rust/src/libsyntax/visit.rs
Steven Fackler 3dcd215740 Switch to purely namespaced enums
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:

```
pub enum Foo {
    A,
    B
}

fn main() {
    let a = A;
}
```
=>
```
pub use self::Foo::{A, B};

pub enum Foo {
    A,
    B
}

fn main() {
    let a = A;
}
```
or
```
pub enum Foo {
    A,
    B
}

fn main() {
    let a = Foo::A;
}
```

[breaking-change]
2014-11-17 07:35:51 -08:00

865 lines
32 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! AST walker. Each overridden visit method has full control over what
//! happens with its node, it can do its own traversal of the node's children,
//! call `visit::walk_*` to apply the default traversal algorithm, or prevent
//! deeper traversal by doing nothing.
//!
//! Note: it is an important invariant that the default visitor walks the body
//! of a function in "execution order" (more concretely, reverse post-order
//! with respect to the CFG implied by the AST), meaning that if AST node A may
//! execute before AST node B, then A is visited first. The borrow checker in
//! particular relies on this property.
//!
//! Note: walking an AST before macro expansion is probably a bad idea. For
//! instance, a walker looking for item names in a module will miss all of
//! those that are created by the expansion of a macro.
pub use self::FnKind::*;
use abi::Abi;
use ast::*;
use ast;
use codemap::Span;
use ptr::P;
use owned_slice::OwnedSlice;
pub enum FnKind<'a> {
/// fn foo() or extern "Abi" fn foo()
FkItemFn(Ident, &'a Generics, FnStyle, Abi),
/// fn foo(&self)
FkMethod(Ident, &'a Generics, &'a Method),
/// |x, y| ...
/// proc(x, y) ...
FkFnBlock,
}
/// Each method of the Visitor trait is a hook to be potentially
/// overridden. Each method's default implementation recursively visits
/// the substructure of the input via the corresponding `walk` method;
/// e.g. the `visit_mod` method by default calls `visit::walk_mod`.
///
/// If you want to ensure that your code handles every variant
/// explicitly, you need to override each method. (And you also need
/// to monitor future changes to `Visitor` in case a new method with a
/// new default implementation gets introduced.)
pub trait Visitor<'v> {
fn visit_ident(&mut self, _sp: Span, _ident: Ident) {
/*! Visit the idents */
}
fn visit_mod(&mut self, m: &'v Mod, _s: Span, _n: NodeId) { walk_mod(self, m) }
fn visit_view_item(&mut self, i: &'v ViewItem) { walk_view_item(self, i) }
fn visit_foreign_item(&mut self, i: &'v ForeignItem) { walk_foreign_item(self, i) }
fn visit_item(&mut self, i: &'v Item) { walk_item(self, i) }
fn visit_local(&mut self, l: &'v Local) { walk_local(self, l) }
fn visit_block(&mut self, b: &'v Block) { walk_block(self, b) }
fn visit_stmt(&mut self, s: &'v Stmt) { walk_stmt(self, s) }
fn visit_arm(&mut self, a: &'v Arm) { walk_arm(self, a) }
fn visit_pat(&mut self, p: &'v Pat) { walk_pat(self, p) }
fn visit_decl(&mut self, d: &'v Decl) { walk_decl(self, d) }
fn visit_expr(&mut self, ex: &'v Expr) { walk_expr(self, ex) }
fn visit_expr_post(&mut self, _ex: &'v Expr) { }
fn visit_ty(&mut self, t: &'v Ty) { walk_ty(self, t) }
fn visit_generics(&mut self, g: &'v Generics) { walk_generics(self, g) }
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v FnDecl, b: &'v Block, s: Span, _: NodeId) {
walk_fn(self, fk, fd, b, s)
}
fn visit_ty_method(&mut self, t: &'v TypeMethod) { walk_ty_method(self, t) }
fn visit_trait_item(&mut self, t: &'v TraitItem) { walk_trait_item(self, t) }
fn visit_trait_ref(&mut self, t: &'v TraitRef) { walk_trait_ref(self, t) }
fn visit_poly_trait_ref(&mut self, t: &'v PolyTraitRef) {
walk_poly_trait_ref(self, t)
}
fn visit_struct_def(&mut self, s: &'v StructDef, _: Ident, _: &'v Generics, _: NodeId) {
walk_struct_def(self, s)
}
fn visit_struct_field(&mut self, s: &'v StructField) { walk_struct_field(self, s) }
fn visit_variant(&mut self, v: &'v Variant, g: &'v Generics) { walk_variant(self, v, g) }
fn visit_opt_lifetime_ref(&mut self,
_span: Span,
opt_lifetime: &'v Option<Lifetime>) {
/*!
* Visits an optional reference to a lifetime. The `span` is
* the span of some surrounding reference should opt_lifetime
* be None.
*/
match *opt_lifetime {
Some(ref l) => self.visit_lifetime_ref(l),
None => ()
}
}
fn visit_lifetime_ref(&mut self, _lifetime: &'v Lifetime) {
/*! Visits a reference to a lifetime */
}
fn visit_lifetime_decl(&mut self, _lifetime: &'v LifetimeDef) {
/*! Visits a declaration of a lifetime */
}
fn visit_explicit_self(&mut self, es: &'v ExplicitSelf) {
walk_explicit_self(self, es)
}
fn visit_mac(&mut self, _macro: &'v Mac) {
panic!("visit_mac disabled by default");
// NB: see note about macros above.
// if you really want a visitor that
// works on macros, use this
// definition in your trait impl:
// visit::walk_mac(self, _macro)
}
fn visit_path(&mut self, path: &'v Path, _id: ast::NodeId) {
walk_path(self, path)
}
fn visit_attribute(&mut self, _attr: &'v Attribute) {}
}
pub fn walk_inlined_item<'v,V>(visitor: &mut V, item: &'v InlinedItem)
where V: Visitor<'v> {
match *item {
IIItem(ref i) => visitor.visit_item(&**i),
IIForeign(ref i) => visitor.visit_foreign_item(&**i),
IITraitItem(_, ref ti) => visitor.visit_trait_item(ti),
IIImplItem(_, MethodImplItem(ref m)) => {
walk_method_helper(visitor, &**m)
}
IIImplItem(_, TypeImplItem(ref typedef)) => {
visitor.visit_ident(typedef.span, typedef.ident);
visitor.visit_ty(&*typedef.typ);
}
}
}
pub fn walk_crate<'v, V: Visitor<'v>>(visitor: &mut V, krate: &'v Crate) {
visitor.visit_mod(&krate.module, krate.span, CRATE_NODE_ID);
for attr in krate.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn walk_mod<'v, V: Visitor<'v>>(visitor: &mut V, module: &'v Mod) {
for view_item in module.view_items.iter() {
visitor.visit_view_item(view_item)
}
for item in module.items.iter() {
visitor.visit_item(&**item)
}
}
pub fn walk_view_item<'v, V: Visitor<'v>>(visitor: &mut V, vi: &'v ViewItem) {
match vi.node {
ViewItemExternCrate(name, _, _) => {
visitor.visit_ident(vi.span, name)
}
ViewItemUse(ref vp) => {
match vp.node {
ViewPathSimple(ident, ref path, id) => {
visitor.visit_ident(vp.span, ident);
visitor.visit_path(path, id);
}
ViewPathGlob(ref path, id) => {
visitor.visit_path(path, id);
}
ViewPathList(ref path, ref list, _) => {
for id in list.iter() {
match id.node {
PathListIdent { name, .. } => {
visitor.visit_ident(id.span, name);
}
PathListMod { .. } => ()
}
}
walk_path(visitor, path);
}
}
}
}
for attr in vi.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn walk_local<'v, V: Visitor<'v>>(visitor: &mut V, local: &'v Local) {
visitor.visit_pat(&*local.pat);
visitor.visit_ty(&*local.ty);
walk_expr_opt(visitor, &local.init);
}
pub fn walk_explicit_self<'v, V: Visitor<'v>>(visitor: &mut V,
explicit_self: &'v ExplicitSelf) {
match explicit_self.node {
SelfStatic | SelfValue(_) => {},
SelfRegion(ref lifetime, _, _) => {
visitor.visit_opt_lifetime_ref(explicit_self.span, lifetime)
}
SelfExplicit(ref typ, _) => visitor.visit_ty(&**typ),
}
}
/// Like with walk_method_helper this doesn't correspond to a method
/// in Visitor, and so it gets a _helper suffix.
pub fn walk_poly_trait_ref<'v, V>(visitor: &mut V,
trait_ref: &'v PolyTraitRef)
where V: Visitor<'v>
{
walk_lifetime_decls(visitor, &trait_ref.bound_lifetimes);
visitor.visit_trait_ref(&trait_ref.trait_ref);
}
/// Like with walk_method_helper this doesn't correspond to a method
/// in Visitor, and so it gets a _helper suffix.
pub fn walk_trait_ref<'v,V>(visitor: &mut V,
trait_ref: &'v TraitRef)
where V: Visitor<'v>
{
visitor.visit_path(&trait_ref.path, trait_ref.ref_id)
}
pub fn walk_item<'v, V: Visitor<'v>>(visitor: &mut V, item: &'v Item) {
visitor.visit_ident(item.span, item.ident);
match item.node {
ItemStatic(ref typ, _, ref expr) |
ItemConst(ref typ, ref expr) => {
visitor.visit_ty(&**typ);
visitor.visit_expr(&**expr);
}
ItemFn(ref declaration, fn_style, abi, ref generics, ref body) => {
visitor.visit_fn(FkItemFn(item.ident, generics, fn_style, abi),
&**declaration,
&**body,
item.span,
item.id)
}
ItemMod(ref module) => {
visitor.visit_mod(module, item.span, item.id)
}
ItemForeignMod(ref foreign_module) => {
for view_item in foreign_module.view_items.iter() {
visitor.visit_view_item(view_item)
}
for foreign_item in foreign_module.items.iter() {
visitor.visit_foreign_item(&**foreign_item)
}
}
ItemTy(ref typ, ref type_parameters) => {
visitor.visit_ty(&**typ);
visitor.visit_generics(type_parameters)
}
ItemEnum(ref enum_definition, ref type_parameters) => {
visitor.visit_generics(type_parameters);
walk_enum_def(visitor, enum_definition, type_parameters)
}
ItemImpl(ref type_parameters,
ref trait_reference,
ref typ,
ref impl_items) => {
visitor.visit_generics(type_parameters);
match *trait_reference {
Some(ref trait_reference) => visitor.visit_trait_ref(trait_reference),
None => ()
}
visitor.visit_ty(&**typ);
for impl_item in impl_items.iter() {
match *impl_item {
MethodImplItem(ref method) => {
walk_method_helper(visitor, &**method)
}
TypeImplItem(ref typedef) => {
visitor.visit_ident(typedef.span, typedef.ident);
visitor.visit_ty(&*typedef.typ);
}
}
}
}
ItemStruct(ref struct_definition, ref generics) => {
visitor.visit_generics(generics);
visitor.visit_struct_def(&**struct_definition,
item.ident,
generics,
item.id)
}
ItemTrait(ref generics, _, ref bounds, ref methods) => {
visitor.visit_generics(generics);
walk_ty_param_bounds(visitor, bounds);
for method in methods.iter() {
visitor.visit_trait_item(method)
}
}
ItemMac(ref macro) => visitor.visit_mac(macro),
}
for attr in item.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn walk_enum_def<'v, V: Visitor<'v>>(visitor: &mut V,
enum_definition: &'v EnumDef,
generics: &'v Generics) {
for variant in enum_definition.variants.iter() {
visitor.visit_variant(&**variant, generics);
}
}
pub fn walk_variant<'v, V: Visitor<'v>>(visitor: &mut V,
variant: &'v Variant,
generics: &'v Generics) {
visitor.visit_ident(variant.span, variant.node.name);
match variant.node.kind {
TupleVariantKind(ref variant_arguments) => {
for variant_argument in variant_arguments.iter() {
visitor.visit_ty(&*variant_argument.ty)
}
}
StructVariantKind(ref struct_definition) => {
visitor.visit_struct_def(&**struct_definition,
variant.node.name,
generics,
variant.node.id)
}
}
match variant.node.disr_expr {
Some(ref expr) => visitor.visit_expr(&**expr),
None => ()
}
for attr in variant.node.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn skip_ty<'v, V: Visitor<'v>>(_: &mut V, _: &'v Ty) {
// Empty!
}
pub fn walk_ty<'v, V: Visitor<'v>>(visitor: &mut V, typ: &'v Ty) {
match typ.node {
TyVec(ref ty) | TyParen(ref ty) => {
visitor.visit_ty(&**ty)
}
TyPtr(ref mutable_type) => {
visitor.visit_ty(&*mutable_type.ty)
}
TyRptr(ref lifetime, ref mutable_type) => {
visitor.visit_opt_lifetime_ref(typ.span, lifetime);
visitor.visit_ty(&*mutable_type.ty)
}
TyTup(ref tuple_element_types) => {
for tuple_element_type in tuple_element_types.iter() {
visitor.visit_ty(&**tuple_element_type)
}
}
TyClosure(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty)
}
walk_fn_ret_ty(visitor, &function_declaration.decl.output);
walk_ty_param_bounds(visitor, &function_declaration.bounds);
walk_lifetime_decls(visitor, &function_declaration.lifetimes);
}
TyProc(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty)
}
walk_fn_ret_ty(visitor, &function_declaration.decl.output);
walk_ty_param_bounds(visitor, &function_declaration.bounds);
walk_lifetime_decls(visitor, &function_declaration.lifetimes);
}
TyBareFn(ref function_declaration) => {
for argument in function_declaration.decl.inputs.iter() {
visitor.visit_ty(&*argument.ty)
}
walk_fn_ret_ty(visitor, &function_declaration.decl.output);
walk_lifetime_decls(visitor, &function_declaration.lifetimes);
}
TyPath(ref path, ref opt_bounds, id) => {
visitor.visit_path(path, id);
match *opt_bounds {
Some(ref bounds) => {
walk_ty_param_bounds(visitor, bounds);
}
None => { }
}
}
TyQPath(ref qpath) => {
visitor.visit_ty(&*qpath.for_type);
visitor.visit_path(&qpath.trait_name, typ.id);
visitor.visit_ident(typ.span, qpath.item_name);
}
TyFixedLengthVec(ref ty, ref expression) => {
visitor.visit_ty(&**ty);
visitor.visit_expr(&**expression)
}
TyPolyTraitRef(ref poly_trait_ref) => {
visitor.visit_poly_trait_ref(&**poly_trait_ref)
}
TyTypeof(ref expression) => {
visitor.visit_expr(&**expression)
}
TyInfer => {}
}
}
fn walk_lifetime_decls<'v, V: Visitor<'v>>(visitor: &mut V,
lifetimes: &'v Vec<LifetimeDef>) {
for l in lifetimes.iter() {
visitor.visit_lifetime_decl(l);
}
}
pub fn walk_path<'v, V: Visitor<'v>>(visitor: &mut V, path: &'v Path) {
for segment in path.segments.iter() {
visitor.visit_ident(path.span, segment.identifier);
match segment.parameters {
ast::AngleBracketedParameters(ref data) => {
for typ in data.types.iter() {
visitor.visit_ty(&**typ);
}
for lifetime in data.lifetimes.iter() {
visitor.visit_lifetime_ref(lifetime);
}
}
ast::ParenthesizedParameters(ref data) => {
for typ in data.inputs.iter() {
visitor.visit_ty(&**typ);
}
for typ in data.output.iter() {
visitor.visit_ty(&**typ);
}
}
}
}
}
pub fn walk_pat<'v, V: Visitor<'v>>(visitor: &mut V, pattern: &'v Pat) {
match pattern.node {
PatEnum(ref path, ref children) => {
visitor.visit_path(path, pattern.id);
for children in children.iter() {
for child in children.iter() {
visitor.visit_pat(&**child)
}
}
}
PatStruct(ref path, ref fields, _) => {
visitor.visit_path(path, pattern.id);
for field in fields.iter() {
visitor.visit_pat(&*field.node.pat)
}
}
PatTup(ref tuple_elements) => {
for tuple_element in tuple_elements.iter() {
visitor.visit_pat(&**tuple_element)
}
}
PatBox(ref subpattern) |
PatRegion(ref subpattern) => {
visitor.visit_pat(&**subpattern)
}
PatIdent(_, ref pth1, ref optional_subpattern) => {
visitor.visit_ident(pth1.span, pth1.node);
match *optional_subpattern {
None => {}
Some(ref subpattern) => visitor.visit_pat(&**subpattern),
}
}
PatLit(ref expression) => visitor.visit_expr(&**expression),
PatRange(ref lower_bound, ref upper_bound) => {
visitor.visit_expr(&**lower_bound);
visitor.visit_expr(&**upper_bound)
}
PatWild(_) => (),
PatVec(ref prepattern, ref slice_pattern, ref postpatterns) => {
for prepattern in prepattern.iter() {
visitor.visit_pat(&**prepattern)
}
for slice_pattern in slice_pattern.iter() {
visitor.visit_pat(&**slice_pattern)
}
for postpattern in postpatterns.iter() {
visitor.visit_pat(&**postpattern)
}
}
PatMac(ref macro) => visitor.visit_mac(macro),
}
}
pub fn walk_foreign_item<'v, V: Visitor<'v>>(visitor: &mut V,
foreign_item: &'v ForeignItem) {
visitor.visit_ident(foreign_item.span, foreign_item.ident);
match foreign_item.node {
ForeignItemFn(ref function_declaration, ref generics) => {
walk_fn_decl(visitor, &**function_declaration);
visitor.visit_generics(generics)
}
ForeignItemStatic(ref typ, _) => visitor.visit_ty(&**typ),
}
for attr in foreign_item.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn walk_ty_param_bounds<'v, V: Visitor<'v>>(visitor: &mut V,
bounds: &'v OwnedSlice<TyParamBound>) {
for bound in bounds.iter() {
match *bound {
TraitTyParamBound(ref typ) => {
visitor.visit_poly_trait_ref(typ)
}
RegionTyParamBound(ref lifetime) => {
visitor.visit_lifetime_ref(lifetime);
}
}
}
}
pub fn walk_generics<'v, V: Visitor<'v>>(visitor: &mut V, generics: &'v Generics) {
for type_parameter in generics.ty_params.iter() {
walk_ty_param_bounds(visitor, &type_parameter.bounds);
match type_parameter.default {
Some(ref ty) => visitor.visit_ty(&**ty),
None => {}
}
}
walk_lifetime_decls(visitor, &generics.lifetimes);
for predicate in generics.where_clause.predicates.iter() {
visitor.visit_ident(predicate.span, predicate.ident);
walk_ty_param_bounds(visitor, &predicate.bounds);
}
}
pub fn walk_fn_ret_ty<'v, V: Visitor<'v>>(visitor: &mut V, ret_ty: &'v FunctionRetTy) {
if let Return(ref output_ty) = *ret_ty {
visitor.visit_ty(&**output_ty)
}
}
pub fn walk_fn_decl<'v, V: Visitor<'v>>(visitor: &mut V, function_declaration: &'v FnDecl) {
for argument in function_declaration.inputs.iter() {
visitor.visit_pat(&*argument.pat);
visitor.visit_ty(&*argument.ty)
}
walk_fn_ret_ty(visitor, &function_declaration.output)
}
// Note: there is no visit_method() method in the visitor, instead override
// visit_fn() and check for FkMethod(). I named this visit_method_helper()
// because it is not a default impl of any method, though I doubt that really
// clarifies anything. - Niko
pub fn walk_method_helper<'v, V: Visitor<'v>>(visitor: &mut V, method: &'v Method) {
match method.node {
MethDecl(ident, ref generics, _, _, _, ref decl, ref body, _) => {
visitor.visit_ident(method.span, ident);
visitor.visit_fn(FkMethod(ident, generics, method),
&**decl,
&**body,
method.span,
method.id);
for attr in method.attrs.iter() {
visitor.visit_attribute(attr);
}
},
MethMac(ref mac) => visitor.visit_mac(mac)
}
}
pub fn walk_fn<'v, V: Visitor<'v>>(visitor: &mut V,
function_kind: FnKind<'v>,
function_declaration: &'v FnDecl,
function_body: &'v Block,
_span: Span) {
walk_fn_decl(visitor, function_declaration);
match function_kind {
FkItemFn(_, generics, _, _) => {
visitor.visit_generics(generics);
}
FkMethod(_, generics, method) => {
visitor.visit_generics(generics);
match method.node {
MethDecl(_, _, _, ref explicit_self, _, _, _, _) =>
visitor.visit_explicit_self(explicit_self),
MethMac(ref mac) =>
visitor.visit_mac(mac)
}
}
FkFnBlock(..) => {}
}
visitor.visit_block(function_body)
}
pub fn walk_ty_method<'v, V: Visitor<'v>>(visitor: &mut V, method_type: &'v TypeMethod) {
visitor.visit_ident(method_type.span, method_type.ident);
visitor.visit_explicit_self(&method_type.explicit_self);
for argument_type in method_type.decl.inputs.iter() {
visitor.visit_ty(&*argument_type.ty)
}
visitor.visit_generics(&method_type.generics);
walk_fn_ret_ty(visitor, &method_type.decl.output);
for attr in method_type.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn walk_trait_item<'v, V: Visitor<'v>>(visitor: &mut V, trait_method: &'v TraitItem) {
match *trait_method {
RequiredMethod(ref method_type) => visitor.visit_ty_method(method_type),
ProvidedMethod(ref method) => walk_method_helper(visitor, &**method),
TypeTraitItem(ref associated_type) => {
visitor.visit_ident(associated_type.ty_param.span,
associated_type.ty_param.ident)
}
}
}
pub fn walk_struct_def<'v, V: Visitor<'v>>(visitor: &mut V,
struct_definition: &'v StructDef) {
for field in struct_definition.fields.iter() {
visitor.visit_struct_field(field)
}
}
pub fn walk_struct_field<'v, V: Visitor<'v>>(visitor: &mut V,
struct_field: &'v StructField) {
match struct_field.node.kind {
NamedField(name, _) => {
visitor.visit_ident(struct_field.span, name)
}
_ => {}
}
visitor.visit_ty(&*struct_field.node.ty);
for attr in struct_field.node.attrs.iter() {
visitor.visit_attribute(attr);
}
}
pub fn walk_block<'v, V: Visitor<'v>>(visitor: &mut V, block: &'v Block) {
for view_item in block.view_items.iter() {
visitor.visit_view_item(view_item)
}
for statement in block.stmts.iter() {
visitor.visit_stmt(&**statement)
}
walk_expr_opt(visitor, &block.expr)
}
pub fn walk_stmt<'v, V: Visitor<'v>>(visitor: &mut V, statement: &'v Stmt) {
match statement.node {
StmtDecl(ref declaration, _) => visitor.visit_decl(&**declaration),
StmtExpr(ref expression, _) | StmtSemi(ref expression, _) => {
visitor.visit_expr(&**expression)
}
StmtMac(ref macro, _) => visitor.visit_mac(macro),
}
}
pub fn walk_decl<'v, V: Visitor<'v>>(visitor: &mut V, declaration: &'v Decl) {
match declaration.node {
DeclLocal(ref local) => visitor.visit_local(&**local),
DeclItem(ref item) => visitor.visit_item(&**item),
}
}
pub fn walk_expr_opt<'v, V: Visitor<'v>>(visitor: &mut V,
optional_expression: &'v Option<P<Expr>>) {
match *optional_expression {
None => {}
Some(ref expression) => visitor.visit_expr(&**expression),
}
}
pub fn walk_exprs<'v, V: Visitor<'v>>(visitor: &mut V, expressions: &'v [P<Expr>]) {
for expression in expressions.iter() {
visitor.visit_expr(&**expression)
}
}
pub fn walk_mac<'v, V: Visitor<'v>>(_: &mut V, _: &'v Mac) {
// Empty!
}
pub fn walk_expr<'v, V: Visitor<'v>>(visitor: &mut V, expression: &'v Expr) {
match expression.node {
ExprBox(ref place, ref subexpression) => {
visitor.visit_expr(&**place);
visitor.visit_expr(&**subexpression)
}
ExprVec(ref subexpressions) => {
walk_exprs(visitor, subexpressions.as_slice())
}
ExprRepeat(ref element, ref count) => {
visitor.visit_expr(&**element);
visitor.visit_expr(&**count)
}
ExprStruct(ref path, ref fields, ref optional_base) => {
visitor.visit_path(path, expression.id);
for field in fields.iter() {
visitor.visit_expr(&*field.expr)
}
walk_expr_opt(visitor, optional_base)
}
ExprTup(ref subexpressions) => {
for subexpression in subexpressions.iter() {
visitor.visit_expr(&**subexpression)
}
}
ExprCall(ref callee_expression, ref arguments) => {
for argument in arguments.iter() {
visitor.visit_expr(&**argument)
}
visitor.visit_expr(&**callee_expression)
}
ExprMethodCall(_, ref types, ref arguments) => {
walk_exprs(visitor, arguments.as_slice());
for typ in types.iter() {
visitor.visit_ty(&**typ)
}
}
ExprBinary(_, ref left_expression, ref right_expression) => {
visitor.visit_expr(&**left_expression);
visitor.visit_expr(&**right_expression)
}
ExprAddrOf(_, ref subexpression) | ExprUnary(_, ref subexpression) => {
visitor.visit_expr(&**subexpression)
}
ExprLit(_) => {}
ExprCast(ref subexpression, ref typ) => {
visitor.visit_expr(&**subexpression);
visitor.visit_ty(&**typ)
}
ExprIf(ref head_expression, ref if_block, ref optional_else) => {
visitor.visit_expr(&**head_expression);
visitor.visit_block(&**if_block);
walk_expr_opt(visitor, optional_else)
}
ExprWhile(ref subexpression, ref block, _) => {
visitor.visit_expr(&**subexpression);
visitor.visit_block(&**block)
}
ExprIfLet(ref pattern, ref subexpression, ref if_block, ref optional_else) => {
visitor.visit_pat(&**pattern);
visitor.visit_expr(&**subexpression);
visitor.visit_block(&**if_block);
walk_expr_opt(visitor, optional_else);
}
ExprWhileLet(ref pattern, ref subexpression, ref block, _) => {
visitor.visit_pat(&**pattern);
visitor.visit_expr(&**subexpression);
visitor.visit_block(&**block);
}
ExprForLoop(ref pattern, ref subexpression, ref block, _) => {
visitor.visit_pat(&**pattern);
visitor.visit_expr(&**subexpression);
visitor.visit_block(&**block)
}
ExprLoop(ref block, _) => visitor.visit_block(&**block),
ExprMatch(ref subexpression, ref arms, _) => {
visitor.visit_expr(&**subexpression);
for arm in arms.iter() {
visitor.visit_arm(arm)
}
}
ExprFnBlock(_, ref function_declaration, ref body) => {
visitor.visit_fn(FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id)
}
ExprUnboxedFn(_, _, ref function_declaration, ref body) => {
visitor.visit_fn(FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id)
}
ExprProc(ref function_declaration, ref body) => {
visitor.visit_fn(FkFnBlock,
&**function_declaration,
&**body,
expression.span,
expression.id)
}
ExprBlock(ref block) => visitor.visit_block(&**block),
ExprAssign(ref left_hand_expression, ref right_hand_expression) => {
visitor.visit_expr(&**right_hand_expression);
visitor.visit_expr(&**left_hand_expression)
}
ExprAssignOp(_, ref left_expression, ref right_expression) => {
visitor.visit_expr(&**right_expression);
visitor.visit_expr(&**left_expression)
}
ExprField(ref subexpression, _, ref types) => {
visitor.visit_expr(&**subexpression);
for typ in types.iter() {
visitor.visit_ty(&**typ)
}
}
ExprTupField(ref subexpression, _, ref types) => {
visitor.visit_expr(&**subexpression);
for typ in types.iter() {
visitor.visit_ty(&**typ)
}
}
ExprIndex(ref main_expression, ref index_expression) => {
visitor.visit_expr(&**main_expression);
visitor.visit_expr(&**index_expression)
}
ExprSlice(ref main_expression, ref start, ref end, _) => {
visitor.visit_expr(&**main_expression);
walk_expr_opt(visitor, start);
walk_expr_opt(visitor, end)
}
ExprPath(ref path) => {
visitor.visit_path(path, expression.id)
}
ExprBreak(_) | ExprAgain(_) => {}
ExprRet(ref optional_expression) => {
walk_expr_opt(visitor, optional_expression)
}
ExprMac(ref macro) => visitor.visit_mac(macro),
ExprParen(ref subexpression) => {
visitor.visit_expr(&**subexpression)
}
ExprInlineAsm(ref ia) => {
for input in ia.inputs.iter() {
let (_, ref input) = *input;
visitor.visit_expr(&**input)
}
for output in ia.outputs.iter() {
let (_, ref output, _) = *output;
visitor.visit_expr(&**output)
}
}
}
visitor.visit_expr_post(expression)
}
pub fn walk_arm<'v, V: Visitor<'v>>(visitor: &mut V, arm: &'v Arm) {
for pattern in arm.pats.iter() {
visitor.visit_pat(&**pattern)
}
walk_expr_opt(visitor, &arm.guard);
visitor.visit_expr(&*arm.body);
for attr in arm.attrs.iter() {
visitor.visit_attribute(attr);
}
}