Go to file
bors 3dd1a48f3f Auto merge of #27893 - nikomatsakis:mir, r=nrc
This PR contains a new crate, `rustc_mir`, which implements the MIR as specified in the RFC (more or less). There are no targeted unit tests at the moment, as I didn't decide what kind of infrastructure would be best and didn't take the time to implement it. 

~~NB: In packaging up this PR, I realized that MIR construction code is not triggering for methods right now, I think it's only for fixed fns. I'll push a fix for this soon. Hopefully it doesn't stop any crates from building. :)~~ Fixed. Everything still seems to work.

However, the MIR construction code (`librustc_mir/build`) is intentionally quite distinct from the code which munges the compiler's data structures (`librustc_mir/tcx`). The interface between the two is the `HIR` trait (`librustc_mir/hir`). To avoid confusion with @nrc's work, perhaps a better name for this trait is warranted, although ultimately this trait *will* be connected to the HIR, I imagine, so in a way the name is perfect. Anyway, I'm open to suggestions. The initial motivation for this split was to allow for the MIR construction code to be unit-tested. But while I didn't end up writing unit tests (yet), I did find the split made the code immensely easier to think about, since the messiness of our existing system, with its myriad hashtables, punning, and so forth, is confined to one part, which simply transforms to a more fully explicit AST-like form. I tried to separate out the commits somewhat, but since this mostly new code, it mostly winds up coming in one fell swoop in the MIR commit.

Quick guide to the MIR crate:

- `repr.rs` defines the MIR itself; each MIR instance is parameterized by some HIR `H`
- `build/` is the MIR construction code, parameterized by a particular HIR
- `hir/` is the definition of the HIR interface
- `tcx/` is the impl of the HIR interface for the tcx
- `dump.rs` is the minimal compiler pass that invokes the HIR

One open question:

- In the HIR trait, I used exclusively struct-like variants. I found I like this more, since things have names. Should I convert the repr code?
2015-09-06 21:31:26 +00:00
man
mk enable slice patterns and enable building rustdoc 2015-09-06 16:48:57 -04:00
src Auto merge of #27893 - nikomatsakis:mir, r=nrc 2015-09-06 21:31:26 +00:00
.gitattributes
.gitignore
.gitmodules
.mailmap
.travis.yml Run tidy by itself on travis. 2015-08-28 22:59:00 -07:00
AUTHORS.txt
configure Fix escaping in msvc builds 2015-09-04 10:03:56 +01:00
CONTRIBUTING.md
COPYRIGHT
LICENSE-APACHE
LICENSE-MIT
Makefile.in
README.md Update README.md 2015-08-28 20:24:13 +02:00
RELEASES.md

The Rust Programming Language

Rust is a fast systems programming language that guarantees memory safety and offers painless concurrency (no data races). It does not employ a garbage collector and has minimal runtime overhead.

This repo contains the code for the compiler (rustc), as well as standard libraries, tools and documentation for Rust.

Quick Start

Read "Installing Rust" from The Book.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • GNU make 3.81 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./configure
    $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. From the MSYS2 terminal, install the mingw64 toolchain and other required tools.

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Choose one based on platform:
    $ pacman -S mingw-w64-i686-toolchain
    $ pacman -S mingw-w64-x86_64-toolchain
    
    $ pacman -S base-devel
    
  3. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys), depending on whether you want 32-bit or 64-bit Rust.

  4. Navigate to Rust's source code, configure and build it:

    $ ./configure
    $ make && make install
    

Building Documentation

If youd like to build the documentation, its almost the same:

./configure
$ make docs

Building the documentation requires building the compiler, so the above details will apply. Once you have the compiler built, you can

$ make docs NO_REBUILD=1 

To make sure you dont re-build the compiler because you made a change to some documentation.

The generated documentation will appear in a top-level doc directory, created by the make rule.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform \ Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust, and a good place to ask for help.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.