rust/src/rustc/middle/trans/callee.rs

675 lines
23 KiB
Rust

//!
//
// Handles translation of callees as well as other call-related
// things. Callees are a superset of normal rust values and sometimes
// have different representations. In particular, top-level fn items
// and methods are represented as just a fn ptr and not a full
// closure.
use lib::llvm::ValueRef;
use syntax::ast;
use datum::Datum;
use common::{block, node_id_type_params};
use build::*;
use base::{get_item_val, trans_external_path};
use syntax::visit;
use syntax::print::pprust::{expr_to_str, stmt_to_str, path_to_str};
use datum::*;
use util::common::indenter;
// Represents a (possibly monomorphized) top-level fn item or method
// item. Note that this is just the fn-ptr and is not a Rust closure
// value (which is a pair).
struct FnData {
llfn: ValueRef,
}
struct MethodData {
llfn: ValueRef,
llself: ValueRef,
self_ty: ty::t,
self_mode: ast::rmode
}
enum CalleeData {
Closure(Datum),
Fn(FnData),
Method(MethodData)
}
struct Callee {
bcx: block,
data: CalleeData
}
fn trans(bcx: block, expr: @ast::expr) -> Callee {
let _icx = bcx.insn_ctxt("trans_callee");
// pick out special kinds of expressions that can be called:
match expr.node {
ast::expr_path(_) => {
return trans_def(bcx, bcx.def(expr.id), expr);
}
ast::expr_field(base, _, _) => {
match bcx.ccx().maps.method_map.find(expr.id) {
Some(origin) => { // An impl method
return impl::trans_method_callee(bcx, expr.id,
base, origin);
}
None => {} // not a method, just a field
}
}
_ => {}
}
// any other expressions are closures:
return closure_callee(&expr::trans_to_datum(bcx, expr));
fn closure_callee(db: &DatumBlock) -> Callee {
return Callee {bcx: db.bcx, data: Closure(db.datum)};
}
fn fn_callee(bcx: block, fd: FnData) -> Callee {
return Callee {bcx: bcx, data: Fn(fd)};
}
fn trans_def(bcx: block, def: ast::def, ref_expr: @ast::expr) -> Callee {
match def {
ast::def_fn(did, _) => {
fn_callee(bcx, trans_fn_ref(bcx, did, ref_expr.id))
}
ast::def_static_method(did, _) => {
fn_callee(bcx, impl::trans_static_method_callee(bcx, did,
ref_expr.id))
}
ast::def_variant(tid, vid) => {
// nullary variants are not callable
assert ty::enum_variant_with_id(bcx.tcx(),
tid,
vid).args.len() > 0u;
fn_callee(bcx, trans_fn_ref(bcx, vid, ref_expr.id))
}
ast::def_arg(*) |
ast::def_local(*) |
ast::def_binding(*) |
ast::def_upvar(*) |
ast::def_self(*) => {
closure_callee(&expr::trans_to_datum(bcx, ref_expr))
}
ast::def_mod(*) | ast::def_foreign_mod(*) |
ast::def_const(*) | ast::def_ty(*) | ast::def_prim_ty(*) |
ast::def_use(*) | ast::def_class(*) | ast::def_typaram_binder(*) |
ast::def_region(*) | ast::def_label(*) | ast::def_ty_param(*) => {
bcx.tcx().sess.span_bug(
ref_expr.span,
fmt!("Cannot translate def %? \
to a callable thing!", def));
}
}
}
}
fn trans_fn_ref_to_callee(bcx: block,
def_id: ast::def_id,
ref_id: ast::node_id) -> Callee
{
Callee {bcx: bcx,
data: Fn(trans_fn_ref(bcx, def_id, ref_id))}
}
fn trans_fn_ref(bcx: block,
def_id: ast::def_id,
ref_id: ast::node_id) -> FnData {
/*!
*
* Translates a reference (with id `ref_id`) to the fn/method
* with id `def_id` into a function pointer. This may require
* monomorphization or inlining. */
let _icx = bcx.insn_ctxt("trans_fn");
let type_params = node_id_type_params(bcx, ref_id);
let vtables = node_vtables(bcx, ref_id);
trans_fn_ref_with_vtables(bcx, def_id, ref_id, type_params, vtables)
}
fn trans_fn_ref_with_vtables_to_callee(bcx: block,
def_id: ast::def_id,
ref_id: ast::node_id,
type_params: ~[ty::t],
vtables: Option<typeck::vtable_res>)
-> Callee
{
Callee {bcx: bcx,
data: Fn(trans_fn_ref_with_vtables(bcx, def_id, ref_id,
type_params, vtables))}
}
fn trans_fn_ref_with_vtables(
bcx: block, //
def_id: ast::def_id, // def id of fn
ref_id: ast::node_id, // node id of use of fn
type_params: ~[ty::t], // values for fn's ty params
vtables: Option<typeck::vtable_res>)
-> FnData
{
//!
//
// Translates a reference to a fn/method item, monomorphizing and
// inlining as it goes.
//
// # Parameters
//
// - `bcx`: the current block where the reference to the fn occurs
// - `def_id`: def id of the fn or method item being referenced
// - `ref_id`: node id of the reference to the fn/method
// - `type_params`: values for each of the fn/method's type parameters
// - `vtables`: values for each bound on each of the type parameters
let _icx = bcx.insn_ctxt("trans_fn_with_vtables");
let ccx = bcx.ccx();
let tcx = ccx.tcx;
debug!("trans_fn_ref_with_vtables(bcx=%s, def_id=%?, ref_id=%?, \
type_params=%?, vtables=%?)",
bcx.to_str(), def_id, ref_id,
type_params.map(|t| bcx.ty_to_str(t)),
vtables);
let _indenter = indenter();
// Polytype of the function item (may have type params)
let fn_tpt = ty::lookup_item_type(tcx, def_id);
// Check whether this fn has an inlined copy and, if so, redirect
// def_id to the local id of the inlined copy.
let def_id = {
if def_id.crate != ast::local_crate {
inline::maybe_instantiate_inline(ccx, def_id)
} else {
def_id
}
};
// We must monomorphise if the fn has type parameters or is a rust
// intrinsic. In particular, if we see an intrinsic that is
// inlined from a different crate, we want to reemit the intrinsic
// instead of trying to call it in the other crate.
let must_monomorphise = type_params.len() > 0 || {
if def_id.crate == ast::local_crate {
let map_node = session::expect(
ccx.sess,
ccx.tcx.items.find(def_id.node),
|| fmt!("local item should be in ast map"));
match map_node {
ast_map::node_foreign_item(
_, ast::foreign_abi_rust_intrinsic, _) => true,
_ => false
}
} else {
false
}
};
// Create a monomorphic verison of generic functions
if must_monomorphise {
// Should be either intra-crate or inlined.
assert def_id.crate == ast::local_crate;
let mut {val, must_cast} =
monomorphize::monomorphic_fn(ccx, def_id, type_params,
vtables, Some(ref_id));
if must_cast {
// Monotype of the REFERENCE to the function (type params
// are subst'd)
let ref_ty = common::node_id_type(bcx, ref_id);
val = PointerCast(
bcx, val, T_ptr(type_of::type_of_fn_from_ty(ccx, ref_ty)));
}
return FnData {llfn: val};
}
// Find the actual function pointer.
let mut val = {
if def_id.crate == ast::local_crate {
// Internal reference.
get_item_val(ccx, def_id.node)
} else {
// External reference.
trans_external_path(ccx, def_id, fn_tpt.ty)
}
};
//NDM I think this is dead. Commenting out to be sure!
//NDM
//NDM if tys.len() > 0u {
//NDM val = PointerCast(bcx, val, T_ptr(type_of_fn_from_ty(
//NDM ccx, node_id_type(bcx, id))));
//NDM }
return FnData {llfn: val};
}
// ______________________________________________________________________
// Translating calls
fn trans_call(in_cx: block,
call_ex: @ast::expr,
f: @ast::expr,
args: CallArgs,
id: ast::node_id,
dest: expr::Dest)
-> block
{
let _icx = in_cx.insn_ctxt("trans_call");
trans_call_inner(
in_cx, call_ex.info(), expr_ty(in_cx, f), node_id_type(in_cx, id),
|cx| trans(cx, f), args, dest)
}
fn trans_rtcall(bcx: block, name: ~str, args: ~[ValueRef], dest: expr::Dest)
-> block
{
let did = bcx.ccx().rtcalls[name];
return trans_rtcall_or_lang_call(bcx, did, args, dest);
}
fn trans_rtcall_or_lang_call(bcx: block, did: ast::def_id, args: ~[ValueRef],
dest: expr::Dest) -> block {
let fty = if did.crate == ast::local_crate {
ty::node_id_to_type(bcx.ccx().tcx, did.node)
} else {
csearch::get_type(bcx.ccx().tcx, did).ty
};
let rty = ty::ty_fn_ret(fty);
return callee::trans_call_inner(
bcx, None, fty, rty,
|bcx| trans_fn_ref_with_vtables_to_callee(bcx, did, 0, ~[], None),
ArgVals(args), dest);
}
fn body_contains_ret(body: ast::blk) -> bool {
let cx = {mut found: false};
visit::visit_block(body, cx, visit::mk_vt(@{
visit_item: |_i, _cx, _v| { },
visit_expr: |e: @ast::expr, cx: {mut found: bool}, v| {
if !cx.found {
match e.node {
ast::expr_ret(_) => cx.found = true,
_ => visit::visit_expr(e, cx, v),
}
}
},
..*visit::default_visitor()
}));
cx.found
}
// See [Note-arg-mode]
fn trans_call_inner(
++in_cx: block,
call_info: Option<node_info>,
fn_expr_ty: ty::t,
ret_ty: ty::t,
get_callee: fn(block) -> Callee,
args: CallArgs,
dest: expr::Dest) -> block
{
do base::with_scope(in_cx, call_info, ~"call") |cx| {
let ret_in_loop = match args {
ArgExprs(args) => {
args.len() > 0u && match vec::last(args).node {
ast::expr_loop_body(@{
node: ast::expr_fn_block(_, body, _),
_
}) => body_contains_ret(body),
_ => false
}
}
_ => false
};
let callee = get_callee(cx);
let mut bcx = callee.bcx;
let ccx = cx.ccx();
let ret_flag = if ret_in_loop {
let flag = alloca(bcx, T_bool());
Store(bcx, C_bool(false), flag);
Some(flag)
} else { None };
let (llfn, llenv) = match callee.data {
Fn(d) => {
(d.llfn, llvm::LLVMGetUndef(T_opaque_box_ptr(ccx)))
}
Method(d) => {
// Weird but true: we pass self in the *environment* slot!
let llself = PointerCast(bcx, d.llself,
T_opaque_box_ptr(ccx));
(d.llfn, llself)
}
Closure(d) => {
// Closures are represented as (llfn, llclosure) pair:
// load the requisite values out.
let pair = d.to_ref_llval(bcx);
let llfn = GEPi(bcx, pair, [0u, abi::fn_field_code]);
let llfn = Load(bcx, llfn);
let llenv = GEPi(bcx, pair, [0u, abi::fn_field_box]);
let llenv = Load(bcx, llenv);
(llfn, llenv)
}
};
let args_res = trans_args(bcx, llenv, args, fn_expr_ty,
dest, ret_flag);
bcx = args_res.bcx;
let mut llargs = args_res.args;
let llretslot = args_res.retslot;
// Now that the arguments have finished evaluating, we need to revoke
// the cleanup for the self argument, if it exists
match callee.data {
Method(d) if d.self_mode == ast::by_copy => {
revoke_clean(bcx, d.llself);
}
_ => {}
}
// If the block is terminated, then one or more of the args
// has type _|_. Since that means it diverges, the code for
// the call itself is unreachable.
bcx = base::invoke(bcx, llfn, llargs);
match dest { // drop the value if it is not being saved.
expr::Ignore => {
if llvm::LLVMIsUndef(llretslot) != lib::llvm::True {
bcx = glue::drop_ty(bcx, llretslot, ret_ty);
}
}
expr::SaveIn(_) => { }
}
if ty::type_is_bot(ret_ty) {
Unreachable(bcx);
} else if ret_in_loop {
bcx = do with_cond(bcx, Load(bcx, option::get(ret_flag))) |bcx| {
do option::iter(copy bcx.fcx.loop_ret) |lret| {
Store(bcx, C_bool(true), lret.flagptr);
Store(bcx, C_bool(false), bcx.fcx.llretptr);
}
base::cleanup_and_leave(bcx, None, Some(bcx.fcx.llreturn));
Unreachable(bcx);
bcx
}
}
bcx
}
}
enum CallArgs {
ArgExprs(~[@ast::expr]),
ArgVals(~[ValueRef])
}
fn trans_args(cx: block, llenv: ValueRef, args: CallArgs, fn_ty: ty::t,
dest: expr::Dest, ret_flag: Option<ValueRef>)
-> {bcx: block, args: ~[ValueRef], retslot: ValueRef}
{
let _icx = cx.insn_ctxt("trans_args");
let mut temp_cleanups = ~[];
let arg_tys = ty::ty_fn_args(fn_ty);
let mut llargs: ~[ValueRef] = ~[];
let mut bcx = cx;
let retty = ty::ty_fn_ret(fn_ty);
// Arg 0: Output pointer.
let llretslot = match dest {
expr::SaveIn(dst) => dst,
expr::Ignore => {
if ty::type_is_nil(retty) {
llvm::LLVMGetUndef(T_ptr(T_nil()))
} else {
alloc_ty(bcx, retty)
}
}
};
vec::push(llargs, llretslot);
// Arg 1: Env (closure-bindings / self value)
vec::push(llargs, llenv);
// ... then explicit args.
// First we figure out the caller's view of the types of the arguments.
// This will be needed if this is a generic call, because the callee has
// to cast her view of the arguments to the caller's view.
match args {
ArgExprs(arg_exprs) => {
let last = arg_exprs.len() - 1u;
do vec::iteri(arg_exprs) |i, arg_expr| {
let arg_val = unpack_result!(bcx, {
trans_arg_expr(bcx, arg_tys[i], arg_expr, &mut temp_cleanups,
if i == last { ret_flag } else { None },
0u)
});
vec::push(llargs, arg_val);
}
}
ArgVals(vs) => {
vec::push_all(llargs, vs);
}
}
// now that all arguments have been successfully built, we can revoke any
// temporary cleanups, as they are only needed if argument construction
// should fail (for example, cleanup of copy mode args).
do vec::iter(temp_cleanups) |c| {
revoke_clean(bcx, c)
}
return {bcx: bcx, args: llargs, retslot: llretslot};
}
// temp_cleanups: cleanups that should run only if failure occurs before the
// call takes place:
fn trans_arg_expr(bcx: block,
formal_ty: ty::arg,
arg_expr: @ast::expr,
temp_cleanups: &mut ~[ValueRef],
ret_flag: Option<ValueRef>,
derefs: uint)
-> Result
{
let _icx = bcx.insn_ctxt("trans_arg_expr");
let ccx = bcx.ccx();
debug!("trans_arg_expr(formal_ty=(%?,%s), arg_expr=%s, \
ret_flag=%?, derefs=%?)",
formal_ty.mode, bcx.ty_to_str(formal_ty.ty),
bcx.expr_to_str(arg_expr),
ret_flag.map(|v| bcx.val_str(v)), derefs);
let _indenter = indenter();
// translate the arg expr to a datum
let arg_datumblock = match ret_flag {
None => expr::trans_to_datum(bcx, arg_expr),
// If there is a ret_flag, this *must* be a loop body
Some(_) => {
match arg_expr.node {
ast::expr_loop_body(
blk @ @{node:ast::expr_fn_block(decl, body, cap), _}) =>
{
let scratch_ty = expr_ty(bcx, blk);
let scratch = alloc_ty(bcx, scratch_ty);
let arg_ty = expr_ty(bcx, arg_expr);
let proto = ty::ty_fn_proto(arg_ty);
let bcx = closure::trans_expr_fn(
bcx, proto, decl, body, blk.id,
cap, Some(ret_flag), expr::SaveIn(scratch));
DatumBlock {bcx: bcx,
datum: Datum {val: scratch,
ty: scratch_ty,
mode: ByRef,
source: FromRvalue}}
}
_ => {
bcx.sess().impossible_case(
arg_expr.span, ~"ret_flag with non-loop-\
body expr");
}
}
}
};
let mut arg_datum = arg_datumblock.datum;
let mut bcx = arg_datumblock.bcx;
debug!(" initial value: %s", arg_datum.to_str(bcx.ccx()));
// auto-deref value as required (this only applies to method
// call receivers) of method
if derefs != 0 {
arg_datum = arg_datum.autoderef(bcx, arg_expr.id, derefs);
debug!(" deref'd value: %s", arg_datum.to_str(bcx.ccx()));
};
// borrow value (convert from @T to &T and so forth)
let arg_datum = unpack_datum!(bcx, {
adapt_borrowed_value(bcx, arg_datum, arg_expr)
});
debug!(" borrowed value: %s", arg_datum.to_str(bcx.ccx()));
// finally, deal with the various modes
let arg_mode = ty::resolved_mode(ccx.tcx, formal_ty.mode);
let mut val;
if ty::type_is_bot(arg_datum.ty) {
// For values of type _|_, we generate an
// "undef" value, as such a value should never
// be inspected. It's important for the value
// to have type lldestty (the callee's expected type).
let llformal_ty = type_of::type_of(ccx, formal_ty.ty);
val = llvm::LLVMGetUndef(llformal_ty);
} else {
match arg_mode {
ast::by_ref | ast::by_mutbl_ref => {
val = arg_datum.to_ref_llval(bcx);
}
ast::by_val => {
// NB: avoid running the take glue.
val = arg_datum.to_value_llval(bcx);
}
ast::by_copy | ast::by_move => {
let scratch = scratch_datum(bcx, arg_datum.ty, false);
if arg_mode == ast::by_move {
// NDM---Doesn't seem like this should be necessary
if !arg_datum.store_will_move() {
bcx.sess().span_err(
arg_expr.span,
fmt!("move mode but datum will not store: %s",
arg_datum.to_str(bcx.ccx())));
}
}
arg_datum.store_to_datum(bcx, INIT, scratch);
// Technically, ownership of val passes to the callee.
// However, we must cleanup should we fail before the
// callee is actually invoked.
scratch.add_clean(bcx);
vec::push(*temp_cleanups, scratch.val);
val = scratch.val;
}
}
if formal_ty.ty != arg_datum.ty {
// this could happen due to e.g. subtyping
let llformal_ty = type_of::type_of_explicit_arg(ccx, formal_ty);
debug!("casting actual type (%s) to match formal (%s)",
bcx.val_str(val), bcx.llty_str(llformal_ty));
val = PointerCast(bcx, val, llformal_ty);
}
}
debug!("--- trans_arg_expr passing %s", val_str(bcx.ccx().tn, val));
return rslt(bcx, val);
}
// when invoking a method, an argument of type @T or ~T can be implicltly
// converted to an argument of type &T. Similarly, ~[T] can be converted to
// &[T] and so on. If such a conversion (called borrowing) is necessary,
// then the borrowings table will have an appropriate entry inserted. This
// routine consults this table and performs these adaptations. It returns a
// new location for the borrowed result as well as a new type for the argument
// that reflects the borrowed value and not the original.
fn adapt_borrowed_value(bcx: block,
datum: Datum,
expr: @ast::expr) -> DatumBlock
{
if !expr_is_borrowed(bcx, expr) {
return DatumBlock {bcx: bcx, datum: datum};
}
debug!("adapt_borrowed_value(datum=%s, expr=%s)",
datum.to_str(bcx.ccx()),
bcx.expr_to_str(expr));
match ty::get(datum.ty).sty {
ty::ty_uniq(_) | ty::ty_box(_) => {
let body_datum = datum.box_body(bcx);
let rptr_datum = body_datum.to_rptr(bcx);
return DatumBlock {bcx: bcx, datum: rptr_datum};
}
ty::ty_estr(_) | ty::ty_evec(_, _) => {
let ccx = bcx.ccx();
let val = datum.to_appropriate_llval(bcx);
let unit_ty = ty::sequence_element_type(ccx.tcx, datum.ty);
let llunit_ty = type_of::type_of(ccx, unit_ty);
let (base, len) = datum.get_base_and_len(bcx);
let p = alloca(bcx, T_struct(~[T_ptr(llunit_ty), ccx.int_type]));
debug!("adapt_borrowed_value: adapting %s to %s",
val_str(bcx.ccx().tn, val),
val_str(bcx.ccx().tn, p));
Store(bcx, base, GEPi(bcx, p, [0u, abi::slice_elt_base]));
Store(bcx, len, GEPi(bcx, p, [0u, abi::slice_elt_len]));
// this isn't necessarily the type that rust would assign
// but it's close enough for trans purposes, as it will
// have the same runtime representation
let slice_ty = ty::mk_evec(bcx.tcx(),
{ty: unit_ty, mutbl: ast::m_imm},
ty::vstore_slice(ty::re_static));
return DatumBlock {bcx: bcx,
datum: Datum {val: p,
mode: ByRef,
ty: slice_ty,
source: FromRvalue}};
}
_ => {
// Just take a reference. This is basically like trans_addr_of.
//
// NDM---this code is almost certainly wrong. I presume its
// purpose is auto-ref? What if an @T is autoref'd? No good.
let rptr_datum = datum.to_rptr(bcx);
return DatumBlock {bcx: bcx, datum: rptr_datum};
}
}
fn expr_is_borrowed(bcx: block, e: @ast::expr) -> bool {
bcx.tcx().borrowings.contains_key(e.id)
}
}