2014-10-02 21:31:06 +02:00

1726 lines
67 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
*
* # Compilation of match statements
*
* I will endeavor to explain the code as best I can. I have only a loose
* understanding of some parts of it.
*
* ## Matching
*
* The basic state of the code is maintained in an array `m` of `Match`
* objects. Each `Match` describes some list of patterns, all of which must
* match against the current list of values. If those patterns match, then
* the arm listed in the match is the correct arm. A given arm may have
* multiple corresponding match entries, one for each alternative that
* remains. As we proceed these sets of matches are adjusted by the various
* `enter_XXX()` functions, each of which adjusts the set of options given
* some information about the value which has been matched.
*
* So, initially, there is one value and N matches, each of which have one
* constituent pattern. N here is usually the number of arms but may be
* greater, if some arms have multiple alternatives. For example, here:
*
* enum Foo { A, B(int), C(uint, uint) }
* match foo {
* A => ...,
* B(x) => ...,
* C(1u, 2) => ...,
* C(_) => ...
* }
*
* The value would be `foo`. There would be four matches, each of which
* contains one pattern (and, in one case, a guard). We could collect the
* various options and then compile the code for the case where `foo` is an
* `A`, a `B`, and a `C`. When we generate the code for `C`, we would (1)
* drop the two matches that do not match a `C` and (2) expand the other two
* into two patterns each. In the first case, the two patterns would be `1u`
* and `2`, and the in the second case the _ pattern would be expanded into
* `_` and `_`. The two values are of course the arguments to `C`.
*
* Here is a quick guide to the various functions:
*
* - `compile_submatch()`: The main workhouse. It takes a list of values and
* a list of matches and finds the various possibilities that could occur.
*
* - `enter_XXX()`: modifies the list of matches based on some information
* about the value that has been matched. For example,
* `enter_rec_or_struct()` adjusts the values given that a record or struct
* has been matched. This is an infallible pattern, so *all* of the matches
* must be either wildcards or record/struct patterns. `enter_opt()`
* handles the fallible cases, and it is correspondingly more complex.
*
* ## Bindings
*
* We store information about the bound variables for each arm as part of the
* per-arm `ArmData` struct. There is a mapping from identifiers to
* `BindingInfo` structs. These structs contain the mode/id/type of the
* binding, but they also contain an LLVM value which points at an alloca
* called `llmatch`. For by value bindings that are Copy, we also create
* an extra alloca that we copy the matched value to so that any changes
* we do to our copy is not reflected in the original and vice-versa.
* We don't do this if it's a move since the original value can't be used
* and thus allowing us to cheat in not creating an extra alloca.
*
* The `llmatch` binding always stores a pointer into the value being matched
* which points at the data for the binding. If the value being matched has
* type `T`, then, `llmatch` will point at an alloca of type `T*` (and hence
* `llmatch` has type `T**`). So, if you have a pattern like:
*
* let a: A = ...;
* let b: B = ...;
* match (a, b) { (ref c, d) => { ... } }
*
* For `c` and `d`, we would generate allocas of type `C*` and `D*`
* respectively. These are called the `llmatch`. As we match, when we come
* up against an identifier, we store the current pointer into the
* corresponding alloca.
*
* Once a pattern is completely matched, and assuming that there is no guard
* pattern, we will branch to a block that leads to the body itself. For any
* by-value bindings, this block will first load the ptr from `llmatch` (the
* one of type `D*`) and then load a second time to get the actual value (the
* one of type `D`). For by ref bindings, the value of the local variable is
* simply the first alloca.
*
* So, for the example above, we would generate a setup kind of like this:
*
* +-------+
* | Entry |
* +-------+
* |
* +--------------------------------------------+
* | llmatch_c = (addr of first half of tuple) |
* | llmatch_d = (addr of second half of tuple) |
* +--------------------------------------------+
* |
* +--------------------------------------+
* | *llbinding_d = **llmatch_d |
* +--------------------------------------+
*
* If there is a guard, the situation is slightly different, because we must
* execute the guard code. Moreover, we need to do so once for each of the
* alternatives that lead to the arm, because if the guard fails, they may
* have different points from which to continue the search. Therefore, in that
* case, we generate code that looks more like:
*
* +-------+
* | Entry |
* +-------+
* |
* +-------------------------------------------+
* | llmatch_c = (addr of first half of tuple) |
* | llmatch_d = (addr of first half of tuple) |
* +-------------------------------------------+
* |
* +-------------------------------------------------+
* | *llbinding_d = **llmatch_d |
* | check condition |
* | if false { goto next case } |
* | if true { goto body } |
* +-------------------------------------------------+
*
* The handling for the cleanups is a bit... sensitive. Basically, the body
* is the one that invokes `add_clean()` for each binding. During the guard
* evaluation, we add temporary cleanups and revoke them after the guard is
* evaluated (it could fail, after all). Note that guards and moves are
* just plain incompatible.
*
* Some relevant helper functions that manage bindings:
* - `create_bindings_map()`
* - `insert_lllocals()`
*
*
* ## Notes on vector pattern matching.
*
* Vector pattern matching is surprisingly tricky. The problem is that
* the structure of the vector isn't fully known, and slice matches
* can be done on subparts of it.
*
* The way that vector pattern matches are dealt with, then, is as
* follows. First, we make the actual condition associated with a
* vector pattern simply a vector length comparison. So the pattern
* [1, .. x] gets the condition "vec len >= 1", and the pattern
* [.. x] gets the condition "vec len >= 0". The problem here is that
* having the condition "vec len >= 1" hold clearly does not mean that
* only a pattern that has exactly that condition will match. This
* means that it may well be the case that a condition holds, but none
* of the patterns matching that condition match; to deal with this,
* when doing vector length matches, we have match failures proceed to
* the next condition to check.
*
* There are a couple more subtleties to deal with. While the "actual"
* condition associated with vector length tests is simply a test on
* the vector length, the actual vec_len Opt entry contains more
* information used to restrict which matches are associated with it.
* So that all matches in a submatch are matching against the same
* values from inside the vector, they are split up by how many
* elements they match at the front and at the back of the vector. In
* order to make sure that arms are properly checked in order, even
* with the overmatching conditions, each vec_len Opt entry is
* associated with a range of matches.
* Consider the following:
*
* match &[1, 2, 3] {
* [1, 1, .. _] => 0,
* [1, 2, 2, .. _] => 1,
* [1, 2, 3, .. _] => 2,
* [1, 2, .. _] => 3,
* _ => 4
* }
* The proper arm to match is arm 2, but arms 0 and 3 both have the
* condition "len >= 2". If arm 3 was lumped in with arm 0, then the
* wrong branch would be taken. Instead, vec_len Opts are associated
* with a contiguous range of matches that have the same "shape".
* This is sort of ugly and requires a bunch of special handling of
* vec_len options.
*
*/
use back::abi;
use driver::config::FullDebugInfo;
use llvm::{ValueRef, BasicBlockRef};
use middle::check_match::StaticInliner;
use middle::check_match;
use middle::const_eval;
use middle::def;
use middle::expr_use_visitor as euv;
use middle::lang_items::StrEqFnLangItem;
use middle::mem_categorization as mc;
use middle::pat_util::*;
use middle::resolve::DefMap;
use middle::trans::adt;
use middle::trans::base::*;
use middle::trans::build::{AddCase, And, BitCast, Br, CondBr, GEPi, InBoundsGEP, Load};
use middle::trans::build::{Mul, Not, Store, Sub, add_comment};
use middle::trans::build;
use middle::trans::callee;
use middle::trans::cleanup::{mod, CleanupMethods};
use middle::trans::common::*;
use middle::trans::consts;
use middle::trans::datum::*;
use middle::trans::expr::{mod, Dest};
use middle::trans::tvec;
use middle::trans::type_of;
use middle::trans::debuginfo;
use middle::ty;
use util::common::indenter;
use util::ppaux::{Repr, vec_map_to_string};
use std;
use std::collections::HashMap;
use std::rc::Rc;
use syntax::ast;
use syntax::ast::{DUMMY_NODE_ID, Ident};
use syntax::codemap::Span;
use syntax::fold::Folder;
use syntax::ptr::P;
struct ConstantExpr<'a>(&'a ast::Expr);
impl<'a> ConstantExpr<'a> {
fn eq(self, other: ConstantExpr<'a>, tcx: &ty::ctxt) -> bool {
let ConstantExpr(expr) = self;
let ConstantExpr(other_expr) = other;
match const_eval::compare_lit_exprs(tcx, expr, other_expr) {
Some(val1) => val1 == 0,
None => fail!("compare_list_exprs: type mismatch"),
}
}
}
// An option identifying a branch (either a literal, an enum variant or a range)
enum Opt<'a> {
ConstantValue(ConstantExpr<'a>),
ConstantRange(ConstantExpr<'a>, ConstantExpr<'a>),
Variant(ty::Disr, Rc<adt::Repr>, ast::DefId),
SliceLengthEqual(uint),
SliceLengthGreaterOrEqual(/* prefix length */ uint, /* suffix length */ uint),
}
impl<'a> Opt<'a> {
fn eq(&self, other: &Opt<'a>, tcx: &ty::ctxt) -> bool {
match (self, other) {
(&ConstantValue(a), &ConstantValue(b)) => a.eq(b, tcx),
(&ConstantRange(a1, a2), &ConstantRange(b1, b2)) => {
a1.eq(b1, tcx) && a2.eq(b2, tcx)
}
(&Variant(a_disr, ref a_repr, a_def), &Variant(b_disr, ref b_repr, b_def)) => {
a_disr == b_disr && *a_repr == *b_repr && a_def == b_def
}
(&SliceLengthEqual(a), &SliceLengthEqual(b)) => a == b,
(&SliceLengthGreaterOrEqual(a1, a2), &SliceLengthGreaterOrEqual(b1, b2)) => {
a1 == b1 && a2 == b2
}
_ => false
}
}
fn trans<'blk, 'tcx>(&self, mut bcx: Block<'blk, 'tcx>) -> OptResult<'blk, 'tcx> {
let _icx = push_ctxt("match::trans_opt");
let ccx = bcx.ccx();
match *self {
ConstantValue(ConstantExpr(lit_expr)) => {
let lit_ty = ty::node_id_to_type(bcx.tcx(), lit_expr.id);
let (llval, _, _) = consts::const_expr(ccx, &*lit_expr, true);
let lit_datum = immediate_rvalue(llval, lit_ty);
let lit_datum = unpack_datum!(bcx, lit_datum.to_appropriate_datum(bcx));
SingleResult(Result::new(bcx, lit_datum.val))
}
ConstantRange(ConstantExpr(ref l1), ConstantExpr(ref l2)) => {
let (l1, _, _) = consts::const_expr(ccx, &**l1, true);
let (l2, _, _) = consts::const_expr(ccx, &**l2, true);
RangeResult(Result::new(bcx, l1), Result::new(bcx, l2))
}
Variant(disr_val, ref repr, _) => {
adt::trans_case(bcx, &**repr, disr_val)
}
SliceLengthEqual(length) => {
SingleResult(Result::new(bcx, C_uint(ccx, length)))
}
SliceLengthGreaterOrEqual(prefix, suffix) => {
LowerBound(Result::new(bcx, C_uint(ccx, prefix + suffix)))
}
}
}
}
#[deriving(PartialEq)]
pub enum BranchKind {
NoBranch,
Single,
Switch,
Compare,
CompareSliceLength
}
pub enum OptResult<'blk, 'tcx: 'blk> {
SingleResult(Result<'blk, 'tcx>),
RangeResult(Result<'blk, 'tcx>, Result<'blk, 'tcx>),
LowerBound(Result<'blk, 'tcx>)
}
#[deriving(Clone)]
pub enum TransBindingMode {
TrByCopy(/* llbinding */ ValueRef),
TrByMove,
TrByRef,
}
/**
* Information about a pattern binding:
* - `llmatch` is a pointer to a stack slot. The stack slot contains a
* pointer into the value being matched. Hence, llmatch has type `T**`
* where `T` is the value being matched.
* - `trmode` is the trans binding mode
* - `id` is the node id of the binding
* - `ty` is the Rust type of the binding */
#[deriving(Clone)]
pub struct BindingInfo {
pub llmatch: ValueRef,
pub trmode: TransBindingMode,
pub id: ast::NodeId,
pub span: Span,
pub ty: ty::t,
}
type BindingsMap = HashMap<Ident, BindingInfo>;
struct ArmData<'p, 'blk, 'tcx: 'blk> {
bodycx: Block<'blk, 'tcx>,
arm: &'p ast::Arm,
bindings_map: BindingsMap
}
/**
* Info about Match.
* If all `pats` are matched then arm `data` will be executed.
* As we proceed `bound_ptrs` are filled with pointers to values to be bound,
* these pointers are stored in llmatch variables just before executing `data` arm.
*/
struct Match<'a, 'p: 'a, 'blk: 'a, 'tcx: 'blk> {
pats: Vec<&'p ast::Pat>,
data: &'a ArmData<'p, 'blk, 'tcx>,
bound_ptrs: Vec<(Ident, ValueRef)>
}
impl<'a, 'p, 'blk, 'tcx> Repr for Match<'a, 'p, 'blk, 'tcx> {
fn repr(&self, tcx: &ty::ctxt) -> String {
if tcx.sess.verbose() {
// for many programs, this just take too long to serialize
self.pats.repr(tcx)
} else {
format!("{} pats", self.pats.len())
}
}
}
fn has_nested_bindings(m: &[Match], col: uint) -> bool {
for br in m.iter() {
match br.pats.get(col).node {
ast::PatIdent(_, _, Some(_)) => return true,
_ => ()
}
}
return false;
}
fn expand_nested_bindings<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
m: &[Match<'a, 'p, 'blk, 'tcx>],
col: uint,
val: ValueRef)
-> Vec<Match<'a, 'p, 'blk, 'tcx>> {
debug!("expand_nested_bindings(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_string(val));
let _indenter = indenter();
m.iter().map(|br| {
let mut bound_ptrs = br.bound_ptrs.clone();
let mut pat = *br.pats.get(col);
loop {
pat = match pat.node {
ast::PatIdent(_, ref path, Some(ref inner)) => {
bound_ptrs.push((path.node, val));
&**inner
},
_ => break
}
}
let mut pats = br.pats.clone();
*pats.get_mut(col) = pat;
Match {
pats: pats,
data: &*br.data,
bound_ptrs: bound_ptrs
}
}).collect()
}
type EnterPatterns<'a> = <'p> |&[&'p ast::Pat]|: 'a -> Option<Vec<&'p ast::Pat>>;
fn enter_match<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
dm: &DefMap,
m: &[Match<'a, 'p, 'blk, 'tcx>],
col: uint,
val: ValueRef,
e: EnterPatterns)
-> Vec<Match<'a, 'p, 'blk, 'tcx>> {
debug!("enter_match(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_string(val));
let _indenter = indenter();
m.iter().filter_map(|br| {
e(br.pats.as_slice()).map(|pats| {
let this = *br.pats.get(col);
let mut bound_ptrs = br.bound_ptrs.clone();
match this.node {
ast::PatIdent(_, ref path, None) => {
if pat_is_binding(dm, &*this) {
bound_ptrs.push((path.node, val));
}
}
ast::PatVec(ref before, Some(ref slice), ref after) => {
match slice.node {
ast::PatIdent(_, ref path, None) => {
let subslice_val = bind_subslice_pat(
bcx, this.id, val,
before.len(), after.len());
bound_ptrs.push((path.node, subslice_val));
}
_ => {}
}
}
_ => {}
}
Match {
pats: pats,
data: br.data,
bound_ptrs: bound_ptrs
}
})
}).collect()
}
fn enter_default<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
dm: &DefMap,
m: &[Match<'a, 'p, 'blk, 'tcx>],
col: uint,
val: ValueRef)
-> Vec<Match<'a, 'p, 'blk, 'tcx>> {
debug!("enter_default(bcx={}, m={}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
col,
bcx.val_to_string(val));
let _indenter = indenter();
// Collect all of the matches that can match against anything.
enter_match(bcx, dm, m, col, val, |pats| {
if pat_is_binding_or_wild(dm, &*pats[col]) {
Some(Vec::from_slice(pats.slice_to(col)).append(pats.slice_from(col + 1)))
} else {
None
}
})
}
// <pcwalton> nmatsakis: what does enter_opt do?
// <pcwalton> in trans/match
// <pcwalton> trans/match.rs is like stumbling around in a dark cave
// <nmatsakis> pcwalton: the enter family of functions adjust the set of
// patterns as needed
// <nmatsakis> yeah, at some point I kind of achieved some level of
// understanding
// <nmatsakis> anyhow, they adjust the patterns given that something of that
// kind has been found
// <nmatsakis> pcwalton: ok, right, so enter_XXX() adjusts the patterns, as I
// said
// <nmatsakis> enter_match() kind of embodies the generic code
// <nmatsakis> it is provided with a function that tests each pattern to see
// if it might possibly apply and so forth
// <nmatsakis> so, if you have a pattern like {a: _, b: _, _} and one like _
// <nmatsakis> then _ would be expanded to (_, _)
// <nmatsakis> one spot for each of the sub-patterns
// <nmatsakis> enter_opt() is one of the more complex; it covers the fallible
// cases
// <nmatsakis> enter_rec_or_struct() or enter_tuple() are simpler, since they
// are infallible patterns
// <nmatsakis> so all patterns must either be records (resp. tuples) or
// wildcards
/// The above is now outdated in that enter_match() now takes a function that
/// takes the complete row of patterns rather than just the first one.
/// Also, most of the enter_() family functions have been unified with
/// the check_match specialization step.
fn enter_opt<'a, 'p, 'blk, 'tcx>(
bcx: Block<'blk, 'tcx>,
_: ast::NodeId,
dm: &DefMap,
m: &[Match<'a, 'p, 'blk, 'tcx>],
opt: &Opt,
col: uint,
variant_size: uint,
val: ValueRef)
-> Vec<Match<'a, 'p, 'blk, 'tcx>> {
debug!("enter_opt(bcx={}, m={}, opt={:?}, col={}, val={})",
bcx.to_str(),
m.repr(bcx.tcx()),
*opt,
col,
bcx.val_to_string(val));
let _indenter = indenter();
let ctor = match opt {
&ConstantValue(ConstantExpr(expr)) => check_match::ConstantValue(
const_eval::eval_const_expr(bcx.tcx(), &*expr)
),
&ConstantRange(ConstantExpr(lo), ConstantExpr(hi)) => check_match::ConstantRange(
const_eval::eval_const_expr(bcx.tcx(), &*lo),
const_eval::eval_const_expr(bcx.tcx(), &*hi)
),
&SliceLengthEqual(n) =>
check_match::Slice(n),
&SliceLengthGreaterOrEqual(before, after) =>
check_match::SliceWithSubslice(before, after),
&Variant(_, _, def_id) =>
check_match::Variant(def_id)
};
let mcx = check_match::MatchCheckCtxt { tcx: bcx.tcx() };
enter_match(bcx, dm, m, col, val, |pats|
check_match::specialize(&mcx, pats.as_slice(), &ctor, col, variant_size)
)
}
// Returns the options in one column of matches. An option is something that
// needs to be conditionally matched at runtime; for example, the discriminant
// on a set of enum variants or a literal.
fn get_branches<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
m: &[Match<'a, 'p, 'blk, 'tcx>], col: uint)
-> Vec<Opt<'p>> {
let tcx = bcx.tcx();
let mut found: Vec<Opt> = vec![];
for br in m.iter() {
let cur = *br.pats.get(col);
let opt = match cur.node {
ast::PatLit(ref l) => ConstantValue(ConstantExpr(&**l)),
ast::PatIdent(..) | ast::PatEnum(..) | ast::PatStruct(..) => {
// This is either an enum variant or a variable binding.
let opt_def = tcx.def_map.borrow().find_copy(&cur.id);
match opt_def {
Some(def::DefVariant(enum_id, var_id, _)) => {
let variant = ty::enum_variant_with_id(tcx, enum_id, var_id);
Variant(variant.disr_val, adt::represent_node(bcx, cur.id), var_id)
}
_ => continue
}
}
ast::PatRange(ref l1, ref l2) => {
ConstantRange(ConstantExpr(&**l1), ConstantExpr(&**l2))
}
ast::PatVec(ref before, None, ref after) => {
SliceLengthEqual(before.len() + after.len())
}
ast::PatVec(ref before, Some(_), ref after) => {
SliceLengthGreaterOrEqual(before.len(), after.len())
}
_ => continue
};
if !found.iter().any(|x| x.eq(&opt, tcx)) {
found.push(opt);
}
}
found
}
struct ExtractedBlock<'blk, 'tcx: 'blk> {
vals: Vec<ValueRef>,
bcx: Block<'blk, 'tcx>,
}
fn extract_variant_args<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
repr: &adt::Repr,
disr_val: ty::Disr,
val: ValueRef)
-> ExtractedBlock<'blk, 'tcx> {
let _icx = push_ctxt("match::extract_variant_args");
let args = Vec::from_fn(adt::num_args(repr, disr_val), |i| {
adt::trans_field_ptr(bcx, repr, val, disr_val, i)
});
ExtractedBlock { vals: args, bcx: bcx }
}
fn match_datum(val: ValueRef, left_ty: ty::t) -> Datum<Lvalue> {
/*!
* Helper for converting from the ValueRef that we pass around in
* the match code, which is always an lvalue, into a Datum. Eventually
* we should just pass around a Datum and be done with it.
*/
Datum::new(val, left_ty, Lvalue)
}
fn bind_subslice_pat(bcx: Block,
pat_id: ast::NodeId,
val: ValueRef,
offset_left: uint,
offset_right: uint) -> ValueRef {
let _icx = push_ctxt("match::bind_subslice_pat");
let vec_ty = node_id_type(bcx, pat_id);
let vt = tvec::vec_types(bcx, ty::sequence_element_type(bcx.tcx(), ty::type_content(vec_ty)));
let vec_datum = match_datum(val, vec_ty);
let (base, len) = vec_datum.get_vec_base_and_len(bcx);
let slice_byte_offset = Mul(bcx, vt.llunit_size, C_uint(bcx.ccx(), offset_left));
let slice_begin = tvec::pointer_add_byte(bcx, base, slice_byte_offset);
let slice_len_offset = C_uint(bcx.ccx(), offset_left + offset_right);
let slice_len = Sub(bcx, len, slice_len_offset);
let slice_ty = ty::mk_slice(bcx.tcx(),
ty::ReStatic,
ty::mt {ty: vt.unit_ty, mutbl: ast::MutImmutable});
let scratch = rvalue_scratch_datum(bcx, slice_ty, "");
Store(bcx, slice_begin,
GEPi(bcx, scratch.val, [0u, abi::slice_elt_base]));
Store(bcx, slice_len, GEPi(bcx, scratch.val, [0u, abi::slice_elt_len]));
scratch.val
}
fn extract_vec_elems<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
left_ty: ty::t,
before: uint,
after: uint,
val: ValueRef)
-> ExtractedBlock<'blk, 'tcx> {
let _icx = push_ctxt("match::extract_vec_elems");
let vec_datum = match_datum(val, left_ty);
let (base, len) = vec_datum.get_vec_base_and_len(bcx);
let mut elems = vec![];
elems.extend(range(0, before).map(|i| GEPi(bcx, base, [i])));
elems.extend(range(0, after).rev().map(|i| {
InBoundsGEP(bcx, base, [
Sub(bcx, len, C_uint(bcx.ccx(), i + 1))
])
}));
ExtractedBlock { vals: elems, bcx: bcx }
}
// Macro for deciding whether any of the remaining matches fit a given kind of
// pattern. Note that, because the macro is well-typed, either ALL of the
// matches should fit that sort of pattern or NONE (however, some of the
// matches may be wildcards like _ or identifiers).
macro_rules! any_pat (
($m:expr, $col:expr, $pattern:pat) => (
($m).iter().any(|br| {
match br.pats.get($col).node {
$pattern => true,
_ => false
}
})
)
)
fn any_uniq_pat(m: &[Match], col: uint) -> bool {
any_pat!(m, col, ast::PatBox(_))
}
fn any_region_pat(m: &[Match], col: uint) -> bool {
any_pat!(m, col, ast::PatRegion(_))
}
fn any_irrefutable_adt_pat(tcx: &ty::ctxt, m: &[Match], col: uint) -> bool {
m.iter().any(|br| {
let pat = *br.pats.get(col);
match pat.node {
ast::PatTup(_) => true,
ast::PatStruct(..) => {
match tcx.def_map.borrow().find(&pat.id) {
Some(&def::DefVariant(..)) => false,
_ => true,
}
}
ast::PatEnum(..) | ast::PatIdent(_, _, None) => {
match tcx.def_map.borrow().find(&pat.id) {
Some(&def::DefStruct(..)) => true,
_ => false
}
}
_ => false
}
})
}
/// What to do when the pattern match fails.
enum FailureHandler {
Infallible,
JumpToBasicBlock(BasicBlockRef),
Unreachable
}
impl FailureHandler {
fn is_fallible(&self) -> bool {
match *self {
Infallible => false,
_ => true
}
}
fn is_infallible(&self) -> bool {
!self.is_fallible()
}
fn handle_fail(&self, bcx: Block) {
match *self {
Infallible =>
fail!("attempted to fail in an infallible failure handler!"),
JumpToBasicBlock(basic_block) =>
Br(bcx, basic_block),
Unreachable =>
build::Unreachable(bcx)
}
}
}
fn pick_col(m: &[Match]) -> uint {
fn score(p: &ast::Pat) -> uint {
match p.node {
ast::PatLit(_) | ast::PatEnum(_, _) | ast::PatRange(_, _) => 1u,
ast::PatIdent(_, _, Some(ref p)) => score(&**p),
_ => 0u
}
}
let mut scores = Vec::from_elem(m[0].pats.len(), 0u);
for br in m.iter() {
for (i, ref p) in br.pats.iter().enumerate() {
*scores.get_mut(i) += score(&***p);
}
}
let mut max_score = 0u;
let mut best_col = 0u;
for (i, score) in scores.iter().enumerate() {
let score = *score;
// Irrefutable columns always go first, they'd only be duplicated in
// the branches.
if score == 0u { return i; }
// If no irrefutable ones are found, we pick the one with the biggest
// branching factor.
if score > max_score { max_score = score; best_col = i; }
}
return best_col;
}
// Compiles a comparison between two things.
fn compare_values<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
rhs_t: ty::t)
-> Result<'blk, 'tcx> {
fn compare_str<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
rhs_t: ty::t)
-> Result<'blk, 'tcx> {
let did = langcall(cx,
None,
format!("comparison of `{}`",
cx.ty_to_string(rhs_t)).as_slice(),
StrEqFnLangItem);
callee::trans_lang_call(cx, did, [lhs, rhs], None)
}
let _icx = push_ctxt("compare_values");
if ty::type_is_scalar(rhs_t) {
let rs = compare_scalar_types(cx, lhs, rhs, rhs_t, ast::BiEq);
return Result::new(rs.bcx, rs.val);
}
match ty::get(rhs_t).sty {
ty::ty_rptr(_, mt) => match ty::get(mt.ty).sty {
ty::ty_str => compare_str(cx, lhs, rhs, rhs_t),
ty::ty_vec(ty, _) => match ty::get(ty).sty {
ty::ty_uint(ast::TyU8) => {
// NOTE: cast &[u8] to &str and abuse the str_eq lang item,
// which calls memcmp().
let t = ty::mk_str_slice(cx.tcx(), ty::ReStatic, ast::MutImmutable);
let lhs = BitCast(cx, lhs, type_of::type_of(cx.ccx(), t).ptr_to());
let rhs = BitCast(cx, rhs, type_of::type_of(cx.ccx(), t).ptr_to());
compare_str(cx, lhs, rhs, rhs_t)
},
_ => cx.sess().bug("only byte strings supported in compare_values"),
},
_ => cx.sess().bug("only string and byte strings supported in compare_values"),
},
_ => cx.sess().bug("only scalars, byte strings, and strings supported in compare_values"),
}
}
fn insert_lllocals<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
bindings_map: &BindingsMap,
cs: Option<cleanup::ScopeId>)
-> Block<'blk, 'tcx> {
/*!
* For each binding in `data.bindings_map`, adds an appropriate entry into
* the `fcx.lllocals` map
*/
for (&ident, &binding_info) in bindings_map.iter() {
let llval = match binding_info.trmode {
// By value mut binding for a copy type: load from the ptr
// into the matched value and copy to our alloca
TrByCopy(llbinding) => {
let llval = Load(bcx, binding_info.llmatch);
let datum = Datum::new(llval, binding_info.ty, Lvalue);
call_lifetime_start(bcx, llbinding);
bcx = datum.store_to(bcx, llbinding);
match cs {
Some(cs) => bcx.fcx.schedule_lifetime_end(cs, llbinding),
_ => {}
}
llbinding
},
// By value move bindings: load from the ptr into the matched value
TrByMove => Load(bcx, binding_info.llmatch),
// By ref binding: use the ptr into the matched value
TrByRef => binding_info.llmatch
};
let datum = Datum::new(llval, binding_info.ty, Lvalue);
match cs {
Some(cs) => {
bcx.fcx.schedule_drop_and_zero_mem(cs, llval, binding_info.ty);
bcx.fcx.schedule_lifetime_end(cs, binding_info.llmatch);
}
_ => {}
}
debug!("binding {:?} to {}",
binding_info.id,
bcx.val_to_string(llval));
bcx.fcx.lllocals.borrow_mut().insert(binding_info.id, datum);
if bcx.sess().opts.debuginfo == FullDebugInfo {
debuginfo::create_match_binding_metadata(bcx,
ident,
binding_info);
}
}
bcx
}
fn compile_guard<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
guard_expr: &ast::Expr,
data: &ArmData,
m: &[Match<'a, 'p, 'blk, 'tcx>],
vals: &[ValueRef],
chk: &FailureHandler,
has_genuine_default: bool)
-> Block<'blk, 'tcx> {
debug!("compile_guard(bcx={}, guard_expr={}, m={}, vals={})",
bcx.to_str(),
bcx.expr_to_string(guard_expr),
m.repr(bcx.tcx()),
vec_map_to_string(vals, |v| bcx.val_to_string(*v)));
let _indenter = indenter();
let mut bcx = insert_lllocals(bcx, &data.bindings_map, None);
let val = unpack_datum!(bcx, expr::trans(bcx, guard_expr));
let val = val.to_llbool(bcx);
for (_, &binding_info) in data.bindings_map.iter() {
match binding_info.trmode {
TrByCopy(llbinding) => call_lifetime_end(bcx, llbinding),
_ => {}
}
}
with_cond(bcx, Not(bcx, val), |bcx| {
// Guard does not match: remove all bindings from the lllocals table
for (_, &binding_info) in data.bindings_map.iter() {
call_lifetime_end(bcx, binding_info.llmatch);
bcx.fcx.lllocals.borrow_mut().remove(&binding_info.id);
}
match chk {
// If the default arm is the only one left, move on to the next
// condition explicitly rather than (possibly) falling back to
// the default arm.
&JumpToBasicBlock(_) if m.len() == 1 && has_genuine_default => {
chk.handle_fail(bcx);
}
_ => {
compile_submatch(bcx, m, vals, chk, has_genuine_default);
}
};
bcx
})
}
fn compile_submatch<'a, 'p, 'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
m: &[Match<'a, 'p, 'blk, 'tcx>],
vals: &[ValueRef],
chk: &FailureHandler,
has_genuine_default: bool) {
debug!("compile_submatch(bcx={}, m={}, vals={})",
bcx.to_str(),
m.repr(bcx.tcx()),
vec_map_to_string(vals, |v| bcx.val_to_string(*v)));
let _indenter = indenter();
let _icx = push_ctxt("match::compile_submatch");
let mut bcx = bcx;
if m.len() == 0u {
if chk.is_fallible() {
chk.handle_fail(bcx);
}
return;
}
let col_count = m[0].pats.len();
if col_count == 0u {
let data = &m[0].data;
for &(ref ident, ref value_ptr) in m[0].bound_ptrs.iter() {
let llmatch = data.bindings_map.get(ident).llmatch;
call_lifetime_start(bcx, llmatch);
Store(bcx, *value_ptr, llmatch);
}
match data.arm.guard {
Some(ref guard_expr) => {
bcx = compile_guard(bcx,
&**guard_expr,
m[0].data,
m.slice(1, m.len()),
vals,
chk,
has_genuine_default);
}
_ => ()
}
Br(bcx, data.bodycx.llbb);
return;
}
let col = pick_col(m);
let val = vals[col];
if has_nested_bindings(m, col) {
let expanded = expand_nested_bindings(bcx, m, col, val);
compile_submatch_continue(bcx,
expanded.as_slice(),
vals,
chk,
col,
val,
has_genuine_default)
} else {
compile_submatch_continue(bcx, m, vals, chk, col, val, has_genuine_default)
}
}
fn compile_submatch_continue<'a, 'p, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
m: &[Match<'a, 'p, 'blk, 'tcx>],
vals: &[ValueRef],
chk: &FailureHandler,
col: uint,
val: ValueRef,
has_genuine_default: bool) {
let fcx = bcx.fcx;
let tcx = bcx.tcx();
let dm = &tcx.def_map;
let vals_left = Vec::from_slice(vals.slice(0u, col)).append(vals.slice(col + 1u, vals.len()));
let ccx = bcx.fcx.ccx;
// Find a real id (we're adding placeholder wildcard patterns, but
// each column is guaranteed to have at least one real pattern)
let pat_id = m.iter().map(|br| br.pats.get(col).id)
.find(|&id| id != DUMMY_NODE_ID)
.unwrap_or(DUMMY_NODE_ID);
let left_ty = if pat_id == DUMMY_NODE_ID {
ty::mk_nil()
} else {
node_id_type(bcx, pat_id)
};
let mcx = check_match::MatchCheckCtxt { tcx: bcx.tcx() };
let adt_vals = if any_irrefutable_adt_pat(bcx.tcx(), m, col) {
let repr = adt::represent_type(bcx.ccx(), left_ty);
let arg_count = adt::num_args(&*repr, 0);
let field_vals: Vec<ValueRef> = std::iter::range(0, arg_count).map(|ix|
adt::trans_field_ptr(bcx, &*repr, val, 0, ix)
).collect();
Some(field_vals)
} else if any_uniq_pat(m, col) || any_region_pat(m, col) {
Some(vec!(Load(bcx, val)))
} else {
match ty::get(left_ty).sty {
ty::ty_vec(_, Some(n)) => {
let args = extract_vec_elems(bcx, left_ty, n, 0, val);
Some(args.vals)
}
_ => None
}
};
match adt_vals {
Some(field_vals) => {
let pats = enter_match(bcx, dm, m, col, val, |pats|
check_match::specialize(&mcx, pats, &check_match::Single, col, field_vals.len())
);
let vals = field_vals.append(vals_left.as_slice());
compile_submatch(bcx, pats.as_slice(), vals.as_slice(), chk, has_genuine_default);
return;
}
_ => ()
}
// Decide what kind of branch we need
let opts = get_branches(bcx, m, col);
debug!("options={:?}", opts);
let mut kind = NoBranch;
let mut test_val = val;
debug!("test_val={}", bcx.val_to_string(test_val));
if opts.len() > 0u {
match *opts.get(0) {
ConstantValue(_) | ConstantRange(_, _) => {
test_val = load_if_immediate(bcx, val, left_ty);
kind = if ty::type_is_integral(left_ty) {
Switch
} else {
Compare
};
}
Variant(_, ref repr, _) => {
let (the_kind, val_opt) = adt::trans_switch(bcx, &**repr, val);
kind = the_kind;
for &tval in val_opt.iter() { test_val = tval; }
}
SliceLengthEqual(_) | SliceLengthGreaterOrEqual(_, _) => {
let (_, len) = tvec::get_base_and_len(bcx, val, left_ty);
test_val = len;
kind = Switch;
}
}
}
for o in opts.iter() {
match *o {
ConstantRange(_, _) => { kind = Compare; break },
SliceLengthGreaterOrEqual(_, _) => { kind = CompareSliceLength; break },
_ => ()
}
}
let else_cx = match kind {
NoBranch | Single => bcx,
_ => bcx.fcx.new_temp_block("match_else")
};
let sw = if kind == Switch {
build::Switch(bcx, test_val, else_cx.llbb, opts.len())
} else {
C_int(ccx, 0) // Placeholder for when not using a switch
};
let defaults = enter_default(else_cx, dm, m, col, val);
let exhaustive = chk.is_infallible() && defaults.len() == 0u;
let len = opts.len();
// Compile subtrees for each option
for (i, opt) in opts.iter().enumerate() {
// In some cases of range and vector pattern matching, we need to
// override the failure case so that instead of failing, it proceeds
// to try more matching. branch_chk, then, is the proper failure case
// for the current conditional branch.
let mut branch_chk = None;
let mut opt_cx = else_cx;
if !exhaustive || i + 1 < len {
opt_cx = bcx.fcx.new_temp_block("match_case");
match kind {
Single => Br(bcx, opt_cx.llbb),
Switch => {
match opt.trans(bcx) {
SingleResult(r) => {
AddCase(sw, r.val, opt_cx.llbb);
bcx = r.bcx;
}
_ => {
bcx.sess().bug(
"in compile_submatch, expected \
opt.trans() to return a SingleResult")
}
}
}
Compare | CompareSliceLength => {
let t = if kind == Compare {
left_ty
} else {
ty::mk_uint() // vector length
};
let Result { bcx: after_cx, val: matches } = {
match opt.trans(bcx) {
SingleResult(Result { bcx, val }) => {
compare_values(bcx, test_val, val, t)
}
RangeResult(Result { val: vbegin, .. },
Result { bcx, val: vend }) => {
let Result { bcx, val: llge } =
compare_scalar_types(
bcx, test_val,
vbegin, t, ast::BiGe);
let Result { bcx, val: llle } =
compare_scalar_types(
bcx, test_val, vend,
t, ast::BiLe);
Result::new(bcx, And(bcx, llge, llle))
}
LowerBound(Result { bcx, val }) => {
compare_scalar_types(bcx, test_val, val, t, ast::BiGe)
}
}
};
bcx = fcx.new_temp_block("compare_next");
// If none of the sub-cases match, and the current condition
// is guarded or has multiple patterns, move on to the next
// condition, if there is any, rather than falling back to
// the default.
let guarded = m[i].data.arm.guard.is_some();
let multi_pats = m[i].pats.len() > 1;
if i + 1 < len && (guarded || multi_pats || kind == CompareSliceLength) {
branch_chk = Some(JumpToBasicBlock(bcx.llbb));
}
CondBr(after_cx, matches, opt_cx.llbb, bcx.llbb);
}
_ => ()
}
} else if kind == Compare || kind == CompareSliceLength {
Br(bcx, else_cx.llbb);
}
let mut size = 0u;
let mut unpacked = Vec::new();
match *opt {
Variant(disr_val, ref repr, _) => {
let ExtractedBlock {vals: argvals, bcx: new_bcx} =
extract_variant_args(opt_cx, &**repr, disr_val, val);
size = argvals.len();
unpacked = argvals;
opt_cx = new_bcx;
}
SliceLengthEqual(len) => {
let args = extract_vec_elems(opt_cx, left_ty, len, 0, val);
size = args.vals.len();
unpacked = args.vals.clone();
opt_cx = args.bcx;
}
SliceLengthGreaterOrEqual(before, after) => {
let args = extract_vec_elems(opt_cx, left_ty, before, after, val);
size = args.vals.len();
unpacked = args.vals.clone();
opt_cx = args.bcx;
}
ConstantValue(_) | ConstantRange(_, _) => ()
}
let opt_ms = enter_opt(opt_cx, pat_id, dm, m, opt, col, size, val);
let opt_vals = unpacked.append(vals_left.as_slice());
compile_submatch(opt_cx,
opt_ms.as_slice(),
opt_vals.as_slice(),
branch_chk.as_ref().unwrap_or(chk),
has_genuine_default);
}
// Compile the fall-through case, if any
if !exhaustive && kind != Single {
if kind == Compare || kind == CompareSliceLength {
Br(bcx, else_cx.llbb);
}
match chk {
// If there is only one default arm left, move on to the next
// condition explicitly rather than (eventually) falling back to
// the last default arm.
&JumpToBasicBlock(_) if defaults.len() == 1 && has_genuine_default => {
chk.handle_fail(else_cx);
}
_ => {
compile_submatch(else_cx,
defaults.as_slice(),
vals_left.as_slice(),
chk,
has_genuine_default);
}
}
}
}
pub fn trans_match<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
match_expr: &ast::Expr,
discr_expr: &ast::Expr,
arms: &[ast::Arm],
dest: Dest)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("match::trans_match");
trans_match_inner(bcx, match_expr.id, discr_expr, arms, dest)
}
/// Checks whether the binding in `discr` is assigned to anywhere in the expression `body`
fn is_discr_reassigned(bcx: Block, discr: &ast::Expr, body: &ast::Expr) -> bool {
match discr.node {
ast::ExprPath(..) => match bcx.def(discr.id) {
def::DefLocal(vid) | def::DefUpvar(vid, _, _) => {
let mut rc = ReassignmentChecker {
node: vid,
reassigned: false
};
{
let mut visitor = euv::ExprUseVisitor::new(&mut rc, bcx);
visitor.walk_expr(body);
}
rc.reassigned
}
_ => false
},
_ => false
}
}
struct ReassignmentChecker {
node: ast::NodeId,
reassigned: bool
}
impl euv::Delegate for ReassignmentChecker {
fn consume(&mut self, _: ast::NodeId, _: Span, _: mc::cmt, _: euv::ConsumeMode) {}
fn consume_pat(&mut self, _: &ast::Pat, _: mc::cmt, _: euv::ConsumeMode) {}
fn borrow(&mut self, _: ast::NodeId, _: Span, _: mc::cmt, _: ty::Region,
_: ty::BorrowKind, _: euv::LoanCause) {}
fn decl_without_init(&mut self, _: ast::NodeId, _: Span) {}
fn mutate(&mut self, _: ast::NodeId, _: Span, cmt: mc::cmt, _: euv::MutateMode) {
match cmt.cat {
mc::cat_copied_upvar(mc::CopiedUpvar { upvar_id: vid, .. }) |
mc::cat_local(vid) => self.reassigned = self.node == vid,
_ => {}
}
}
}
fn create_bindings_map(bcx: Block, pat: &ast::Pat,
discr: &ast::Expr, body: &ast::Expr) -> BindingsMap {
// Create the bindings map, which is a mapping from each binding name
// to an alloca() that will be the value for that local variable.
// Note that we use the names because each binding will have many ids
// from the various alternatives.
let ccx = bcx.ccx();
let tcx = bcx.tcx();
let reassigned = is_discr_reassigned(bcx, discr, body);
let mut bindings_map = HashMap::new();
pat_bindings(&tcx.def_map, &*pat, |bm, p_id, span, path1| {
let ident = path1.node;
let variable_ty = node_id_type(bcx, p_id);
let llvariable_ty = type_of::type_of(ccx, variable_ty);
let tcx = bcx.tcx();
let llmatch;
let trmode;
match bm {
ast::BindByValue(_)
if !ty::type_moves_by_default(tcx, variable_ty) || reassigned => {
llmatch = alloca_no_lifetime(bcx,
llvariable_ty.ptr_to(),
"__llmatch");
trmode = TrByCopy(alloca_no_lifetime(bcx,
llvariable_ty,
bcx.ident(ident).as_slice()));
}
ast::BindByValue(_) => {
// in this case, the final type of the variable will be T,
// but during matching we need to store a *T as explained
// above
llmatch = alloca_no_lifetime(bcx,
llvariable_ty.ptr_to(),
bcx.ident(ident).as_slice());
trmode = TrByMove;
}
ast::BindByRef(_) => {
llmatch = alloca_no_lifetime(bcx,
llvariable_ty,
bcx.ident(ident).as_slice());
trmode = TrByRef;
}
};
bindings_map.insert(ident, BindingInfo {
llmatch: llmatch,
trmode: trmode,
id: p_id,
span: span,
ty: variable_ty
});
});
return bindings_map;
}
fn trans_match_inner<'blk, 'tcx>(scope_cx: Block<'blk, 'tcx>,
match_id: ast::NodeId,
discr_expr: &ast::Expr,
arms: &[ast::Arm],
dest: Dest) -> Block<'blk, 'tcx> {
let _icx = push_ctxt("match::trans_match_inner");
let fcx = scope_cx.fcx;
let mut bcx = scope_cx;
let tcx = bcx.tcx();
let discr_datum = unpack_datum!(bcx, expr::trans_to_lvalue(bcx, discr_expr,
"match"));
if bcx.unreachable.get() {
return bcx;
}
let t = node_id_type(bcx, discr_expr.id);
let chk = if ty::type_is_empty(tcx, t) {
Unreachable
} else {
Infallible
};
let arm_datas: Vec<ArmData> = arms.iter().map(|arm| ArmData {
bodycx: fcx.new_id_block("case_body", arm.body.id),
arm: arm,
bindings_map: create_bindings_map(bcx, &**arm.pats.get(0), discr_expr, &*arm.body)
}).collect();
let mut static_inliner = StaticInliner::new(scope_cx.tcx());
let arm_pats: Vec<Vec<P<ast::Pat>>> = arm_datas.iter().map(|arm_data| {
arm_data.arm.pats.iter().map(|p| static_inliner.fold_pat((*p).clone())).collect()
}).collect();
let mut matches = Vec::new();
for (arm_data, pats) in arm_datas.iter().zip(arm_pats.iter()) {
matches.extend(pats.iter().map(|p| Match {
pats: vec![&**p],
data: arm_data,
bound_ptrs: Vec::new(),
}));
}
// `compile_submatch` works one column of arm patterns a time and
// then peels that column off. So as we progress, it may become
// impossible to tell whether we have a genuine default arm, i.e.
// `_ => foo` or not. Sometimes it is important to know that in order
// to decide whether moving on to the next condition or falling back
// to the default arm.
let has_default = arms.last().map_or(false, |arm| {
arm.pats.len() == 1
&& arm.pats.last().unwrap().node == ast::PatWild(ast::PatWildSingle)
});
compile_submatch(bcx, matches.as_slice(), [discr_datum.val], &chk, has_default);
let mut arm_cxs = Vec::new();
for arm_data in arm_datas.iter() {
let mut bcx = arm_data.bodycx;
// insert bindings into the lllocals map and add cleanups
let cs = fcx.push_custom_cleanup_scope();
bcx = insert_lllocals(bcx, &arm_data.bindings_map, Some(cleanup::CustomScope(cs)));
bcx = expr::trans_into(bcx, &*arm_data.arm.body, dest);
bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, cs);
arm_cxs.push(bcx);
}
bcx = scope_cx.fcx.join_blocks(match_id, arm_cxs.as_slice());
return bcx;
}
pub fn store_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
local: &ast::Local)
-> Block<'blk, 'tcx> {
/*!
* Generates code for a local variable declaration like
* `let <pat>;` or `let <pat> = <opt_init_expr>`.
*/
let _icx = push_ctxt("match::store_local");
let mut bcx = bcx;
let tcx = bcx.tcx();
let pat = &*local.pat;
fn create_dummy_locals<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
pat: &ast::Pat)
-> Block<'blk, 'tcx> {
// create dummy memory for the variables if we have no
// value to store into them immediately
let tcx = bcx.tcx();
pat_bindings(&tcx.def_map, pat, |_, p_id, _, path1| {
let scope = cleanup::var_scope(tcx, p_id);
bcx = mk_binding_alloca(
bcx, p_id, &path1.node, scope, (),
|(), bcx, llval, ty| { zero_mem(bcx, llval, ty); bcx });
});
bcx
}
match local.init {
Some(ref init_expr) => {
// Optimize the "let x = expr" case. This just writes
// the result of evaluating `expr` directly into the alloca
// for `x`. Often the general path results in similar or the
// same code post-optimization, but not always. In particular,
// in unsafe code, you can have expressions like
//
// let x = intrinsics::uninit();
//
// In such cases, the more general path is unsafe, because
// it assumes it is matching against a valid value.
match simple_identifier(&*pat) {
Some(ident) => {
let var_scope = cleanup::var_scope(tcx, local.id);
return mk_binding_alloca(
bcx, pat.id, ident, var_scope, (),
|(), bcx, v, _| expr::trans_into(bcx, &**init_expr,
expr::SaveIn(v)));
}
None => {}
}
// General path.
let init_datum =
unpack_datum!(bcx, expr::trans_to_lvalue(bcx, &**init_expr, "let"));
if ty::type_is_bot(expr_ty(bcx, &**init_expr)) {
create_dummy_locals(bcx, pat)
} else {
if bcx.sess().asm_comments() {
add_comment(bcx, "creating zeroable ref llval");
}
let var_scope = cleanup::var_scope(tcx, local.id);
bind_irrefutable_pat(bcx, pat, init_datum.val, var_scope)
}
}
None => {
create_dummy_locals(bcx, pat)
}
}
}
pub fn store_arg<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
pat: &ast::Pat,
arg: Datum<Rvalue>,
arg_scope: cleanup::ScopeId)
-> Block<'blk, 'tcx> {
/*!
* Generates code for argument patterns like `fn foo(<pat>: T)`.
* Creates entries in the `lllocals` map for each of the bindings
* in `pat`.
*
* # Arguments
*
* - `pat` is the argument pattern
* - `llval` is a pointer to the argument value (in other words,
* if the argument type is `T`, then `llval` is a `T*`). In some
* cases, this code may zero out the memory `llval` points at.
*/
let _icx = push_ctxt("match::store_arg");
match simple_identifier(&*pat) {
Some(ident) => {
// Generate nicer LLVM for the common case of fn a pattern
// like `x: T`
let arg_ty = node_id_type(bcx, pat.id);
if type_of::arg_is_indirect(bcx.ccx(), arg_ty)
&& bcx.sess().opts.debuginfo != FullDebugInfo {
// Don't copy an indirect argument to an alloca, the caller
// already put it in a temporary alloca and gave it up, unless
// we emit extra-debug-info, which requires local allocas :(.
let arg_val = arg.add_clean(bcx.fcx, arg_scope);
bcx.fcx.lllocals.borrow_mut()
.insert(pat.id, Datum::new(arg_val, arg_ty, Lvalue));
bcx
} else {
mk_binding_alloca(
bcx, pat.id, ident, arg_scope, arg,
|arg, bcx, llval, _| arg.store_to(bcx, llval))
}
}
None => {
// General path. Copy out the values that are used in the
// pattern.
let arg = unpack_datum!(
bcx, arg.to_lvalue_datum_in_scope(bcx, "__arg", arg_scope));
bind_irrefutable_pat(bcx, pat, arg.val, arg_scope)
}
}
}
/// Generates code for the pattern binding in a `for` loop like
/// `for <pat> in <expr> { ... }`.
pub fn store_for_loop_binding<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
pat: &ast::Pat,
llvalue: ValueRef,
body_scope: cleanup::ScopeId)
-> Block<'blk, 'tcx> {
let _icx = push_ctxt("match::store_for_loop_binding");
if simple_identifier(&*pat).is_some() {
// Generate nicer LLVM for the common case of a `for` loop pattern
// like `for x in blahblah { ... }`.
let binding_type = node_id_type(bcx, pat.id);
bcx.fcx.lllocals.borrow_mut().insert(pat.id,
Datum::new(llvalue,
binding_type,
Lvalue));
return bcx
}
// General path. Copy out the values that are used in the pattern.
bind_irrefutable_pat(bcx, pat, llvalue, body_scope)
}
fn mk_binding_alloca<'blk, 'tcx, A>(bcx: Block<'blk, 'tcx>,
p_id: ast::NodeId,
ident: &ast::Ident,
cleanup_scope: cleanup::ScopeId,
arg: A,
populate: |A, Block<'blk, 'tcx>, ValueRef, ty::t|
-> Block<'blk, 'tcx>)
-> Block<'blk, 'tcx> {
let var_ty = node_id_type(bcx, p_id);
// Allocate memory on stack for the binding.
let llval = alloc_ty(bcx, var_ty, bcx.ident(*ident).as_slice());
// Subtle: be sure that we *populate* the memory *before*
// we schedule the cleanup.
let bcx = populate(arg, bcx, llval, var_ty);
bcx.fcx.schedule_lifetime_end(cleanup_scope, llval);
bcx.fcx.schedule_drop_mem(cleanup_scope, llval, var_ty);
// Now that memory is initialized and has cleanup scheduled,
// create the datum and insert into the local variable map.
let datum = Datum::new(llval, var_ty, Lvalue);
bcx.fcx.lllocals.borrow_mut().insert(p_id, datum);
bcx
}
fn bind_irrefutable_pat<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
pat: &ast::Pat,
val: ValueRef,
cleanup_scope: cleanup::ScopeId)
-> Block<'blk, 'tcx> {
/*!
* A simple version of the pattern matching code that only handles
* irrefutable patterns. This is used in let/argument patterns,
* not in match statements. Unifying this code with the code above
* sounds nice, but in practice it produces very inefficient code,
* since the match code is so much more general. In most cases,
* LLVM is able to optimize the code, but it causes longer compile
* times and makes the generated code nigh impossible to read.
*
* # Arguments
* - bcx: starting basic block context
* - pat: the irrefutable pattern being matched.
* - val: the value being matched -- must be an lvalue (by ref, with cleanup)
*/
debug!("bind_irrefutable_pat(bcx={}, pat={})",
bcx.to_str(),
pat.repr(bcx.tcx()));
if bcx.sess().asm_comments() {
add_comment(bcx, format!("bind_irrefutable_pat(pat={})",
pat.repr(bcx.tcx())).as_slice());
}
let _indenter = indenter();
let _icx = push_ctxt("match::bind_irrefutable_pat");
let mut bcx = bcx;
let tcx = bcx.tcx();
let ccx = bcx.ccx();
match pat.node {
ast::PatIdent(pat_binding_mode, ref path1, ref inner) => {
if pat_is_binding(&tcx.def_map, &*pat) {
// Allocate the stack slot where the value of this
// binding will live and place it into the appropriate
// map.
bcx = mk_binding_alloca(
bcx, pat.id, &path1.node, cleanup_scope, (),
|(), bcx, llval, ty| {
match pat_binding_mode {
ast::BindByValue(_) => {
// By value binding: move the value that `val`
// points at into the binding's stack slot.
let d = Datum::new(val, ty, Lvalue);
d.store_to(bcx, llval)
}
ast::BindByRef(_) => {
// By ref binding: the value of the variable
// is the pointer `val` itself.
Store(bcx, val, llval);
bcx
}
}
});
}
for inner_pat in inner.iter() {
bcx = bind_irrefutable_pat(bcx, &**inner_pat, val, cleanup_scope);
}
}
ast::PatEnum(_, ref sub_pats) => {
let opt_def = bcx.tcx().def_map.borrow().find_copy(&pat.id);
match opt_def {
Some(def::DefVariant(enum_id, var_id, _)) => {
let repr = adt::represent_node(bcx, pat.id);
let vinfo = ty::enum_variant_with_id(ccx.tcx(),
enum_id,
var_id);
let args = extract_variant_args(bcx,
&*repr,
vinfo.disr_val,
val);
for sub_pat in sub_pats.iter() {
for (i, &argval) in args.vals.iter().enumerate() {
bcx = bind_irrefutable_pat(bcx, &**sub_pat.get(i),
argval, cleanup_scope);
}
}
}
Some(def::DefStruct(..)) => {
match *sub_pats {
None => {
// This is a unit-like struct. Nothing to do here.
}
Some(ref elems) => {
// This is the tuple struct case.
let repr = adt::represent_node(bcx, pat.id);
for (i, elem) in elems.iter().enumerate() {
let fldptr = adt::trans_field_ptr(bcx, &*repr,
val, 0, i);
bcx = bind_irrefutable_pat(bcx, &**elem,
fldptr, cleanup_scope);
}
}
}
}
_ => {
// Nothing to do here.
}
}
}
ast::PatStruct(_, ref fields, _) => {
let tcx = bcx.tcx();
let pat_ty = node_id_type(bcx, pat.id);
let pat_repr = adt::represent_type(bcx.ccx(), pat_ty);
expr::with_field_tys(tcx, pat_ty, Some(pat.id), |discr, field_tys| {
for f in fields.iter() {
let ix = ty::field_idx_strict(tcx, f.ident.name, field_tys);
let fldptr = adt::trans_field_ptr(bcx, &*pat_repr, val,
discr, ix);
bcx = bind_irrefutable_pat(bcx, &*f.pat, fldptr, cleanup_scope);
}
})
}
ast::PatTup(ref elems) => {
let repr = adt::represent_node(bcx, pat.id);
for (i, elem) in elems.iter().enumerate() {
let fldptr = adt::trans_field_ptr(bcx, &*repr, val, 0, i);
bcx = bind_irrefutable_pat(bcx, &**elem, fldptr, cleanup_scope);
}
}
ast::PatBox(ref inner) => {
let llbox = Load(bcx, val);
bcx = bind_irrefutable_pat(bcx, &**inner, llbox, cleanup_scope);
}
ast::PatRegion(ref inner) => {
let loaded_val = Load(bcx, val);
bcx = bind_irrefutable_pat(bcx, &**inner, loaded_val, cleanup_scope);
}
ast::PatVec(ref before, ref slice, ref after) => {
let pat_ty = node_id_type(bcx, pat.id);
let mut extracted = extract_vec_elems(bcx, pat_ty, before.len(), after.len(), val);
match slice {
&Some(_) => {
extracted.vals.insert(
before.len(),
bind_subslice_pat(bcx, pat.id, val, before.len(), after.len())
);
}
&None => ()
}
bcx = before
.iter()
.chain(slice.iter())
.chain(after.iter())
.zip(extracted.vals.into_iter())
.fold(bcx, |bcx, (inner, elem)|
bind_irrefutable_pat(bcx, &**inner, elem, cleanup_scope)
);
}
ast::PatMac(..) => {
bcx.sess().span_bug(pat.span, "unexpanded macro");
}
ast::PatWild(_) | ast::PatLit(_) | ast::PatRange(_, _) => ()
}
return bcx;
}