rust/src/libstd/ptr.rs
Alex Crichton 02882fbd7e std: Change assert_eq!() to use {} instead of {:?}
Formatting via reflection has been a little questionable for some time now, and
it's a little unfortunate that one of the standard macros will silently use
reflection when you weren't expecting it. This adds small bits of code bloat to
libraries, as well as not always being necessary. In light of this information,
this commit switches assert_eq!() to using {} in the error message instead of
{:?}.

In updating existing code, there were a few error cases that I encountered:

* It's impossible to define Show for [T, ..N]. I think DST will alleviate this
  because we can define Show for [T].
* A few types here and there just needed a #[deriving(Show)]
* Type parameters needed a Show bound, I often moved this to `assert!(a == b)`
* `Path` doesn't implement `Show`, so assert_eq!() cannot be used on two paths.
  I don't think this is much of a regression though because {:?} on paths looks
  awful (it's a byte array).

Concretely speaking, this shaved 10K off a 656K binary. Not a lot, but sometime
significant for smaller binaries.
2014-02-28 23:01:54 -08:00

642 lines
17 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Unsafe pointer utility functions
use cast;
use clone::Clone;
#[cfg(not(test))]
use cmp::Equiv;
use iter::{range, Iterator};
use mem;
use option::{Option, Some, None};
use intrinsics;
#[cfg(not(test))] use cmp::{Eq, Ord};
/// Return the offset of the first null pointer in `buf`.
#[inline]
pub unsafe fn buf_len<T>(buf: **T) -> uint {
position(buf, |i| *i == null())
}
impl<T> Clone for *T {
#[inline]
fn clone(&self) -> *T {
*self
}
}
impl<T> Clone for *mut T {
#[inline]
fn clone(&self) -> *mut T {
*self
}
}
/// Return the first offset `i` such that `f(buf[i]) == true`.
#[inline]
pub unsafe fn position<T>(buf: *T, f: |&T| -> bool) -> uint {
let mut i = 0;
loop {
if f(&(*buf.offset(i as int))) { return i; }
else { i += 1; }
}
}
/// Create an unsafe null pointer
#[inline]
pub fn null<T>() -> *T { 0 as *T }
/// Create an unsafe mutable null pointer
#[inline]
pub fn mut_null<T>() -> *mut T { 0 as *mut T }
/**
* Copies data from one location to another.
*
* Copies `count` elements (not bytes) from `src` to `dst`. The source
* and destination may overlap.
*/
#[inline]
pub unsafe fn copy_memory<T>(dst: *mut T, src: *T, count: uint) {
intrinsics::copy_memory(dst, src, count)
}
/**
* Copies data from one location to another.
*
* Copies `count` elements (not bytes) from `src` to `dst`. The source
* and destination may *not* overlap.
*/
#[inline]
pub unsafe fn copy_nonoverlapping_memory<T>(dst: *mut T,
src: *T,
count: uint) {
intrinsics::copy_nonoverlapping_memory(dst, src, count)
}
/**
* Invokes memset on the specified pointer, setting `count * size_of::<T>()`
* bytes of memory starting at `dst` to `c`.
*/
#[inline]
pub unsafe fn set_memory<T>(dst: *mut T, c: u8, count: uint) {
intrinsics::set_memory(dst, c, count)
}
/**
* Zeroes out `count * size_of::<T>` bytes of memory at `dst`
*/
#[inline]
pub unsafe fn zero_memory<T>(dst: *mut T, count: uint) {
set_memory(dst, 0, count);
}
/**
* Swap the values at two mutable locations of the same type, without
* deinitialising either. They may overlap.
*/
#[inline]
pub unsafe fn swap<T>(x: *mut T, y: *mut T) {
// Give ourselves some scratch space to work with
let mut tmp: T = mem::uninit();
let t: *mut T = &mut tmp;
// Perform the swap
copy_nonoverlapping_memory(t, &*x, 1);
copy_memory(x, &*y, 1); // `x` and `y` may overlap
copy_nonoverlapping_memory(y, &*t, 1);
// y and t now point to the same thing, but we need to completely forget `tmp`
// because it's no longer relevant.
cast::forget(tmp);
}
/**
* Replace the value at a mutable location with a new one, returning the old
* value, without deinitialising either.
*/
#[inline]
pub unsafe fn replace<T>(dest: *mut T, mut src: T) -> T {
mem::swap(cast::transmute(dest), &mut src); // cannot overlap
src
}
/**
* Reads the value from `*src` and returns it.
*/
#[inline(always)]
pub unsafe fn read<T>(src: *T) -> T {
let mut tmp: T = mem::uninit();
copy_nonoverlapping_memory(&mut tmp, src, 1);
tmp
}
/**
* Reads the value from `*src` and nulls it out.
* This currently prevents destructors from executing.
*/
#[inline(always)]
pub unsafe fn read_and_zero<T>(dest: *mut T) -> T {
// Copy the data out from `dest`:
let tmp = read(&*dest);
// Now zero out `dest`:
zero_memory(dest, 1);
tmp
}
/**
Given a **T (pointer to an array of pointers),
iterate through each *T, up to the provided `len`,
passing to the provided callback function
SAFETY NOTE: Pointer-arithmetic. Dragons be here.
*/
pub unsafe fn array_each_with_len<T>(arr: **T, len: uint, cb: |*T|) {
debug!("array_each_with_len: before iterate");
if arr.is_null() {
fail!("ptr::array_each_with_len failure: arr input is null pointer");
}
//let start_ptr = *arr;
for e in range(0, len) {
let n = arr.offset(e as int);
cb(*n);
}
debug!("array_each_with_len: after iterate");
}
/**
Given a null-pointer-terminated **T (pointer to
an array of pointers), iterate through each *T,
passing to the provided callback function
SAFETY NOTE: This will only work with a null-terminated
pointer array. Barely less-dodgy Pointer Arithmetic.
Dragons be here.
*/
pub unsafe fn array_each<T>(arr: **T, cb: |*T|) {
if arr.is_null() {
fail!("ptr::array_each_with_len failure: arr input is null pointer");
}
let len = buf_len(arr);
debug!("array_each inferred len: {}", len);
array_each_with_len(arr, len, cb);
}
/// Extension methods for raw pointers.
pub trait RawPtr<T> {
/// Returns the null pointer.
fn null() -> Self;
/// Returns true if the pointer is equal to the null pointer.
fn is_null(&self) -> bool;
/// Returns true if the pointer is not equal to the null pointer.
fn is_not_null(&self) -> bool { !self.is_null() }
/// Returns the value of this pointer (ie, the address it points to)
fn to_uint(&self) -> uint;
/// Returns `None` if the pointer is null, or else returns the value wrapped
/// in `Some`.
///
/// # Safety Notes
///
/// While this method is useful for null-safety, it is important to note
/// that this is still an unsafe operation because the returned value could
/// be pointing to invalid memory.
unsafe fn to_option(&self) -> Option<&T>;
/// Calculates the offset from a pointer. The offset *must* be in-bounds of
/// the object, or one-byte-past-the-end. `count` is in units of T; e.g. a
/// `count` of 3 represents a pointer offset of `3 * sizeof::<T>()` bytes.
unsafe fn offset(self, count: int) -> Self;
}
impl<T> RawPtr<T> for *T {
#[inline]
fn null() -> *T { null() }
#[inline]
fn is_null(&self) -> bool { *self == RawPtr::null() }
#[inline]
fn to_uint(&self) -> uint { *self as uint }
#[inline]
unsafe fn offset(self, count: int) -> *T { intrinsics::offset(self, count) }
#[inline]
unsafe fn to_option(&self) -> Option<&T> {
if self.is_null() {
None
} else {
Some(cast::transmute(*self))
}
}
}
impl<T> RawPtr<T> for *mut T {
#[inline]
fn null() -> *mut T { mut_null() }
#[inline]
fn is_null(&self) -> bool { *self == RawPtr::null() }
#[inline]
fn to_uint(&self) -> uint { *self as uint }
#[inline]
unsafe fn offset(self, count: int) -> *mut T { intrinsics::offset(self as *T, count) as *mut T }
#[inline]
unsafe fn to_option(&self) -> Option<&T> {
if self.is_null() {
None
} else {
Some(cast::transmute(*self))
}
}
}
// Equality for pointers
#[cfg(not(test))]
impl<T> Eq for *T {
#[inline]
fn eq(&self, other: &*T) -> bool {
*self == *other
}
#[inline]
fn ne(&self, other: &*T) -> bool { !self.eq(other) }
}
#[cfg(not(test))]
impl<T> Eq for *mut T {
#[inline]
fn eq(&self, other: &*mut T) -> bool {
*self == *other
}
#[inline]
fn ne(&self, other: &*mut T) -> bool { !self.eq(other) }
}
// Equivalence for pointers
#[cfg(not(test))]
impl<T> Equiv<*mut T> for *T {
fn equiv(&self, other: &*mut T) -> bool {
self.to_uint() == other.to_uint()
}
}
#[cfg(not(test))]
impl<T> Equiv<*T> for *mut T {
fn equiv(&self, other: &*T) -> bool {
self.to_uint() == other.to_uint()
}
}
// Equality for extern "C" fn pointers
#[cfg(not(test))]
mod externfnpointers {
use cast;
use cmp::Eq;
impl<_R> Eq for extern "C" fn() -> _R {
#[inline]
fn eq(&self, other: &extern "C" fn() -> _R) -> bool {
let self_: *() = unsafe { cast::transmute(*self) };
let other_: *() = unsafe { cast::transmute(*other) };
self_ == other_
}
#[inline]
fn ne(&self, other: &extern "C" fn() -> _R) -> bool {
!self.eq(other)
}
}
macro_rules! fnptreq(
($($p:ident),*) => {
impl<_R,$($p),*> Eq for extern "C" fn($($p),*) -> _R {
#[inline]
fn eq(&self, other: &extern "C" fn($($p),*) -> _R) -> bool {
let self_: *() = unsafe { cast::transmute(*self) };
let other_: *() = unsafe { cast::transmute(*other) };
self_ == other_
}
#[inline]
fn ne(&self, other: &extern "C" fn($($p),*) -> _R) -> bool {
!self.eq(other)
}
}
}
)
fnptreq!(A)
fnptreq!(A,B)
fnptreq!(A,B,C)
fnptreq!(A,B,C,D)
fnptreq!(A,B,C,D,E)
}
// Comparison for pointers
#[cfg(not(test))]
impl<T> Ord for *T {
#[inline]
fn lt(&self, other: &*T) -> bool {
*self < *other
}
#[inline]
fn le(&self, other: &*T) -> bool {
*self <= *other
}
#[inline]
fn ge(&self, other: &*T) -> bool {
*self >= *other
}
#[inline]
fn gt(&self, other: &*T) -> bool {
*self > *other
}
}
#[cfg(not(test))]
impl<T> Ord for *mut T {
#[inline]
fn lt(&self, other: &*mut T) -> bool {
*self < *other
}
#[inline]
fn le(&self, other: &*mut T) -> bool {
*self <= *other
}
#[inline]
fn ge(&self, other: &*mut T) -> bool {
*self >= *other
}
#[inline]
fn gt(&self, other: &*mut T) -> bool {
*self > *other
}
}
#[cfg(test)]
pub mod ptr_tests {
use super::*;
use prelude::*;
use c_str::ToCStr;
use cast;
use libc;
use str;
use vec::{ImmutableVector, MutableVector};
#[test]
fn test() {
unsafe {
struct Pair {
fst: int,
snd: int
};
let mut p = Pair {fst: 10, snd: 20};
let pptr: *mut Pair = &mut p;
let iptr: *mut int = cast::transmute(pptr);
assert_eq!(*iptr, 10);
*iptr = 30;
assert_eq!(*iptr, 30);
assert_eq!(p.fst, 30);
*pptr = Pair {fst: 50, snd: 60};
assert_eq!(*iptr, 50);
assert_eq!(p.fst, 50);
assert_eq!(p.snd, 60);
let v0 = ~[32000u16, 32001u16, 32002u16];
let mut v1 = ~[0u16, 0u16, 0u16];
copy_memory(v1.as_mut_ptr().offset(1),
v0.as_ptr().offset(1), 1);
assert!((v1[0] == 0u16 && v1[1] == 32001u16 && v1[2] == 0u16));
copy_memory(v1.as_mut_ptr(),
v0.as_ptr().offset(2), 1);
assert!((v1[0] == 32002u16 && v1[1] == 32001u16 &&
v1[2] == 0u16));
copy_memory(v1.as_mut_ptr().offset(2),
v0.as_ptr(), 1u);
assert!((v1[0] == 32002u16 && v1[1] == 32001u16 &&
v1[2] == 32000u16));
}
}
#[test]
fn test_position() {
use libc::c_char;
"hello".with_c_str(|p| {
unsafe {
assert!(2u == position(p, |c| *c == 'l' as c_char));
assert!(4u == position(p, |c| *c == 'o' as c_char));
assert!(5u == position(p, |c| *c == 0 as c_char));
}
})
}
#[test]
fn test_buf_len() {
"hello".with_c_str(|p0| {
"there".with_c_str(|p1| {
"thing".with_c_str(|p2| {
let v = ~[p0, p1, p2, null()];
unsafe {
assert_eq!(buf_len(v.as_ptr()), 3u);
}
})
})
})
}
#[test]
fn test_is_null() {
let p: *int = null();
assert!(p.is_null());
assert!(!p.is_not_null());
let q = unsafe { p.offset(1) };
assert!(!q.is_null());
assert!(q.is_not_null());
let mp: *mut int = mut_null();
assert!(mp.is_null());
assert!(!mp.is_not_null());
let mq = unsafe { mp.offset(1) };
assert!(!mq.is_null());
assert!(mq.is_not_null());
}
#[test]
fn test_to_option() {
unsafe {
let p: *int = null();
assert_eq!(p.to_option(), None);
let q: *int = &2;
assert_eq!(q.to_option().unwrap(), &2);
let p: *mut int = mut_null();
assert_eq!(p.to_option(), None);
let q: *mut int = &mut 2;
assert_eq!(q.to_option().unwrap(), &2);
}
}
#[test]
fn test_ptr_addition() {
unsafe {
let xs = ~[5, ..16];
let mut ptr = xs.as_ptr();
let end = ptr.offset(16);
while ptr < end {
assert_eq!(*ptr, 5);
ptr = ptr.offset(1);
}
let mut xs_mut = xs.clone();
let mut m_ptr = xs_mut.as_mut_ptr();
let m_end = m_ptr.offset(16);
while m_ptr < m_end {
*m_ptr += 5;
m_ptr = m_ptr.offset(1);
}
assert_eq!(xs_mut, ~[10, ..16]);
}
}
#[test]
fn test_ptr_subtraction() {
unsafe {
let xs = ~[0,1,2,3,4,5,6,7,8,9];
let mut idx = 9i8;
let ptr = xs.as_ptr();
while idx >= 0i8 {
assert_eq!(*(ptr.offset(idx as int)), idx as int);
idx = idx - 1i8;
}
let mut xs_mut = xs.clone();
let m_start = xs_mut.as_mut_ptr();
let mut m_ptr = m_start.offset(9);
while m_ptr >= m_start {
*m_ptr += *m_ptr;
m_ptr = m_ptr.offset(-1);
}
assert_eq!(xs_mut, ~[0,2,4,6,8,10,12,14,16,18]);
}
}
#[test]
fn test_ptr_array_each_with_len() {
unsafe {
let one = "oneOne".to_c_str();
let two = "twoTwo".to_c_str();
let three = "threeThree".to_c_str();
let arr = ~[
one.with_ref(|buf| buf),
two.with_ref(|buf| buf),
three.with_ref(|buf| buf),
];
let expected_arr = [
one, two, three
];
let mut ctr = 0;
let mut iteration_count = 0;
array_each_with_len(arr.as_ptr(), arr.len(), |e| {
let actual = str::raw::from_c_str(e);
let expected = expected_arr[ctr].with_ref(|buf| {
str::raw::from_c_str(buf)
});
debug!(
"test_ptr_array_each_with_len e: {}, a: {}",
expected, actual);
assert_eq!(actual, expected);
ctr += 1;
iteration_count += 1;
});
assert_eq!(iteration_count, 3u);
}
}
#[test]
fn test_ptr_array_each() {
unsafe {
let one = "oneOne".to_c_str();
let two = "twoTwo".to_c_str();
let three = "threeThree".to_c_str();
let arr = ~[
one.with_ref(|buf| buf),
two.with_ref(|buf| buf),
three.with_ref(|buf| buf),
// fake a null terminator
null(),
];
let expected_arr = [
one, two, three
];
let arr_ptr = arr.as_ptr();
let mut ctr = 0;
let mut iteration_count = 0;
array_each(arr_ptr, |e| {
let actual = str::raw::from_c_str(e);
let expected = expected_arr[ctr].with_ref(|buf| {
str::raw::from_c_str(buf)
});
debug!(
"test_ptr_array_each e: {}, a: {}",
expected, actual);
assert_eq!(actual, expected);
ctr += 1;
iteration_count += 1;
});
assert_eq!(iteration_count, 3);
}
}
#[test]
#[should_fail]
fn test_ptr_array_each_with_len_null_ptr() {
unsafe {
array_each_with_len(0 as **libc::c_char, 1, |e| {
str::raw::from_c_str(e);
});
}
}
#[test]
#[should_fail]
fn test_ptr_array_each_null_ptr() {
unsafe {
array_each(0 as **libc::c_char, |e| {
str::raw::from_c_str(e);
});
}
}
#[test]
fn test_set_memory() {
let mut xs = [0u8, ..20];
let ptr = xs.as_mut_ptr();
unsafe { set_memory(ptr, 5u8, xs.len()); }
assert!(xs == [5u8, ..20]);
}
}