
1 => u128_as_f64(a.uabs()),
0 => 0.0,
-1 => -u128_as_f64(a.uabs()),
_ => unimplemented()
}
}
#[export_name="__floattisf"]
pub extern fn i128_as_f32(a: i128_) -> f32 {
match a.signum() {
1 => u128_as_f32(a.uabs()),
0 => 0.0,
-1 => -u128_as_f32(a.uabs()),
_ => unimplemented()
}
}
#[export_name="__floatuntidf"]
pub extern fn u128_as_f64(mut a: u128_) -> f64 {
use ::core::f64::MANTISSA_DIGITS;
if a == 0 { return 0.0; }
let sd = 128 - a.leading_zeros();
let mut e = sd - 1;
const MD1 : u32 = MANTISSA_DIGITS + 1;
const MD2 : u32 = MANTISSA_DIGITS + 2;
if sd > MANTISSA_DIGITS {
a = match sd {
MD1 => a << 1,
MD2 => a,
_ => (a >> (sd - (MANTISSA_DIGITS + 2))) |
(if (a & (!0 >> (128 + MANTISSA_DIGITS + 2) - sd)) == 0 { 0 } else { 1 })
};
a |= if (a & 4) == 0 { 0 } else { 1 };
a += 1;
a >>= 2;
if a & (1 << MANTISSA_DIGITS) != 0 {
a >>= 1;
e += 1;
}
} else {
a <<= MANTISSA_DIGITS - sd;
}
unsafe {
::core::mem::transmute(((e as u64 + 1023) << 52) | (a as u64 & 0x000f_ffff_ffff_ffff))
}
}
#[export_name="__floatuntisf"]
pub extern fn u128_as_f32(mut a: u128_) -> f32 {
use ::core::f32::MANTISSA_DIGITS;
if a == 0 { return 0.0; }
let sd = 128 - a.leading_zeros();
let mut e = sd - 1;
const MD1 : u32 = MANTISSA_DIGITS + 1;
const MD2 : u32 = MANTISSA_DIGITS + 2;
if sd > MANTISSA_DIGITS {
a = match sd {
MD1 => a << 1,
MD2 => a,
_ => (a >> (sd - (MANTISSA_DIGITS + 2))) |
(if (a & (!0 >> (128 + MANTISSA_DIGITS + 2) - sd)) == 0 { 0 } else { 1 })
};
a |= if (a & 4) == 0 { 0 } else { 1 };
a += 1;
a >>= 2;
if a & (1 << MANTISSA_DIGITS) != 0 {
a >>= 1;
e += 1;
}
} else {
a <<= MANTISSA_DIGITS - sd;
}
unsafe {
::core::mem::transmute(((e + 127) << 23) | (a as u32 & 0x007f_ffff))
}
}
}