3902190ac4
Refactored code so that the drop-flag values for initialized (`DTOR_NEEDED`) versus dropped (`DTOR_DONE`) are given explicit names. Add `mem::dropped()` (which with `DTOR_DONE == 0` is semantically the same as `mem::zeroed`, but the point is that it abstracts away from the particular choice of value for `DTOR_DONE`). Filling-drop needs to use something other than `ptr::read_and_zero`, so I added such a function: `ptr::read_and_drop`. But, libraries should not use it if they can otherwise avoid it. Fixes to tests to accommodate filling-drop.
1273 lines
51 KiB
Rust
1273 lines
51 KiB
Rust
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! # Representation of Algebraic Data Types
|
|
//!
|
|
//! This module determines how to represent enums, structs, and tuples
|
|
//! based on their monomorphized types; it is responsible both for
|
|
//! choosing a representation and translating basic operations on
|
|
//! values of those types. (Note: exporting the representations for
|
|
//! debuggers is handled in debuginfo.rs, not here.)
|
|
//!
|
|
//! Note that the interface treats everything as a general case of an
|
|
//! enum, so structs/tuples/etc. have one pseudo-variant with
|
|
//! discriminant 0; i.e., as if they were a univariant enum.
|
|
//!
|
|
//! Having everything in one place will enable improvements to data
|
|
//! structure representation; possibilities include:
|
|
//!
|
|
//! - User-specified alignment (e.g., cacheline-aligning parts of
|
|
//! concurrently accessed data structures); LLVM can't represent this
|
|
//! directly, so we'd have to insert padding fields in any structure
|
|
//! that might contain one and adjust GEP indices accordingly. See
|
|
//! issue #4578.
|
|
//!
|
|
//! - Store nested enums' discriminants in the same word. Rather, if
|
|
//! some variants start with enums, and those enums representations
|
|
//! have unused alignment padding between discriminant and body, the
|
|
//! outer enum's discriminant can be stored there and those variants
|
|
//! can start at offset 0. Kind of fancy, and might need work to
|
|
//! make copies of the inner enum type cooperate, but it could help
|
|
//! with `Option` or `Result` wrapped around another enum.
|
|
//!
|
|
//! - Tagged pointers would be neat, but given that any type can be
|
|
//! used unboxed and any field can have pointers (including mutable)
|
|
//! taken to it, implementing them for Rust seems difficult.
|
|
|
|
#![allow(unsigned_negation)]
|
|
|
|
pub use self::Repr::*;
|
|
|
|
use std::num::Int;
|
|
use std::rc::Rc;
|
|
|
|
use llvm::{ValueRef, True, IntEQ, IntNE};
|
|
use back::abi::FAT_PTR_ADDR;
|
|
use middle::subst;
|
|
use middle::ty::{self, Ty, ClosureTyper};
|
|
use middle::ty::Disr;
|
|
use syntax::ast;
|
|
use syntax::attr;
|
|
use syntax::attr::IntType;
|
|
use trans::_match;
|
|
use trans::build::*;
|
|
use trans::cleanup;
|
|
use trans::cleanup::CleanupMethods;
|
|
use trans::common::*;
|
|
use trans::datum;
|
|
use trans::debuginfo::DebugLoc;
|
|
use trans::machine;
|
|
use trans::monomorphize;
|
|
use trans::type_::Type;
|
|
use trans::type_of;
|
|
use util::ppaux::ty_to_string;
|
|
|
|
type Hint = attr::ReprAttr;
|
|
|
|
/// Representations.
|
|
#[derive(Eq, PartialEq, Debug)]
|
|
pub enum Repr<'tcx> {
|
|
/// C-like enums; basically an int.
|
|
CEnum(IntType, Disr, Disr), // discriminant range (signedness based on the IntType)
|
|
/// Single-case variants, and structs/tuples/records.
|
|
///
|
|
/// Structs with destructors need a dynamic destroyedness flag to
|
|
/// avoid running the destructor too many times; this is included
|
|
/// in the `Struct` if present.
|
|
/// (The flag if nonzero, represents the initialization value to use;
|
|
/// if zero, then use no flag at all.)
|
|
Univariant(Struct<'tcx>, u8),
|
|
/// General-case enums: for each case there is a struct, and they
|
|
/// all start with a field for the discriminant.
|
|
///
|
|
/// Types with destructors need a dynamic destroyedness flag to
|
|
/// avoid running the destructor too many times; the last argument
|
|
/// indicates whether such a flag is present.
|
|
/// (The flag, if nonzero, represents the initialization value to use;
|
|
/// if zero, then use no flag at all.)
|
|
General(IntType, Vec<Struct<'tcx>>, u8),
|
|
/// Two cases distinguished by a nullable pointer: the case with discriminant
|
|
/// `nndiscr` must have single field which is known to be nonnull due to its type.
|
|
/// The other case is known to be zero sized. Hence we represent the enum
|
|
/// as simply a nullable pointer: if not null it indicates the `nndiscr` variant,
|
|
/// otherwise it indicates the other case.
|
|
RawNullablePointer {
|
|
nndiscr: Disr,
|
|
nnty: Ty<'tcx>,
|
|
nullfields: Vec<Ty<'tcx>>
|
|
},
|
|
/// Two cases distinguished by a nullable pointer: the case with discriminant
|
|
/// `nndiscr` is represented by the struct `nonnull`, where the `discrfield`th
|
|
/// field is known to be nonnull due to its type; if that field is null, then
|
|
/// it represents the other case, which is inhabited by at most one value
|
|
/// (and all other fields are undefined/unused).
|
|
///
|
|
/// For example, `std::option::Option` instantiated at a safe pointer type
|
|
/// is represented such that `None` is a null pointer and `Some` is the
|
|
/// identity function.
|
|
StructWrappedNullablePointer {
|
|
nonnull: Struct<'tcx>,
|
|
nndiscr: Disr,
|
|
discrfield: DiscrField,
|
|
nullfields: Vec<Ty<'tcx>>,
|
|
}
|
|
}
|
|
|
|
/// For structs, and struct-like parts of anything fancier.
|
|
#[derive(Eq, PartialEq, Debug)]
|
|
pub struct Struct<'tcx> {
|
|
// If the struct is DST, then the size and alignment do not take into
|
|
// account the unsized fields of the struct.
|
|
pub size: u64,
|
|
pub align: u32,
|
|
pub sized: bool,
|
|
pub packed: bool,
|
|
pub fields: Vec<Ty<'tcx>>
|
|
}
|
|
|
|
/// Convenience for `represent_type`. There should probably be more or
|
|
/// these, for places in trans where the `Ty` isn't directly
|
|
/// available.
|
|
pub fn represent_node<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
node: ast::NodeId) -> Rc<Repr<'tcx>> {
|
|
represent_type(bcx.ccx(), node_id_type(bcx, node))
|
|
}
|
|
|
|
/// Decides how to represent a given type.
|
|
pub fn represent_type<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>) -> Rc<Repr<'tcx>> {
|
|
debug!("Representing: {}", ty_to_string(cx.tcx(), t));
|
|
match cx.adt_reprs().borrow().get(&t) {
|
|
Some(repr) => return repr.clone(),
|
|
None => {}
|
|
}
|
|
|
|
let repr = Rc::new(represent_type_uncached(cx, t));
|
|
debug!("Represented as: {:?}", repr);
|
|
cx.adt_reprs().borrow_mut().insert(t, repr.clone());
|
|
repr
|
|
}
|
|
|
|
macro_rules! repeat_u8_as_u32 {
|
|
($name:expr) => { (($name as u32) << 24 |
|
|
($name as u32) << 16 |
|
|
($name as u32) << 8 |
|
|
($name as u32)) }
|
|
}
|
|
macro_rules! repeat_u8_as_u64 {
|
|
($name:expr) => { ((repeat_u8_as_u32!($name) as u64) << 32 |
|
|
(repeat_u8_as_u32!($name) as u64)) }
|
|
}
|
|
|
|
pub const DTOR_NEEDED: u8 = 0x1;
|
|
pub const DTOR_NEEDED_U32: u32 = repeat_u8_as_u32!(DTOR_NEEDED);
|
|
pub const DTOR_NEEDED_U64: u64 = repeat_u8_as_u64!(DTOR_NEEDED);
|
|
#[allow(dead_code)]
|
|
pub fn dtor_needed_usize(ccx: &CrateContext) -> usize {
|
|
match &ccx.tcx().sess.target.target.target_pointer_width[..] {
|
|
"32" => DTOR_NEEDED_U32 as usize,
|
|
"64" => DTOR_NEEDED_U64 as usize,
|
|
tws => panic!("Unsupported target word size for int: {}", tws),
|
|
}
|
|
}
|
|
|
|
pub const DTOR_DONE: u8 = 0x0;
|
|
pub const DTOR_DONE_U32: u32 = repeat_u8_as_u32!(DTOR_DONE);
|
|
pub const DTOR_DONE_U64: u64 = repeat_u8_as_u64!(DTOR_DONE);
|
|
#[allow(dead_code)]
|
|
pub fn dtor_done_usize(ccx: &CrateContext) -> usize {
|
|
match &ccx.tcx().sess.target.target.target_pointer_width[..] {
|
|
"32" => DTOR_DONE_U32 as usize,
|
|
"64" => DTOR_DONE_U64 as usize,
|
|
tws => panic!("Unsupported target word size for int: {}", tws),
|
|
}
|
|
}
|
|
|
|
fn dtor_to_init_u8(dtor: bool) -> u8 {
|
|
if dtor { DTOR_NEEDED } else { 0 }
|
|
}
|
|
|
|
pub trait GetDtorType<'tcx> { fn dtor_type(&self) -> Ty<'tcx>; }
|
|
impl<'tcx> GetDtorType<'tcx> for ty::ctxt<'tcx> {
|
|
fn dtor_type(&self) -> Ty<'tcx> { self.types.u8 }
|
|
}
|
|
|
|
fn dtor_active(flag: u8) -> bool {
|
|
flag != 0
|
|
}
|
|
|
|
fn represent_type_uncached<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
t: Ty<'tcx>) -> Repr<'tcx> {
|
|
match t.sty {
|
|
ty::ty_tup(ref elems) => {
|
|
Univariant(mk_struct(cx, &elems[..], false, t), 0)
|
|
}
|
|
ty::ty_struct(def_id, substs) => {
|
|
let fields = ty::lookup_struct_fields(cx.tcx(), def_id);
|
|
let mut ftys = fields.iter().map(|field| {
|
|
let fty = ty::lookup_field_type(cx.tcx(), def_id, field.id, substs);
|
|
monomorphize::normalize_associated_type(cx.tcx(), &fty)
|
|
}).collect::<Vec<_>>();
|
|
let packed = ty::lookup_packed(cx.tcx(), def_id);
|
|
let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();
|
|
if dtor { ftys.push(cx.tcx().dtor_type()); }
|
|
|
|
Univariant(mk_struct(cx, &ftys[..], packed, t), dtor_to_init_u8(dtor))
|
|
}
|
|
ty::ty_closure(def_id, substs) => {
|
|
let typer = NormalizingClosureTyper::new(cx.tcx());
|
|
let upvars = typer.closure_upvars(def_id, substs).unwrap();
|
|
let upvar_types = upvars.iter().map(|u| u.ty).collect::<Vec<_>>();
|
|
Univariant(mk_struct(cx, &upvar_types[..], false, t), 0)
|
|
}
|
|
ty::ty_enum(def_id, substs) => {
|
|
let cases = get_cases(cx.tcx(), def_id, substs);
|
|
let hint = *ty::lookup_repr_hints(cx.tcx(), def_id).get(0)
|
|
.unwrap_or(&attr::ReprAny);
|
|
|
|
let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();
|
|
|
|
if cases.len() == 0 {
|
|
// Uninhabitable; represent as unit
|
|
// (Typechecking will reject discriminant-sizing attrs.)
|
|
assert_eq!(hint, attr::ReprAny);
|
|
let ftys = if dtor { vec!(cx.tcx().dtor_type()) } else { vec!() };
|
|
return Univariant(mk_struct(cx, &ftys[..], false, t),
|
|
dtor_to_init_u8(dtor));
|
|
}
|
|
|
|
if !dtor && cases.iter().all(|c| c.tys.len() == 0) {
|
|
// All bodies empty -> intlike
|
|
let discrs: Vec<u64> = cases.iter().map(|c| c.discr).collect();
|
|
let bounds = IntBounds {
|
|
ulo: *discrs.iter().min().unwrap(),
|
|
uhi: *discrs.iter().max().unwrap(),
|
|
slo: discrs.iter().map(|n| *n as i64).min().unwrap(),
|
|
shi: discrs.iter().map(|n| *n as i64).max().unwrap()
|
|
};
|
|
return mk_cenum(cx, hint, &bounds);
|
|
}
|
|
|
|
// Since there's at least one
|
|
// non-empty body, explicit discriminants should have
|
|
// been rejected by a checker before this point.
|
|
if !cases.iter().enumerate().all(|(i,c)| c.discr == (i as Disr)) {
|
|
cx.sess().bug(&format!("non-C-like enum {} with specified \
|
|
discriminants",
|
|
ty::item_path_str(cx.tcx(),
|
|
def_id)));
|
|
}
|
|
|
|
if cases.len() == 1 {
|
|
// Equivalent to a struct/tuple/newtype.
|
|
// (Typechecking will reject discriminant-sizing attrs.)
|
|
assert_eq!(hint, attr::ReprAny);
|
|
let mut ftys = cases[0].tys.clone();
|
|
if dtor { ftys.push(cx.tcx().dtor_type()); }
|
|
return Univariant(mk_struct(cx, &ftys[..], false, t),
|
|
dtor_to_init_u8(dtor));
|
|
}
|
|
|
|
if !dtor && cases.len() == 2 && hint == attr::ReprAny {
|
|
// Nullable pointer optimization
|
|
let mut discr = 0;
|
|
while discr < 2 {
|
|
if cases[1 - discr].is_zerolen(cx, t) {
|
|
let st = mk_struct(cx, &cases[discr].tys,
|
|
false, t);
|
|
match cases[discr].find_ptr(cx) {
|
|
Some(ref df) if df.len() == 1 && st.fields.len() == 1 => {
|
|
return RawNullablePointer {
|
|
nndiscr: discr as Disr,
|
|
nnty: st.fields[0],
|
|
nullfields: cases[1 - discr].tys.clone()
|
|
};
|
|
}
|
|
Some(mut discrfield) => {
|
|
discrfield.push(0);
|
|
discrfield.reverse();
|
|
return StructWrappedNullablePointer {
|
|
nndiscr: discr as Disr,
|
|
nonnull: st,
|
|
discrfield: discrfield,
|
|
nullfields: cases[1 - discr].tys.clone()
|
|
};
|
|
}
|
|
None => {}
|
|
}
|
|
}
|
|
discr += 1;
|
|
}
|
|
}
|
|
|
|
// The general case.
|
|
assert!((cases.len() - 1) as i64 >= 0);
|
|
let bounds = IntBounds { ulo: 0, uhi: (cases.len() - 1) as u64,
|
|
slo: 0, shi: (cases.len() - 1) as i64 };
|
|
let min_ity = range_to_inttype(cx, hint, &bounds);
|
|
|
|
// Create the set of structs that represent each variant
|
|
// Use the minimum integer type we figured out above
|
|
let fields : Vec<_> = cases.iter().map(|c| {
|
|
let mut ftys = vec!(ty_of_inttype(cx.tcx(), min_ity));
|
|
ftys.push_all(&c.tys);
|
|
if dtor { ftys.push(cx.tcx().dtor_type()); }
|
|
mk_struct(cx, &ftys, false, t)
|
|
}).collect();
|
|
|
|
|
|
// Check to see if we should use a different type for the
|
|
// discriminant. If the overall alignment of the type is
|
|
// the same as the first field in each variant, we can safely use
|
|
// an alignment-sized type.
|
|
// We increase the size of the discriminant to avoid LLVM copying
|
|
// padding when it doesn't need to. This normally causes unaligned
|
|
// load/stores and excessive memcpy/memset operations. By using a
|
|
// bigger integer size, LLVM can be sure about it's contents and
|
|
// won't be so conservative.
|
|
// This check is needed to avoid increasing the size of types when
|
|
// the alignment of the first field is smaller than the overall
|
|
// alignment of the type.
|
|
let (_, align) = union_size_and_align(&fields);
|
|
let mut use_align = true;
|
|
for st in &fields {
|
|
// Get the first non-zero-sized field
|
|
let field = st.fields.iter().skip(1).filter(|ty| {
|
|
let t = type_of::sizing_type_of(cx, **ty);
|
|
machine::llsize_of_real(cx, t) != 0 ||
|
|
// This case is only relevant for zero-sized types with large alignment
|
|
machine::llalign_of_min(cx, t) != 1
|
|
}).next();
|
|
|
|
if let Some(field) = field {
|
|
let field_align = type_of::align_of(cx, *field);
|
|
if field_align != align {
|
|
use_align = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
let ity = if use_align {
|
|
// Use the overall alignment
|
|
match align {
|
|
1 => attr::UnsignedInt(ast::TyU8),
|
|
2 => attr::UnsignedInt(ast::TyU16),
|
|
4 => attr::UnsignedInt(ast::TyU32),
|
|
8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
|
|
attr::UnsignedInt(ast::TyU64),
|
|
_ => min_ity // use min_ity as a fallback
|
|
}
|
|
} else {
|
|
min_ity
|
|
};
|
|
|
|
let fields : Vec<_> = cases.iter().map(|c| {
|
|
let mut ftys = vec!(ty_of_inttype(cx.tcx(), ity));
|
|
ftys.push_all(&c.tys);
|
|
if dtor { ftys.push(cx.tcx().dtor_type()); }
|
|
mk_struct(cx, &ftys[..], false, t)
|
|
}).collect();
|
|
|
|
ensure_enum_fits_in_address_space(cx, &fields[..], t);
|
|
|
|
General(ity, fields, dtor_to_init_u8(dtor))
|
|
}
|
|
_ => cx.sess().bug(&format!("adt::represent_type called on non-ADT type: {}",
|
|
ty_to_string(cx.tcx(), t)))
|
|
}
|
|
}
|
|
|
|
// this should probably all be in ty
|
|
struct Case<'tcx> {
|
|
discr: Disr,
|
|
tys: Vec<Ty<'tcx>>
|
|
}
|
|
|
|
/// This represents the (GEP) indices to follow to get to the discriminant field
|
|
pub type DiscrField = Vec<uint>;
|
|
|
|
fn find_discr_field_candidate<'tcx>(tcx: &ty::ctxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
mut path: DiscrField) -> Option<DiscrField> {
|
|
match ty.sty {
|
|
// Fat &T/&mut T/Box<T> i.e. T is [T], str, or Trait
|
|
ty::ty_rptr(_, ty::mt { ty, .. }) | ty::ty_uniq(ty) if !type_is_sized(tcx, ty) => {
|
|
path.push(FAT_PTR_ADDR);
|
|
Some(path)
|
|
},
|
|
|
|
// Regular thin pointer: &T/&mut T/Box<T>
|
|
ty::ty_rptr(..) | ty::ty_uniq(..) => Some(path),
|
|
|
|
// Functions are just pointers
|
|
ty::ty_bare_fn(..) => Some(path),
|
|
|
|
// Is this the NonZero lang item wrapping a pointer or integer type?
|
|
ty::ty_struct(did, substs) if Some(did) == tcx.lang_items.non_zero() => {
|
|
let nonzero_fields = ty::lookup_struct_fields(tcx, did);
|
|
assert_eq!(nonzero_fields.len(), 1);
|
|
let nonzero_field = ty::lookup_field_type(tcx, did, nonzero_fields[0].id, substs);
|
|
match nonzero_field.sty {
|
|
ty::ty_ptr(..) | ty::ty_int(..) | ty::ty_uint(..) => {
|
|
path.push(0);
|
|
Some(path)
|
|
},
|
|
_ => None
|
|
}
|
|
},
|
|
|
|
// Perhaps one of the fields of this struct is non-zero
|
|
// let's recurse and find out
|
|
ty::ty_struct(def_id, substs) => {
|
|
let fields = ty::lookup_struct_fields(tcx, def_id);
|
|
for (j, field) in fields.iter().enumerate() {
|
|
let field_ty = ty::lookup_field_type(tcx, def_id, field.id, substs);
|
|
if let Some(mut fpath) = find_discr_field_candidate(tcx, field_ty, path.clone()) {
|
|
fpath.push(j);
|
|
return Some(fpath);
|
|
}
|
|
}
|
|
None
|
|
},
|
|
|
|
// Can we use one of the fields in this tuple?
|
|
ty::ty_tup(ref tys) => {
|
|
for (j, &ty) in tys.iter().enumerate() {
|
|
if let Some(mut fpath) = find_discr_field_candidate(tcx, ty, path.clone()) {
|
|
fpath.push(j);
|
|
return Some(fpath);
|
|
}
|
|
}
|
|
None
|
|
},
|
|
|
|
// Is this a fixed-size array of something non-zero
|
|
// with at least one element?
|
|
ty::ty_vec(ety, Some(d)) if d > 0 => {
|
|
if let Some(mut vpath) = find_discr_field_candidate(tcx, ety, path) {
|
|
vpath.push(0);
|
|
Some(vpath)
|
|
} else {
|
|
None
|
|
}
|
|
},
|
|
|
|
// Anything else is not a pointer
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Case<'tcx> {
|
|
fn is_zerolen<'a>(&self, cx: &CrateContext<'a, 'tcx>, scapegoat: Ty<'tcx>) -> bool {
|
|
mk_struct(cx, &self.tys, false, scapegoat).size == 0
|
|
}
|
|
|
|
fn find_ptr<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Option<DiscrField> {
|
|
for (i, &ty) in self.tys.iter().enumerate() {
|
|
if let Some(mut path) = find_discr_field_candidate(cx.tcx(), ty, vec![]) {
|
|
path.push(i);
|
|
return Some(path);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
fn get_cases<'tcx>(tcx: &ty::ctxt<'tcx>,
|
|
def_id: ast::DefId,
|
|
substs: &subst::Substs<'tcx>)
|
|
-> Vec<Case<'tcx>> {
|
|
ty::enum_variants(tcx, def_id).iter().map(|vi| {
|
|
let arg_tys = vi.args.iter().map(|&raw_ty| {
|
|
monomorphize::apply_param_substs(tcx, substs, &raw_ty)
|
|
}).collect();
|
|
Case { discr: vi.disr_val, tys: arg_tys }
|
|
}).collect()
|
|
}
|
|
|
|
fn mk_struct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
tys: &[Ty<'tcx>], packed: bool,
|
|
scapegoat: Ty<'tcx>)
|
|
-> Struct<'tcx> {
|
|
let sized = tys.iter().all(|&ty| type_is_sized(cx.tcx(), ty));
|
|
let lltys : Vec<Type> = if sized {
|
|
tys.iter()
|
|
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
|
|
} else {
|
|
tys.iter().filter(|&ty| type_is_sized(cx.tcx(), *ty))
|
|
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
|
|
};
|
|
|
|
ensure_struct_fits_in_address_space(cx, &lltys[..], packed, scapegoat);
|
|
|
|
let llty_rec = Type::struct_(cx, &lltys[..], packed);
|
|
Struct {
|
|
size: machine::llsize_of_alloc(cx, llty_rec),
|
|
align: machine::llalign_of_min(cx, llty_rec),
|
|
sized: sized,
|
|
packed: packed,
|
|
fields: tys.to_vec(),
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
struct IntBounds {
|
|
slo: i64,
|
|
shi: i64,
|
|
ulo: u64,
|
|
uhi: u64
|
|
}
|
|
|
|
fn mk_cenum<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
hint: Hint, bounds: &IntBounds)
|
|
-> Repr<'tcx> {
|
|
let it = range_to_inttype(cx, hint, bounds);
|
|
match it {
|
|
attr::SignedInt(_) => CEnum(it, bounds.slo as Disr, bounds.shi as Disr),
|
|
attr::UnsignedInt(_) => CEnum(it, bounds.ulo, bounds.uhi)
|
|
}
|
|
}
|
|
|
|
fn range_to_inttype(cx: &CrateContext, hint: Hint, bounds: &IntBounds) -> IntType {
|
|
debug!("range_to_inttype: {:?} {:?}", hint, bounds);
|
|
// Lists of sizes to try. u64 is always allowed as a fallback.
|
|
#[allow(non_upper_case_globals)]
|
|
const choose_shortest: &'static [IntType] = &[
|
|
attr::UnsignedInt(ast::TyU8), attr::SignedInt(ast::TyI8),
|
|
attr::UnsignedInt(ast::TyU16), attr::SignedInt(ast::TyI16),
|
|
attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
|
|
#[allow(non_upper_case_globals)]
|
|
const at_least_32: &'static [IntType] = &[
|
|
attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
|
|
|
|
let attempts;
|
|
match hint {
|
|
attr::ReprInt(span, ity) => {
|
|
if !bounds_usable(cx, ity, bounds) {
|
|
cx.sess().span_bug(span, "representation hint insufficient for discriminant range")
|
|
}
|
|
return ity;
|
|
}
|
|
attr::ReprExtern => {
|
|
attempts = match &cx.sess().target.target.arch[..] {
|
|
// WARNING: the ARM EABI has two variants; the one corresponding to `at_least_32`
|
|
// appears to be used on Linux and NetBSD, but some systems may use the variant
|
|
// corresponding to `choose_shortest`. However, we don't run on those yet...?
|
|
"arm" => at_least_32,
|
|
_ => at_least_32,
|
|
}
|
|
}
|
|
attr::ReprAny => {
|
|
attempts = choose_shortest;
|
|
},
|
|
attr::ReprPacked => {
|
|
cx.tcx().sess.bug("range_to_inttype: found ReprPacked on an enum");
|
|
}
|
|
}
|
|
for &ity in attempts {
|
|
if bounds_usable(cx, ity, bounds) {
|
|
return ity;
|
|
}
|
|
}
|
|
return attr::UnsignedInt(ast::TyU64);
|
|
}
|
|
|
|
pub fn ll_inttype(cx: &CrateContext, ity: IntType) -> Type {
|
|
match ity {
|
|
attr::SignedInt(t) => Type::int_from_ty(cx, t),
|
|
attr::UnsignedInt(t) => Type::uint_from_ty(cx, t)
|
|
}
|
|
}
|
|
|
|
fn bounds_usable(cx: &CrateContext, ity: IntType, bounds: &IntBounds) -> bool {
|
|
debug!("bounds_usable: {:?} {:?}", ity, bounds);
|
|
match ity {
|
|
attr::SignedInt(_) => {
|
|
let lllo = C_integral(ll_inttype(cx, ity), bounds.slo as u64, true);
|
|
let llhi = C_integral(ll_inttype(cx, ity), bounds.shi as u64, true);
|
|
bounds.slo == const_to_int(lllo) as i64 && bounds.shi == const_to_int(llhi) as i64
|
|
}
|
|
attr::UnsignedInt(_) => {
|
|
let lllo = C_integral(ll_inttype(cx, ity), bounds.ulo, false);
|
|
let llhi = C_integral(ll_inttype(cx, ity), bounds.uhi, false);
|
|
bounds.ulo == const_to_uint(lllo) as u64 && bounds.uhi == const_to_uint(llhi) as u64
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_of_inttype<'tcx>(tcx: &ty::ctxt<'tcx>, ity: IntType) -> Ty<'tcx> {
|
|
match ity {
|
|
attr::SignedInt(t) => ty::mk_mach_int(tcx, t),
|
|
attr::UnsignedInt(t) => ty::mk_mach_uint(tcx, t)
|
|
}
|
|
}
|
|
|
|
// LLVM doesn't like types that don't fit in the address space
|
|
fn ensure_struct_fits_in_address_space<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
fields: &[Type],
|
|
packed: bool,
|
|
scapegoat: Ty<'tcx>) {
|
|
let mut offset = 0;
|
|
for &llty in fields {
|
|
// Invariant: offset < ccx.obj_size_bound() <= 1<<61
|
|
if !packed {
|
|
let type_align = machine::llalign_of_min(ccx, llty);
|
|
offset = roundup(offset, type_align);
|
|
}
|
|
// type_align is a power-of-2, so still offset < ccx.obj_size_bound()
|
|
// llsize_of_alloc(ccx, llty) is also less than ccx.obj_size_bound()
|
|
// so the sum is less than 1<<62 (and therefore can't overflow).
|
|
offset += machine::llsize_of_alloc(ccx, llty);
|
|
|
|
if offset >= ccx.obj_size_bound() {
|
|
ccx.report_overbig_object(scapegoat);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn union_size_and_align(sts: &[Struct]) -> (machine::llsize, machine::llalign) {
|
|
let size = sts.iter().map(|st| st.size).max().unwrap();
|
|
let align = sts.iter().map(|st| st.align).max().unwrap();
|
|
(roundup(size, align), align)
|
|
}
|
|
|
|
fn ensure_enum_fits_in_address_space<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
fields: &[Struct],
|
|
scapegoat: Ty<'tcx>) {
|
|
let (total_size, _) = union_size_and_align(fields);
|
|
|
|
if total_size >= ccx.obj_size_bound() {
|
|
ccx.report_overbig_object(scapegoat);
|
|
}
|
|
}
|
|
|
|
|
|
/// LLVM-level types are a little complicated.
|
|
///
|
|
/// C-like enums need to be actual ints, not wrapped in a struct,
|
|
/// because that changes the ABI on some platforms (see issue #10308).
|
|
///
|
|
/// For nominal types, in some cases, we need to use LLVM named structs
|
|
/// and fill in the actual contents in a second pass to prevent
|
|
/// unbounded recursion; see also the comments in `trans::type_of`.
|
|
pub fn type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, r: &Repr<'tcx>) -> Type {
|
|
generic_type_of(cx, r, None, false, false)
|
|
}
|
|
// Pass dst=true if the type you are passing is a DST. Yes, we could figure
|
|
// this out, but if you call this on an unsized type without realising it, you
|
|
// are going to get the wrong type (it will not include the unsized parts of it).
|
|
pub fn sizing_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
r: &Repr<'tcx>, dst: bool) -> Type {
|
|
generic_type_of(cx, r, None, true, dst)
|
|
}
|
|
pub fn incomplete_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
r: &Repr<'tcx>, name: &str) -> Type {
|
|
generic_type_of(cx, r, Some(name), false, false)
|
|
}
|
|
pub fn finish_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
r: &Repr<'tcx>, llty: &mut Type) {
|
|
match *r {
|
|
CEnum(..) | General(..) | RawNullablePointer { .. } => { }
|
|
Univariant(ref st, _) | StructWrappedNullablePointer { nonnull: ref st, .. } =>
|
|
llty.set_struct_body(&struct_llfields(cx, st, false, false),
|
|
st.packed)
|
|
}
|
|
}
|
|
|
|
fn generic_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
|
|
r: &Repr<'tcx>,
|
|
name: Option<&str>,
|
|
sizing: bool,
|
|
dst: bool) -> Type {
|
|
match *r {
|
|
CEnum(ity, _, _) => ll_inttype(cx, ity),
|
|
RawNullablePointer { nnty, .. } => type_of::sizing_type_of(cx, nnty),
|
|
Univariant(ref st, _) | StructWrappedNullablePointer { nonnull: ref st, .. } => {
|
|
match name {
|
|
None => {
|
|
Type::struct_(cx, &struct_llfields(cx, st, sizing, dst),
|
|
st.packed)
|
|
}
|
|
Some(name) => { assert_eq!(sizing, false); Type::named_struct(cx, name) }
|
|
}
|
|
}
|
|
General(ity, ref sts, _) => {
|
|
// We need a representation that has:
|
|
// * The alignment of the most-aligned field
|
|
// * The size of the largest variant (rounded up to that alignment)
|
|
// * No alignment padding anywhere any variant has actual data
|
|
// (currently matters only for enums small enough to be immediate)
|
|
// * The discriminant in an obvious place.
|
|
//
|
|
// So we start with the discriminant, pad it up to the alignment with
|
|
// more of its own type, then use alignment-sized ints to get the rest
|
|
// of the size.
|
|
//
|
|
// FIXME #10604: this breaks when vector types are present.
|
|
let (size, align) = union_size_and_align(&sts[..]);
|
|
let align_s = align as u64;
|
|
assert_eq!(size % align_s, 0);
|
|
let align_units = size / align_s - 1;
|
|
|
|
let discr_ty = ll_inttype(cx, ity);
|
|
let discr_size = machine::llsize_of_alloc(cx, discr_ty);
|
|
let fill_ty = match align_s {
|
|
1 => Type::array(&Type::i8(cx), align_units),
|
|
2 => Type::array(&Type::i16(cx), align_units),
|
|
4 => Type::array(&Type::i32(cx), align_units),
|
|
8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
|
|
Type::array(&Type::i64(cx), align_units),
|
|
a if a.count_ones() == 1 => Type::array(&Type::vector(&Type::i32(cx), a / 4),
|
|
align_units),
|
|
_ => panic!("unsupported enum alignment: {}", align)
|
|
};
|
|
assert_eq!(machine::llalign_of_min(cx, fill_ty), align);
|
|
assert_eq!(align_s % discr_size, 0);
|
|
let fields = [discr_ty,
|
|
Type::array(&discr_ty, align_s / discr_size - 1),
|
|
fill_ty];
|
|
match name {
|
|
None => Type::struct_(cx, &fields[..], false),
|
|
Some(name) => {
|
|
let mut llty = Type::named_struct(cx, name);
|
|
llty.set_struct_body(&fields[..], false);
|
|
llty
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn struct_llfields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, st: &Struct<'tcx>,
|
|
sizing: bool, dst: bool) -> Vec<Type> {
|
|
if sizing {
|
|
st.fields.iter().filter(|&ty| !dst || type_is_sized(cx.tcx(), *ty))
|
|
.map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
|
|
} else {
|
|
st.fields.iter().map(|&ty| type_of::in_memory_type_of(cx, ty)).collect()
|
|
}
|
|
}
|
|
|
|
/// Obtain a representation of the discriminant sufficient to translate
|
|
/// destructuring; this may or may not involve the actual discriminant.
|
|
///
|
|
/// This should ideally be less tightly tied to `_match`.
|
|
pub fn trans_switch<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
r: &Repr<'tcx>, scrutinee: ValueRef)
|
|
-> (_match::BranchKind, Option<ValueRef>) {
|
|
match *r {
|
|
CEnum(..) | General(..) |
|
|
RawNullablePointer { .. } | StructWrappedNullablePointer { .. } => {
|
|
(_match::Switch, Some(trans_get_discr(bcx, r, scrutinee, None)))
|
|
}
|
|
Univariant(..) => {
|
|
(_match::Single, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// Obtain the actual discriminant of a value.
|
|
pub fn trans_get_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>,
|
|
scrutinee: ValueRef, cast_to: Option<Type>)
|
|
-> ValueRef {
|
|
let signed;
|
|
let val;
|
|
debug!("trans_get_discr r: {:?}", r);
|
|
match *r {
|
|
CEnum(ity, min, max) => {
|
|
val = load_discr(bcx, ity, scrutinee, min, max);
|
|
signed = ity.is_signed();
|
|
}
|
|
General(ity, ref cases, _) => {
|
|
let ptr = GEPi(bcx, scrutinee, &[0, 0]);
|
|
val = load_discr(bcx, ity, ptr, 0, (cases.len() - 1) as Disr);
|
|
signed = ity.is_signed();
|
|
}
|
|
Univariant(..) => {
|
|
val = C_u8(bcx.ccx(), 0);
|
|
signed = false;
|
|
}
|
|
RawNullablePointer { nndiscr, nnty, .. } => {
|
|
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
|
|
let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
|
|
val = ICmp(bcx, cmp, Load(bcx, scrutinee), C_null(llptrty), DebugLoc::None);
|
|
signed = false;
|
|
}
|
|
StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
|
|
val = struct_wrapped_nullable_bitdiscr(bcx, nndiscr, discrfield, scrutinee);
|
|
signed = false;
|
|
}
|
|
}
|
|
match cast_to {
|
|
None => val,
|
|
Some(llty) => if signed { SExt(bcx, val, llty) } else { ZExt(bcx, val, llty) }
|
|
}
|
|
}
|
|
|
|
fn struct_wrapped_nullable_bitdiscr(bcx: Block, nndiscr: Disr, discrfield: &DiscrField,
|
|
scrutinee: ValueRef) -> ValueRef {
|
|
let llptrptr = GEPi(bcx, scrutinee, &discrfield[..]);
|
|
let llptr = Load(bcx, llptrptr);
|
|
let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
|
|
ICmp(bcx, cmp, llptr, C_null(val_ty(llptr)), DebugLoc::None)
|
|
}
|
|
|
|
/// Helper for cases where the discriminant is simply loaded.
|
|
fn load_discr(bcx: Block, ity: IntType, ptr: ValueRef, min: Disr, max: Disr)
|
|
-> ValueRef {
|
|
let llty = ll_inttype(bcx.ccx(), ity);
|
|
assert_eq!(val_ty(ptr), llty.ptr_to());
|
|
let bits = machine::llbitsize_of_real(bcx.ccx(), llty);
|
|
assert!(bits <= 64);
|
|
let bits = bits as uint;
|
|
let mask = (-1u64 >> (64 - bits)) as Disr;
|
|
// For a (max) discr of -1, max will be `-1 as usize`, which overflows.
|
|
// However, that is fine here (it would still represent the full range),
|
|
if (max.wrapping_add(1)) & mask == min & mask {
|
|
// i.e., if the range is everything. The lo==hi case would be
|
|
// rejected by the LLVM verifier (it would mean either an
|
|
// empty set, which is impossible, or the entire range of the
|
|
// type, which is pointless).
|
|
Load(bcx, ptr)
|
|
} else {
|
|
// llvm::ConstantRange can deal with ranges that wrap around,
|
|
// so an overflow on (max + 1) is fine.
|
|
LoadRangeAssert(bcx, ptr, min, (max.wrapping_add(1)), /* signed: */ True)
|
|
}
|
|
}
|
|
|
|
/// Yield information about how to dispatch a case of the
|
|
/// discriminant-like value returned by `trans_switch`.
|
|
///
|
|
/// This should ideally be less tightly tied to `_match`.
|
|
pub fn trans_case<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr, discr: Disr)
|
|
-> _match::OptResult<'blk, 'tcx> {
|
|
match *r {
|
|
CEnum(ity, _, _) => {
|
|
_match::SingleResult(Result::new(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
|
|
discr as u64, true)))
|
|
}
|
|
General(ity, _, _) => {
|
|
_match::SingleResult(Result::new(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
|
|
discr as u64, true)))
|
|
}
|
|
Univariant(..) => {
|
|
bcx.ccx().sess().bug("no cases for univariants or structs")
|
|
}
|
|
RawNullablePointer { .. } |
|
|
StructWrappedNullablePointer { .. } => {
|
|
assert!(discr == 0 || discr == 1);
|
|
_match::SingleResult(Result::new(bcx, C_bool(bcx.ccx(), discr != 0)))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Set the discriminant for a new value of the given case of the given
|
|
/// representation.
|
|
pub fn trans_set_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>,
|
|
val: ValueRef, discr: Disr) {
|
|
match *r {
|
|
CEnum(ity, min, max) => {
|
|
assert_discr_in_range(ity, min, max, discr);
|
|
Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
|
|
val)
|
|
}
|
|
General(ity, ref cases, dtor) => {
|
|
if dtor_active(dtor) {
|
|
let ptr = trans_field_ptr(bcx, r, val, discr,
|
|
cases[discr as uint].fields.len() - 2);
|
|
Store(bcx, C_u8(bcx.ccx(), DTOR_NEEDED as usize), ptr);
|
|
}
|
|
Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
|
|
GEPi(bcx, val, &[0, 0]))
|
|
}
|
|
Univariant(ref st, dtor) => {
|
|
assert_eq!(discr, 0);
|
|
if dtor_active(dtor) {
|
|
Store(bcx, C_u8(bcx.ccx(), DTOR_NEEDED as usize),
|
|
GEPi(bcx, val, &[0, st.fields.len() - 1]));
|
|
}
|
|
}
|
|
RawNullablePointer { nndiscr, nnty, ..} => {
|
|
if discr != nndiscr {
|
|
let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
|
|
Store(bcx, C_null(llptrty), val)
|
|
}
|
|
}
|
|
StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
|
|
if discr != nndiscr {
|
|
let llptrptr = GEPi(bcx, val, &discrfield[..]);
|
|
let llptrty = val_ty(llptrptr).element_type();
|
|
Store(bcx, C_null(llptrty), llptrptr)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn assert_discr_in_range(ity: IntType, min: Disr, max: Disr, discr: Disr) {
|
|
match ity {
|
|
attr::UnsignedInt(_) => assert!(min <= discr && discr <= max),
|
|
attr::SignedInt(_) => assert!(min as i64 <= discr as i64 && discr as i64 <= max as i64)
|
|
}
|
|
}
|
|
|
|
/// The number of fields in a given case; for use when obtaining this
|
|
/// information from the type or definition is less convenient.
|
|
pub fn num_args(r: &Repr, discr: Disr) -> uint {
|
|
match *r {
|
|
CEnum(..) => 0,
|
|
Univariant(ref st, dtor) => {
|
|
assert_eq!(discr, 0);
|
|
st.fields.len() - (if dtor_active(dtor) { 1 } else { 0 })
|
|
}
|
|
General(_, ref cases, dtor) => {
|
|
cases[discr as uint].fields.len() - 1 - (if dtor_active(dtor) { 1 } else { 0 })
|
|
}
|
|
RawNullablePointer { nndiscr, ref nullfields, .. } => {
|
|
if discr == nndiscr { 1 } else { nullfields.len() }
|
|
}
|
|
StructWrappedNullablePointer { ref nonnull, nndiscr,
|
|
ref nullfields, .. } => {
|
|
if discr == nndiscr { nonnull.fields.len() } else { nullfields.len() }
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Access a field, at a point when the value's case is known.
|
|
pub fn trans_field_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>,
|
|
val: ValueRef, discr: Disr, ix: uint) -> ValueRef {
|
|
// Note: if this ever needs to generate conditionals (e.g., if we
|
|
// decide to do some kind of cdr-coding-like non-unique repr
|
|
// someday), it will need to return a possibly-new bcx as well.
|
|
match *r {
|
|
CEnum(..) => {
|
|
bcx.ccx().sess().bug("element access in C-like enum")
|
|
}
|
|
Univariant(ref st, _dtor) => {
|
|
assert_eq!(discr, 0);
|
|
struct_field_ptr(bcx, st, val, ix, false)
|
|
}
|
|
General(_, ref cases, _) => {
|
|
struct_field_ptr(bcx, &cases[discr as uint], val, ix + 1, true)
|
|
}
|
|
RawNullablePointer { nndiscr, ref nullfields, .. } |
|
|
StructWrappedNullablePointer { nndiscr, ref nullfields, .. } if discr != nndiscr => {
|
|
// The unit-like case might have a nonzero number of unit-like fields.
|
|
// (e.d., Result of Either with (), as one side.)
|
|
let ty = type_of::type_of(bcx.ccx(), nullfields[ix]);
|
|
assert_eq!(machine::llsize_of_alloc(bcx.ccx(), ty), 0);
|
|
// The contents of memory at this pointer can't matter, but use
|
|
// the value that's "reasonable" in case of pointer comparison.
|
|
PointerCast(bcx, val, ty.ptr_to())
|
|
}
|
|
RawNullablePointer { nndiscr, nnty, .. } => {
|
|
assert_eq!(ix, 0);
|
|
assert_eq!(discr, nndiscr);
|
|
let ty = type_of::type_of(bcx.ccx(), nnty);
|
|
PointerCast(bcx, val, ty.ptr_to())
|
|
}
|
|
StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
|
|
assert_eq!(discr, nndiscr);
|
|
struct_field_ptr(bcx, nonnull, val, ix, false)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn struct_field_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, st: &Struct<'tcx>, val: ValueRef,
|
|
ix: uint, needs_cast: bool) -> ValueRef {
|
|
let val = if needs_cast {
|
|
let ccx = bcx.ccx();
|
|
let fields = st.fields.iter().map(|&ty| type_of::type_of(ccx, ty)).collect::<Vec<_>>();
|
|
let real_ty = Type::struct_(ccx, &fields[..], st.packed);
|
|
PointerCast(bcx, val, real_ty.ptr_to())
|
|
} else {
|
|
val
|
|
};
|
|
|
|
GEPi(bcx, val, &[0, ix])
|
|
}
|
|
|
|
pub fn fold_variants<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
|
|
r: &Repr<'tcx>,
|
|
value: ValueRef,
|
|
mut f: F)
|
|
-> Block<'blk, 'tcx> where
|
|
F: FnMut(Block<'blk, 'tcx>, &Struct<'tcx>, ValueRef) -> Block<'blk, 'tcx>,
|
|
{
|
|
let fcx = bcx.fcx;
|
|
match *r {
|
|
Univariant(ref st, _) => {
|
|
f(bcx, st, value)
|
|
}
|
|
General(ity, ref cases, _) => {
|
|
let ccx = bcx.ccx();
|
|
let unr_cx = fcx.new_temp_block("enum-variant-iter-unr");
|
|
Unreachable(unr_cx);
|
|
|
|
let discr_val = trans_get_discr(bcx, r, value, None);
|
|
let llswitch = Switch(bcx, discr_val, unr_cx.llbb, cases.len());
|
|
let bcx_next = fcx.new_temp_block("enum-variant-iter-next");
|
|
|
|
for (discr, case) in cases.iter().enumerate() {
|
|
let mut variant_cx = fcx.new_temp_block(
|
|
&format!("enum-variant-iter-{}", &discr.to_string())
|
|
);
|
|
let rhs_val = C_integral(ll_inttype(ccx, ity), discr as u64, true);
|
|
AddCase(llswitch, rhs_val, variant_cx.llbb);
|
|
|
|
let fields = case.fields.iter().map(|&ty|
|
|
type_of::type_of(bcx.ccx(), ty)).collect::<Vec<_>>();
|
|
let real_ty = Type::struct_(ccx, &fields[..], case.packed);
|
|
let variant_value = PointerCast(variant_cx, value, real_ty.ptr_to());
|
|
|
|
variant_cx = f(variant_cx, case, variant_value);
|
|
Br(variant_cx, bcx_next.llbb, DebugLoc::None);
|
|
}
|
|
|
|
bcx_next
|
|
}
|
|
_ => unreachable!()
|
|
}
|
|
}
|
|
|
|
/// Access the struct drop flag, if present.
|
|
pub fn trans_drop_flag_ptr<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>, val: ValueRef)
|
|
-> datum::DatumBlock<'blk, 'tcx, datum::Expr>
|
|
{
|
|
let tcx = bcx.tcx();
|
|
let ptr_ty = ty::mk_imm_ptr(bcx.tcx(), tcx.dtor_type());
|
|
match *r {
|
|
Univariant(ref st, dtor) if dtor_active(dtor) => {
|
|
let flag_ptr = GEPi(bcx, val, &[0, st.fields.len() - 1]);
|
|
datum::immediate_rvalue_bcx(bcx, flag_ptr, ptr_ty).to_expr_datumblock()
|
|
}
|
|
General(_, _, dtor) if dtor_active(dtor) => {
|
|
let fcx = bcx.fcx;
|
|
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
let scratch = unpack_datum!(bcx, datum::lvalue_scratch_datum(
|
|
bcx, tcx.dtor_type(), "drop_flag",
|
|
cleanup::CustomScope(custom_cleanup_scope), (), |_, bcx, _| bcx
|
|
));
|
|
bcx = fold_variants(bcx, r, val, |variant_cx, st, value| {
|
|
let ptr = struct_field_ptr(variant_cx, st, value, (st.fields.len() - 1), false);
|
|
datum::Datum::new(ptr, ptr_ty, datum::Rvalue::new(datum::ByRef))
|
|
.store_to(variant_cx, scratch.val)
|
|
});
|
|
let expr_datum = scratch.to_expr_datum();
|
|
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
|
|
datum::DatumBlock::new(bcx, expr_datum)
|
|
}
|
|
_ => bcx.ccx().sess().bug("tried to get drop flag of non-droppable type")
|
|
}
|
|
}
|
|
|
|
/// Construct a constant value, suitable for initializing a
|
|
/// GlobalVariable, given a case and constant values for its fields.
|
|
/// Note that this may have a different LLVM type (and different
|
|
/// alignment!) from the representation's `type_of`, so it needs a
|
|
/// pointer cast before use.
|
|
///
|
|
/// The LLVM type system does not directly support unions, and only
|
|
/// pointers can be bitcast, so a constant (and, by extension, the
|
|
/// GlobalVariable initialized by it) will have a type that can vary
|
|
/// depending on which case of an enum it is.
|
|
///
|
|
/// To understand the alignment situation, consider `enum E { V64(u64),
|
|
/// V32(u32, u32) }` on Windows. The type has 8-byte alignment to
|
|
/// accommodate the u64, but `V32(x, y)` would have LLVM type `{i32,
|
|
/// i32, i32}`, which is 4-byte aligned.
|
|
///
|
|
/// Currently the returned value has the same size as the type, but
|
|
/// this could be changed in the future to avoid allocating unnecessary
|
|
/// space after values of shorter-than-maximum cases.
|
|
pub fn trans_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, r: &Repr<'tcx>, discr: Disr,
|
|
vals: &[ValueRef]) -> ValueRef {
|
|
match *r {
|
|
CEnum(ity, min, max) => {
|
|
assert_eq!(vals.len(), 0);
|
|
assert_discr_in_range(ity, min, max, discr);
|
|
C_integral(ll_inttype(ccx, ity), discr as u64, true)
|
|
}
|
|
General(ity, ref cases, _) => {
|
|
let case = &cases[discr as uint];
|
|
let (max_sz, _) = union_size_and_align(&cases[..]);
|
|
let lldiscr = C_integral(ll_inttype(ccx, ity), discr as u64, true);
|
|
let mut f = vec![lldiscr];
|
|
f.push_all(vals);
|
|
let mut contents = build_const_struct(ccx, case, &f[..]);
|
|
contents.push_all(&[padding(ccx, max_sz - case.size)]);
|
|
C_struct(ccx, &contents[..], false)
|
|
}
|
|
Univariant(ref st, _dro) => {
|
|
assert!(discr == 0);
|
|
let contents = build_const_struct(ccx, st, vals);
|
|
C_struct(ccx, &contents[..], st.packed)
|
|
}
|
|
RawNullablePointer { nndiscr, nnty, .. } => {
|
|
if discr == nndiscr {
|
|
assert_eq!(vals.len(), 1);
|
|
vals[0]
|
|
} else {
|
|
C_null(type_of::sizing_type_of(ccx, nnty))
|
|
}
|
|
}
|
|
StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
|
|
if discr == nndiscr {
|
|
C_struct(ccx, &build_const_struct(ccx,
|
|
nonnull,
|
|
vals),
|
|
false)
|
|
} else {
|
|
let vals = nonnull.fields.iter().map(|&ty| {
|
|
// Always use null even if it's not the `discrfield`th
|
|
// field; see #8506.
|
|
C_null(type_of::sizing_type_of(ccx, ty))
|
|
}).collect::<Vec<ValueRef>>();
|
|
C_struct(ccx, &build_const_struct(ccx,
|
|
nonnull,
|
|
&vals[..]),
|
|
false)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute struct field offsets relative to struct begin.
|
|
fn compute_struct_field_offsets<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
st: &Struct<'tcx>) -> Vec<u64> {
|
|
let mut offsets = vec!();
|
|
|
|
let mut offset = 0;
|
|
for &ty in &st.fields {
|
|
let llty = type_of::sizing_type_of(ccx, ty);
|
|
if !st.packed {
|
|
let type_align = type_of::align_of(ccx, ty);
|
|
offset = roundup(offset, type_align);
|
|
}
|
|
offsets.push(offset);
|
|
offset += machine::llsize_of_alloc(ccx, llty);
|
|
}
|
|
assert_eq!(st.fields.len(), offsets.len());
|
|
offsets
|
|
}
|
|
|
|
/// Building structs is a little complicated, because we might need to
|
|
/// insert padding if a field's value is less aligned than its type.
|
|
///
|
|
/// Continuing the example from `trans_const`, a value of type `(u32,
|
|
/// E)` should have the `E` at offset 8, but if that field's
|
|
/// initializer is 4-byte aligned then simply translating the tuple as
|
|
/// a two-element struct will locate it at offset 4, and accesses to it
|
|
/// will read the wrong memory.
|
|
fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
st: &Struct<'tcx>, vals: &[ValueRef])
|
|
-> Vec<ValueRef> {
|
|
assert_eq!(vals.len(), st.fields.len());
|
|
|
|
let target_offsets = compute_struct_field_offsets(ccx, st);
|
|
|
|
// offset of current value
|
|
let mut offset = 0;
|
|
let mut cfields = Vec::new();
|
|
for (&val, &target_offset) in vals.iter().zip(target_offsets.iter()) {
|
|
if !st.packed {
|
|
let val_align = machine::llalign_of_min(ccx, val_ty(val));
|
|
offset = roundup(offset, val_align);
|
|
}
|
|
if offset != target_offset {
|
|
cfields.push(padding(ccx, target_offset - offset));
|
|
offset = target_offset;
|
|
}
|
|
assert!(!is_undef(val));
|
|
cfields.push(val);
|
|
offset += machine::llsize_of_alloc(ccx, val_ty(val));
|
|
}
|
|
|
|
assert!(st.sized && offset <= st.size);
|
|
if offset != st.size {
|
|
cfields.push(padding(ccx, st.size - offset));
|
|
}
|
|
|
|
cfields
|
|
}
|
|
|
|
fn padding(ccx: &CrateContext, size: u64) -> ValueRef {
|
|
C_undef(Type::array(&Type::i8(ccx), size))
|
|
}
|
|
|
|
// FIXME this utility routine should be somewhere more general
|
|
#[inline]
|
|
fn roundup(x: u64, a: u32) -> u64 { let a = a as u64; ((x + (a - 1)) / a) * a }
|
|
|
|
/// Get the discriminant of a constant value.
|
|
pub fn const_get_discrim(ccx: &CrateContext, r: &Repr, val: ValueRef) -> Disr {
|
|
match *r {
|
|
CEnum(ity, _, _) => {
|
|
match ity {
|
|
attr::SignedInt(..) => const_to_int(val) as Disr,
|
|
attr::UnsignedInt(..) => const_to_uint(val) as Disr
|
|
}
|
|
}
|
|
General(ity, _, _) => {
|
|
match ity {
|
|
attr::SignedInt(..) => const_to_int(const_get_elt(ccx, val, &[0])) as Disr,
|
|
attr::UnsignedInt(..) => const_to_uint(const_get_elt(ccx, val, &[0])) as Disr
|
|
}
|
|
}
|
|
Univariant(..) => 0,
|
|
RawNullablePointer { .. } | StructWrappedNullablePointer { .. } => {
|
|
ccx.sess().bug("const discrim access of non c-like enum")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Extract a field of a constant value, as appropriate for its
|
|
/// representation.
|
|
///
|
|
/// (Not to be confused with `common::const_get_elt`, which operates on
|
|
/// raw LLVM-level structs and arrays.)
|
|
pub fn const_get_field(ccx: &CrateContext, r: &Repr, val: ValueRef,
|
|
_discr: Disr, ix: uint) -> ValueRef {
|
|
match *r {
|
|
CEnum(..) => ccx.sess().bug("element access in C-like enum const"),
|
|
Univariant(..) => const_struct_field(ccx, val, ix),
|
|
General(..) => const_struct_field(ccx, val, ix + 1),
|
|
RawNullablePointer { .. } => {
|
|
assert_eq!(ix, 0);
|
|
val
|
|
},
|
|
StructWrappedNullablePointer{ .. } => const_struct_field(ccx, val, ix)
|
|
}
|
|
}
|
|
|
|
/// Extract field of struct-like const, skipping our alignment padding.
|
|
fn const_struct_field(ccx: &CrateContext, val: ValueRef, ix: uint) -> ValueRef {
|
|
// Get the ix-th non-undef element of the struct.
|
|
let mut real_ix = 0; // actual position in the struct
|
|
let mut ix = ix; // logical index relative to real_ix
|
|
let mut field;
|
|
loop {
|
|
loop {
|
|
field = const_get_elt(ccx, val, &[real_ix]);
|
|
if !is_undef(field) {
|
|
break;
|
|
}
|
|
real_ix = real_ix + 1;
|
|
}
|
|
if ix == 0 {
|
|
return field;
|
|
}
|
|
ix = ix - 1;
|
|
real_ix = real_ix + 1;
|
|
}
|
|
}
|