rust/crates/ra_ssr/src/tests.rs

609 lines
18 KiB
Rust

use crate::matching::MatchFailureReason;
use crate::{matching, Match, MatchFinder, SsrMatches, SsrPattern, SsrRule};
use matching::record_match_fails_reasons_scope;
use ra_db::{FileId, FileRange, SourceDatabaseExt};
use ra_syntax::ast::AstNode;
use ra_syntax::{ast, SyntaxKind, SyntaxNode, TextRange};
struct MatchDebugInfo {
node: SyntaxNode,
/// Our search pattern parsed as the same kind of syntax node as `node`. e.g. expression, item,
/// etc. Will be absent if the pattern can't be parsed as that kind.
pattern: Result<SyntaxNode, MatchFailureReason>,
matched: Result<Match, MatchFailureReason>,
}
impl SsrPattern {
pub(crate) fn tree_for_kind_with_reason(
&self,
kind: SyntaxKind,
) -> Result<&SyntaxNode, MatchFailureReason> {
record_match_fails_reasons_scope(true, || self.tree_for_kind(kind))
.map_err(|e| MatchFailureReason { reason: e.reason.unwrap() })
}
}
impl std::fmt::Debug for MatchDebugInfo {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "========= PATTERN ==========\n")?;
match &self.pattern {
Ok(pattern) => {
write!(f, "{:#?}", pattern)?;
}
Err(err) => {
write!(f, "{}", err.reason)?;
}
}
write!(
f,
"\n============ AST ===========\n\
{:#?}\n============================",
self.node
)?;
match &self.matched {
Ok(_) => write!(f, "Node matched")?,
Err(reason) => write!(f, "Node failed to match because: {}", reason.reason)?,
}
Ok(())
}
}
impl SsrMatches {
/// Returns `self` with any nested matches removed and made into top-level matches.
pub(crate) fn flattened(self) -> SsrMatches {
let mut out = SsrMatches::default();
self.flatten_into(&mut out);
out
}
fn flatten_into(self, out: &mut SsrMatches) {
for mut m in self.matches {
for p in m.placeholder_values.values_mut() {
std::mem::replace(&mut p.inner_matches, SsrMatches::default()).flatten_into(out);
}
out.matches.push(m);
}
}
}
impl Match {
pub(crate) fn matched_text(&self) -> String {
self.matched_node.text().to_string()
}
}
impl<'db> MatchFinder<'db> {
/// Adds a search pattern. For use if you intend to only call `find_matches_in_file`. If you
/// intend to do replacement, use `add_rule` instead.
fn add_search_pattern(&mut self, pattern: SsrPattern) {
self.add_rule(SsrRule { pattern, template: "()".parse().unwrap() })
}
/// Finds all nodes in `file_id` whose text is exactly equal to `snippet` and attempts to match
/// them, while recording reasons why they don't match. This API is useful for command
/// line-based debugging where providing a range is difficult.
fn debug_where_text_equal(&self, file_id: FileId, snippet: &str) -> Vec<MatchDebugInfo> {
let file = self.sema.parse(file_id);
let mut res = Vec::new();
let file_text = self.sema.db.file_text(file_id);
let mut remaining_text = file_text.as_str();
let mut base = 0;
let len = snippet.len() as u32;
while let Some(offset) = remaining_text.find(snippet) {
let start = base + offset as u32;
let end = start + len;
self.output_debug_for_nodes_at_range(
file.syntax(),
TextRange::new(start.into(), end.into()),
&None,
&mut res,
);
remaining_text = &remaining_text[offset + snippet.len()..];
base = end;
}
res
}
fn output_debug_for_nodes_at_range(
&self,
node: &SyntaxNode,
range: TextRange,
restrict_range: &Option<FileRange>,
out: &mut Vec<MatchDebugInfo>,
) {
for node in node.children() {
if !node.text_range().contains_range(range) {
continue;
}
if node.text_range() == range {
for rule in &self.rules {
let pattern =
rule.pattern.tree_for_kind_with_reason(node.kind()).map(|p| p.clone());
out.push(MatchDebugInfo {
matched: matching::get_match(true, rule, &node, restrict_range, &self.sema)
.map_err(|e| MatchFailureReason {
reason: e.reason.unwrap_or_else(|| {
"Match failed, but no reason was given".to_owned()
}),
}),
pattern,
node: node.clone(),
});
}
} else if let Some(macro_call) = ast::MacroCall::cast(node.clone()) {
if let Some(expanded) = self.sema.expand(&macro_call) {
if let Some(tt) = macro_call.token_tree() {
self.output_debug_for_nodes_at_range(
&expanded,
range,
&Some(self.sema.original_range(tt.syntax())),
out,
);
}
}
}
}
}
}
fn parse_error_text(query: &str) -> String {
format!("{}", query.parse::<SsrRule>().unwrap_err())
}
#[test]
fn parser_empty_query() {
assert_eq!(parse_error_text(""), "Parse error: Cannot find delemiter `==>>`");
}
#[test]
fn parser_no_delimiter() {
assert_eq!(parse_error_text("foo()"), "Parse error: Cannot find delemiter `==>>`");
}
#[test]
fn parser_two_delimiters() {
assert_eq!(
parse_error_text("foo() ==>> a ==>> b "),
"Parse error: More than one delimiter found"
);
}
#[test]
fn parser_repeated_name() {
assert_eq!(
parse_error_text("foo($a, $a) ==>>"),
"Parse error: Name `a` repeats more than once"
);
}
#[test]
fn parser_invalid_pattern() {
assert_eq!(
parse_error_text(" ==>> ()"),
"Parse error: Pattern is not a valid Rust expression, type, item, path or pattern"
);
}
#[test]
fn parser_invalid_template() {
assert_eq!(
parse_error_text("() ==>> )"),
"Parse error: Replacement is not a valid Rust expression, type, item, path or pattern"
);
}
#[test]
fn parser_undefined_placeholder_in_replacement() {
assert_eq!(
parse_error_text("42 ==>> $a"),
"Parse error: Replacement contains undefined placeholders: $a"
);
}
fn single_file(code: &str) -> (ra_ide_db::RootDatabase, FileId) {
use ra_db::fixture::WithFixture;
ra_ide_db::RootDatabase::with_single_file(code)
}
fn assert_ssr_transform(rule: &str, input: &str, result: &str) {
assert_ssr_transforms(&[rule], input, result);
}
fn normalize_code(code: &str) -> String {
let (db, file_id) = single_file(code);
db.file_text(file_id).to_string()
}
fn assert_ssr_transforms(rules: &[&str], input: &str, result: &str) {
let (db, file_id) = single_file(input);
let mut match_finder = MatchFinder::new(&db);
for rule in rules {
let rule: SsrRule = rule.parse().unwrap();
match_finder.add_rule(rule);
}
if let Some(edits) = match_finder.edits_for_file(file_id) {
// Note, db.file_text is not necessarily the same as `input`, since fixture parsing alters
// stuff.
let mut after = db.file_text(file_id).to_string();
edits.apply(&mut after);
// Likewise, we need to make sure that whatever transformations fixture parsing applies,
// also get appplied to our expected result.
let result = normalize_code(result);
assert_eq!(after, result);
} else {
panic!("No edits were made");
}
}
fn assert_matches(pattern: &str, code: &str, expected: &[&str]) {
let (db, file_id) = single_file(code);
let mut match_finder = MatchFinder::new(&db);
match_finder.add_search_pattern(pattern.parse().unwrap());
let matched_strings: Vec<String> = match_finder
.find_matches_in_file(file_id)
.flattened()
.matches
.iter()
.map(|m| m.matched_text())
.collect();
if matched_strings != expected && !expected.is_empty() {
let debug_info = match_finder.debug_where_text_equal(file_id, &expected[0]);
eprintln!("Test is about to fail. Some possibly useful info: {} nodes had text exactly equal to '{}'", debug_info.len(), &expected[0]);
for d in debug_info {
eprintln!("{:#?}", d);
}
}
assert_eq!(matched_strings, expected);
}
fn assert_no_match(pattern: &str, code: &str) {
assert_matches(pattern, code, &[]);
}
#[test]
fn ssr_function_to_method() {
assert_ssr_transform(
"my_function($a, $b) ==>> ($a).my_method($b)",
"loop { my_function( other_func(x, y), z + w) }",
"loop { (other_func(x, y)).my_method(z + w) }",
)
}
#[test]
fn ssr_nested_function() {
assert_ssr_transform(
"foo($a, $b, $c) ==>> bar($c, baz($a, $b))",
"fn main { foo (x + value.method(b), x+y-z, true && false) }",
"fn main { bar(true && false, baz(x + value.method(b), x+y-z)) }",
)
}
#[test]
fn ssr_expected_spacing() {
assert_ssr_transform(
"foo($x) + bar() ==>> bar($x)",
"fn main() { foo(5) + bar() }",
"fn main() { bar(5) }",
);
}
#[test]
fn ssr_with_extra_space() {
assert_ssr_transform(
"foo($x ) + bar() ==>> bar($x)",
"fn main() { foo( 5 ) +bar( ) }",
"fn main() { bar(5) }",
);
}
#[test]
fn ssr_keeps_nested_comment() {
assert_ssr_transform(
"foo($x) ==>> bar($x)",
"fn main() { foo(other(5 /* using 5 */)) }",
"fn main() { bar(other(5 /* using 5 */)) }",
)
}
#[test]
fn ssr_keeps_comment() {
assert_ssr_transform(
"foo($x) ==>> bar($x)",
"fn main() { foo(5 /* using 5 */) }",
"fn main() { bar(5)/* using 5 */ }",
)
}
#[test]
fn ssr_struct_lit() {
assert_ssr_transform(
"foo{a: $a, b: $b} ==>> foo::new($a, $b)",
"fn main() { foo{b:2, a:1} }",
"fn main() { foo::new(1, 2) }",
)
}
#[test]
fn ignores_whitespace() {
assert_matches("1+2", "fn f() -> i32 {1 + 2}", &["1 + 2"]);
assert_matches("1 + 2", "fn f() -> i32 {1+2}", &["1+2"]);
}
#[test]
fn no_match() {
assert_no_match("1 + 3", "fn f() -> i32 {1 + 2}");
}
#[test]
fn match_fn_definition() {
assert_matches("fn $a($b: $t) {$c}", "fn f(a: i32) {bar()}", &["fn f(a: i32) {bar()}"]);
}
#[test]
fn match_struct_definition() {
assert_matches(
"struct $n {$f: Option<String>}",
"struct Bar {} struct Foo {name: Option<String>}",
&["struct Foo {name: Option<String>}"],
);
}
#[test]
fn match_expr() {
let code = "fn f() -> i32 {foo(40 + 2, 42)}";
assert_matches("foo($a, $b)", code, &["foo(40 + 2, 42)"]);
assert_no_match("foo($a, $b, $c)", code);
assert_no_match("foo($a)", code);
}
#[test]
fn match_nested_method_calls() {
assert_matches(
"$a.z().z().z()",
"fn f() {h().i().j().z().z().z().d().e()}",
&["h().i().j().z().z().z()"],
);
}
// Make sure that our node matching semantics don't differ within macro calls.
#[test]
fn match_nested_method_calls_with_macro_call() {
assert_matches(
"$a.z().z().z()",
r#"
macro_rules! m1 { ($a:expr) => {$a}; }
fn f() {m1!(h().i().j().z().z().z().d().e())}"#,
&["h().i().j().z().z().z()"],
);
}
#[test]
fn match_complex_expr() {
let code = "fn f() -> i32 {foo(bar(40, 2), 42)}";
assert_matches("foo($a, $b)", code, &["foo(bar(40, 2), 42)"]);
assert_no_match("foo($a, $b, $c)", code);
assert_no_match("foo($a)", code);
assert_matches("bar($a, $b)", code, &["bar(40, 2)"]);
}
// Trailing commas in the code should be ignored.
#[test]
fn match_with_trailing_commas() {
// Code has comma, pattern doesn't.
assert_matches("foo($a, $b)", "fn f() {foo(1, 2,);}", &["foo(1, 2,)"]);
assert_matches("Foo{$a, $b}", "fn f() {Foo{1, 2,};}", &["Foo{1, 2,}"]);
// Pattern has comma, code doesn't.
assert_matches("foo($a, $b,)", "fn f() {foo(1, 2);}", &["foo(1, 2)"]);
assert_matches("Foo{$a, $b,}", "fn f() {Foo{1, 2};}", &["Foo{1, 2}"]);
}
#[test]
fn match_type() {
assert_matches("i32", "fn f() -> i32 {1 + 2}", &["i32"]);
assert_matches("Option<$a>", "fn f() -> Option<i32> {42}", &["Option<i32>"]);
assert_no_match("Option<$a>", "fn f() -> Result<i32, ()> {42}");
}
#[test]
fn match_struct_instantiation() {
assert_matches(
"Foo {bar: 1, baz: 2}",
"fn f() {Foo {bar: 1, baz: 2}}",
&["Foo {bar: 1, baz: 2}"],
);
// Now with placeholders for all parts of the struct.
assert_matches(
"Foo {$a: $b, $c: $d}",
"fn f() {Foo {bar: 1, baz: 2}}",
&["Foo {bar: 1, baz: 2}"],
);
assert_matches("Foo {}", "fn f() {Foo {}}", &["Foo {}"]);
}
#[test]
fn match_path() {
assert_matches("foo::bar", "fn f() {foo::bar(42)}", &["foo::bar"]);
assert_matches("$a::bar", "fn f() {foo::bar(42)}", &["foo::bar"]);
assert_matches("foo::$b", "fn f() {foo::bar(42)}", &["foo::bar"]);
}
#[test]
fn match_pattern() {
assert_matches("Some($a)", "fn f() {if let Some(x) = foo() {}}", &["Some(x)"]);
}
#[test]
fn match_reordered_struct_instantiation() {
assert_matches(
"Foo {aa: 1, b: 2, ccc: 3}",
"fn f() {Foo {b: 2, ccc: 3, aa: 1}}",
&["Foo {b: 2, ccc: 3, aa: 1}"],
);
assert_no_match("Foo {a: 1}", "fn f() {Foo {b: 1}}");
assert_no_match("Foo {a: 1}", "fn f() {Foo {a: 2}}");
assert_no_match("Foo {a: 1, b: 2}", "fn f() {Foo {a: 1}}");
assert_no_match("Foo {a: 1, b: 2}", "fn f() {Foo {b: 2}}");
assert_no_match("Foo {a: 1, }", "fn f() {Foo {a: 1, b: 2}}");
assert_no_match("Foo {a: 1, z: 9}", "fn f() {Foo {a: 1}}");
}
#[test]
fn match_macro_invocation() {
assert_matches("foo!($a)", "fn() {foo(foo!(foo()))}", &["foo!(foo())"]);
assert_matches("foo!(41, $a, 43)", "fn() {foo!(41, 42, 43)}", &["foo!(41, 42, 43)"]);
assert_no_match("foo!(50, $a, 43)", "fn() {foo!(41, 42, 43}");
assert_no_match("foo!(41, $a, 50)", "fn() {foo!(41, 42, 43}");
assert_matches("foo!($a())", "fn() {foo!(bar())}", &["foo!(bar())"]);
}
// When matching within a macro expansion, we only allow matches of nodes that originated from
// the macro call, not from the macro definition.
#[test]
fn no_match_expression_from_macro() {
assert_no_match(
"$a.clone()",
r#"
macro_rules! m1 {
() => {42.clone()}
}
fn f1() {m1!()}
"#,
);
}
// We definitely don't want to allow matching of an expression that part originates from the
// macro call `42` and part from the macro definition `.clone()`.
#[test]
fn no_match_split_expression() {
assert_no_match(
"$a.clone()",
r#"
macro_rules! m1 {
($x:expr) => {$x.clone()}
}
fn f1() {m1!(42)}
"#,
);
}
#[test]
fn replace_function_call() {
assert_ssr_transform("foo() ==>> bar()", "fn f1() {foo(); foo();}", "fn f1() {bar(); bar();}");
}
#[test]
fn replace_function_call_with_placeholders() {
assert_ssr_transform(
"foo($a, $b) ==>> bar($b, $a)",
"fn f1() {foo(5, 42)}",
"fn f1() {bar(42, 5)}",
);
}
#[test]
fn replace_nested_function_calls() {
assert_ssr_transform(
"foo($a) ==>> bar($a)",
"fn f1() {foo(foo(42))}",
"fn f1() {bar(bar(42))}",
);
}
#[test]
fn replace_type() {
assert_ssr_transform(
"Result<(), $a> ==>> Option<$a>",
"fn f1() -> Result<(), Vec<Error>> {foo()}",
"fn f1() -> Option<Vec<Error>> {foo()}",
);
}
#[test]
fn replace_struct_init() {
assert_ssr_transform(
"Foo {a: $a, b: $b} ==>> Foo::new($a, $b)",
"fn f1() {Foo{b: 1, a: 2}}",
"fn f1() {Foo::new(2, 1)}",
);
}
#[test]
fn replace_macro_invocations() {
assert_ssr_transform(
"try!($a) ==>> $a?",
"fn f1() -> Result<(), E> {bar(try!(foo()));}",
"fn f1() -> Result<(), E> {bar(foo()?);}",
);
assert_ssr_transform(
"foo!($a($b)) ==>> foo($b, $a)",
"fn f1() {foo!(abc(def() + 2));}",
"fn f1() {foo(def() + 2, abc);}",
);
}
#[test]
fn replace_binary_op() {
assert_ssr_transform(
"$a + $b ==>> $b + $a",
"fn f() {2 * 3 + 4 * 5}",
"fn f() {4 * 5 + 2 * 3}",
);
assert_ssr_transform(
"$a + $b ==>> $b + $a",
"fn f() {1 + 2 + 3 + 4}",
"fn f() {4 + 3 + 2 + 1}",
);
}
#[test]
fn match_binary_op() {
assert_matches("$a + $b", "fn f() {1 + 2 + 3 + 4}", &["1 + 2", "1 + 2 + 3", "1 + 2 + 3 + 4"]);
}
#[test]
fn multiple_rules() {
assert_ssr_transforms(
&["$a + 1 ==>> add_one($a)", "$a + $b ==>> add($a, $b)"],
"fn f() -> i32 {3 + 2 + 1}",
"fn f() -> i32 {add_one(add(3, 2))}",
)
}
#[test]
fn match_within_macro_invocation() {
let code = r#"
macro_rules! foo {
($a:stmt; $b:expr) => {
$b
};
}
struct A {}
impl A {
fn bar() {}
}
fn f1() {
let aaa = A {};
foo!(macro_ignores_this(); aaa.bar());
}
"#;
assert_matches("$a.bar()", code, &["aaa.bar()"]);
}
#[test]
fn replace_within_macro_expansion() {
assert_ssr_transform(
"$a.foo() ==>> bar($a)",
r#"
macro_rules! macro1 {
($a:expr) => {$a}
}
fn f() {macro1!(5.x().foo().o2())}"#,
r#"
macro_rules! macro1 {
($a:expr) => {$a}
}
fn f() {macro1!(bar(5.x()).o2())}"#,
)
}