rust/src/librustc/middle/trans/tvec.rs
2014-01-16 16:29:52 -05:00

744 lines
26 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::abi;
use lib;
use lib::llvm::{llvm, ValueRef};
use middle::lang_items::StrDupUniqFnLangItem;
use middle::trans::base::*;
use middle::trans::base;
use middle::trans::build::*;
use middle::trans::callee;
use middle::trans::cleanup;
use middle::trans::cleanup::CleanupMethods;
use middle::trans::common::*;
use middle::trans::datum::*;
use middle::trans::expr::{Dest, Ignore, SaveIn};
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::machine::{llsize_of, nonzero_llsize_of, llsize_of_alloc};
use middle::trans::type_::Type;
use middle::trans::type_of;
use middle::ty;
use util::ppaux::ty_to_str;
use syntax::ast;
// Boxed vector types are in some sense currently a "shorthand" for a box
// containing an unboxed vector. This expands a boxed vector type into such an
// expanded type. It doesn't respect mutability, but that doesn't matter at
// this point.
pub fn expand_boxed_vec_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
let unit_ty = ty::sequence_element_type(tcx, t);
let unboxed_vec_ty = ty::mk_mut_unboxed_vec(tcx, unit_ty);
match ty::get(t).sty {
ty::ty_str(ty::vstore_uniq) | ty::ty_vec(_, ty::vstore_uniq) => {
ty::mk_uniq(tcx, unboxed_vec_ty)
}
ty::ty_str(ty::vstore_box) | ty::ty_vec(_, ty::vstore_box) => {
ty::mk_box(tcx, unboxed_vec_ty)
}
_ => tcx.sess.bug("non boxed-vec type \
in tvec::expand_boxed_vec_ty")
}
}
pub fn get_fill(bcx: &Block, vptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::get_fill");
Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_fill]))
}
pub fn set_fill(bcx: &Block, vptr: ValueRef, fill: ValueRef) {
Store(bcx, fill, GEPi(bcx, vptr, [0u, abi::vec_elt_fill]));
}
pub fn get_alloc(bcx: &Block, vptr: ValueRef) -> ValueRef {
Load(bcx, GEPi(bcx, vptr, [0u, abi::vec_elt_alloc]))
}
pub fn get_bodyptr(bcx: &Block, vptr: ValueRef, t: ty::t) -> ValueRef {
let vt = vec_types(bcx, t);
let managed = match ty::get(vt.vec_ty).sty {
ty::ty_str(ty::vstore_box) | ty::ty_vec(_, ty::vstore_box) => true,
_ => false
};
if managed {
GEPi(bcx, vptr, [0u, abi::box_field_body])
} else {
vptr
}
}
pub fn get_dataptr(bcx: &Block, vptr: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::get_dataptr");
GEPi(bcx, vptr, [0u, abi::vec_elt_elems, 0u])
}
pub fn pointer_add_byte(bcx: &Block, ptr: ValueRef, bytes: ValueRef) -> ValueRef {
let _icx = push_ctxt("tvec::pointer_add_byte");
let old_ty = val_ty(ptr);
let bptr = PointerCast(bcx, ptr, Type::i8p());
return PointerCast(bcx, InBoundsGEP(bcx, bptr, [bytes]), old_ty);
}
pub fn alloc_raw<'a>(
bcx: &'a Block<'a>,
unit_ty: ty::t,
fill: ValueRef,
alloc: ValueRef,
heap: heap)
-> Result<'a> {
let _icx = push_ctxt("tvec::alloc_uniq");
let ccx = bcx.ccx();
let vecbodyty = ty::mk_mut_unboxed_vec(bcx.tcx(), unit_ty);
let vecsize = Add(bcx, alloc, llsize_of(ccx, ccx.opaque_vec_type));
if heap == heap_exchange {
let Result { bcx: bcx, val: val } = malloc_raw_dyn(bcx, vecbodyty, heap_exchange, vecsize);
Store(bcx, fill, GEPi(bcx, val, [0u, abi::vec_elt_fill]));
Store(bcx, alloc, GEPi(bcx, val, [0u, abi::vec_elt_alloc]));
return rslt(bcx, val);
} else {
let base::MallocResult {bcx, smart_ptr: bx, body} =
base::malloc_general_dyn(bcx, vecbodyty, heap, vecsize);
Store(bcx, fill, GEPi(bcx, body, [0u, abi::vec_elt_fill]));
Store(bcx, alloc, GEPi(bcx, body, [0u, abi::vec_elt_alloc]));
return rslt(bcx, bx);
}
}
pub fn alloc_uniq_raw<'a>(
bcx: &'a Block<'a>,
unit_ty: ty::t,
fill: ValueRef,
alloc: ValueRef)
-> Result<'a> {
alloc_raw(bcx, unit_ty, fill, alloc, heap_exchange)
}
pub fn alloc_vec<'a>(
bcx: &'a Block<'a>,
unit_ty: ty::t,
elts: uint,
heap: heap)
-> Result<'a> {
let _icx = push_ctxt("tvec::alloc_uniq");
let ccx = bcx.ccx();
let llunitty = type_of::type_of(ccx, unit_ty);
let unit_sz = nonzero_llsize_of(ccx, llunitty);
let fill = Mul(bcx, C_uint(ccx, elts), unit_sz);
let alloc = if elts < 4u { Mul(bcx, C_int(ccx, 4), unit_sz) }
else { fill };
let Result {bcx: bcx, val: vptr} =
alloc_raw(bcx, unit_ty, fill, alloc, heap);
return rslt(bcx, vptr);
}
pub fn make_drop_glue_unboxed<'a>(
bcx: &'a Block<'a>,
vptr: ValueRef,
vec_ty: ty::t)
-> &'a Block<'a> {
let _icx = push_ctxt("tvec::make_drop_glue_unboxed");
let tcx = bcx.tcx();
let unit_ty = ty::sequence_element_type(tcx, vec_ty);
if ty::type_needs_drop(tcx, unit_ty) {
iter_vec_unboxed(bcx, vptr, vec_ty, glue::drop_ty)
} else { bcx }
}
pub struct VecTypes {
vec_ty: ty::t,
unit_ty: ty::t,
llunit_ty: Type,
llunit_size: ValueRef,
llunit_alloc_size: uint
}
impl VecTypes {
pub fn to_str(&self, ccx: &CrateContext) -> ~str {
format!("VecTypes \\{vec_ty={}, unit_ty={}, llunit_ty={}, llunit_size={}, \
llunit_alloc_size={}\\}",
ty_to_str(ccx.tcx, self.vec_ty),
ty_to_str(ccx.tcx, self.unit_ty),
ccx.tn.type_to_str(self.llunit_ty),
ccx.tn.val_to_str(self.llunit_size),
self.llunit_alloc_size)
}
}
pub fn trans_fixed_vstore<'a>(
bcx: &'a Block<'a>,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr,
dest: expr::Dest)
-> &'a Block<'a> {
//!
//
// [...] allocates a fixed-size array and moves it around "by value".
// In this case, it means that the caller has already given us a location
// to store the array of the suitable size, so all we have to do is
// generate the content.
debug!("trans_fixed_vstore(vstore_expr={}, dest={:?})",
bcx.expr_to_str(vstore_expr), dest.to_str(bcx.ccx()));
let vt = vec_types_from_expr(bcx, vstore_expr);
return match dest {
Ignore => write_content(bcx, &vt, vstore_expr, content_expr, dest),
SaveIn(lldest) => {
// lldest will have type *[T x N], but we want the type *T,
// so use GEP to convert:
let lldest = GEPi(bcx, lldest, [0, 0]);
write_content(bcx, &vt, vstore_expr, content_expr, SaveIn(lldest))
}
};
}
pub fn trans_slice_vstore<'a>(
bcx: &'a Block<'a>,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr,
dest: expr::Dest)
-> &'a Block<'a> {
/*!
* &[...] allocates memory on the stack and writes the values into it,
* returning a slice (pair of ptr, len). &"..." is similar except that
* the memory can be statically allocated.
*/
let fcx = bcx.fcx;
let ccx = fcx.ccx;
let mut bcx = bcx;
debug!("trans_slice_vstore(vstore_expr={}, dest={})",
bcx.expr_to_str(vstore_expr), dest.to_str(ccx));
// Handle the &"..." case:
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(s, _) => {
return trans_lit_str(bcx, content_expr, s, dest);
}
_ => {}
}
}
_ => {}
}
// Handle the &[...] case:
let vt = vec_types_from_expr(bcx, vstore_expr);
let count = elements_required(bcx, content_expr);
debug!("vt={}, count={:?}", vt.to_str(ccx), count);
let llcount = C_uint(ccx, count);
let llfixed;
if count == 0 {
// Zero-length array: just use NULL as the data pointer
llfixed = C_null(vt.llunit_ty.ptr_to());
} else {
// Make a fixed-length backing array and allocate it on the stack.
llfixed = base::arrayalloca(bcx, vt.llunit_ty, llcount);
// Arrange for the backing array to be cleaned up.
let fixed_ty = ty::mk_vec(bcx.tcx(),
ty::mt {ty: vt.unit_ty,
mutbl: ast::MutMutable},
ty::vstore_fixed(count));
let llfixed_ty = type_of::type_of(bcx.ccx(), fixed_ty).ptr_to();
let llfixed_casted = BitCast(bcx, llfixed, llfixed_ty);
let cleanup_scope = cleanup::temporary_scope(bcx.tcx(), content_expr.id);
fcx.schedule_drop_mem(cleanup_scope, llfixed_casted, fixed_ty);
// Generate the content into the backing array.
bcx = write_content(bcx, &vt, vstore_expr,
content_expr, SaveIn(llfixed));
}
// Finally, create the slice pair itself.
match dest {
Ignore => {}
SaveIn(lldest) => {
Store(bcx, llfixed, GEPi(bcx, lldest, [0u, abi::slice_elt_base]));
Store(bcx, llcount, GEPi(bcx, lldest, [0u, abi::slice_elt_len]));
}
}
return bcx;
}
pub fn trans_lit_str<'a>(
bcx: &'a Block<'a>,
lit_expr: &ast::Expr,
str_lit: @str,
dest: Dest)
-> &'a Block<'a> {
/*!
* Literal strings translate to slices into static memory. This is
* different from trans_slice_vstore() above because it does need to copy
* the content anywhere.
*/
debug!("trans_lit_str(lit_expr={}, dest={})",
bcx.expr_to_str(lit_expr),
dest.to_str(bcx.ccx()));
match dest {
Ignore => bcx,
SaveIn(lldest) => {
unsafe {
let bytes = str_lit.len();
let llbytes = C_uint(bcx.ccx(), bytes);
let llcstr = C_cstr(bcx.ccx(), str_lit);
let llcstr = llvm::LLVMConstPointerCast(llcstr, Type::i8p().to_ref());
Store(bcx, llcstr,
GEPi(bcx, lldest, [0u, abi::slice_elt_base]));
Store(bcx, llbytes,
GEPi(bcx, lldest, [0u, abi::slice_elt_len]));
bcx
}
}
}
}
pub fn trans_uniq_or_managed_vstore<'a>(bcx: &'a Block<'a>,
heap: heap,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr)
-> DatumBlock<'a, Expr> {
/*!
* @[...] or ~[...] (also @"..." or ~"...") allocate boxes in the
* appropriate heap and write the array elements into them.
*/
debug!("trans_uniq_or_managed_vstore(vstore_expr={}, heap={:?})",
bcx.expr_to_str(vstore_expr), heap);
let fcx = bcx.fcx;
// Handle ~"".
match heap {
heap_exchange => {
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(s, _) => {
let llptrval = C_cstr(bcx.ccx(), s);
let llptrval = PointerCast(bcx, llptrval, Type::i8p());
let llsizeval = C_uint(bcx.ccx(), s.len());
let typ = ty::mk_str(bcx.tcx(), ty::vstore_uniq);
let lldestval = rvalue_scratch_datum(bcx, typ, "");
let alloc_fn = langcall(bcx,
Some(lit.span),
"",
StrDupUniqFnLangItem);
let bcx = callee::trans_lang_call(
bcx,
alloc_fn,
[ llptrval, llsizeval ],
Some(expr::SaveIn(lldestval.val))).bcx;
return DatumBlock(bcx, lldestval).to_expr_datumblock();
}
_ => {}
}
}
_ => {}
}
}
heap_exchange_closure => fail!("vectors use exchange_alloc"),
heap_managed => {}
}
let vt = vec_types_from_expr(bcx, vstore_expr);
let count = elements_required(bcx, content_expr);
let Result {bcx, val} = alloc_vec(bcx, vt.unit_ty, count, heap);
// Create a temporary scope lest execution should fail while
// constructing the vector.
let temp_scope = fcx.push_custom_cleanup_scope();
fcx.schedule_free_value(cleanup::CustomScope(temp_scope), val, heap);
let dataptr = get_dataptr(bcx, get_bodyptr(bcx, val, vt.vec_ty));
debug!("alloc_vec() returned val={}, dataptr={}",
bcx.val_to_str(val), bcx.val_to_str(dataptr));
let bcx = write_content(bcx, &vt, vstore_expr,
content_expr, SaveIn(dataptr));
fcx.pop_custom_cleanup_scope(temp_scope);
return immediate_rvalue_bcx(bcx, val, vt.vec_ty).to_expr_datumblock();
}
pub fn write_content<'a>(
bcx: &'a Block<'a>,
vt: &VecTypes,
vstore_expr: &ast::Expr,
content_expr: &ast::Expr,
dest: Dest)
-> &'a Block<'a> {
let _icx = push_ctxt("tvec::write_content");
let fcx = bcx.fcx;
let mut bcx = bcx;
debug!("write_content(vt={}, dest={}, vstore_expr={:?})",
vt.to_str(bcx.ccx()),
dest.to_str(bcx.ccx()),
bcx.expr_to_str(vstore_expr));
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(s, _) => {
match dest {
Ignore => {
return bcx;
}
SaveIn(lldest) => {
let bytes = s.len();
let llbytes = C_uint(bcx.ccx(), bytes);
let llcstr = C_cstr(bcx.ccx(), s);
base::call_memcpy(bcx,
lldest,
llcstr,
llbytes,
1);
return bcx;
}
}
}
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"Unexpected evec content");
}
}
}
ast::ExprVec(ref elements, _) => {
match dest {
Ignore => {
for element in elements.iter() {
bcx = expr::trans_into(bcx, *element, Ignore);
}
}
SaveIn(lldest) => {
let temp_scope = fcx.push_custom_cleanup_scope();
for (i, element) in elements.iter().enumerate() {
let lleltptr = GEPi(bcx, lldest, [i]);
debug!("writing index {:?} with lleltptr={:?}",
i, bcx.val_to_str(lleltptr));
bcx = expr::trans_into(bcx, *element,
SaveIn(lleltptr));
fcx.schedule_drop_mem(
cleanup::CustomScope(temp_scope),
lleltptr,
vt.unit_ty);
}
fcx.pop_custom_cleanup_scope(temp_scope);
}
}
return bcx;
}
ast::ExprRepeat(element, count_expr, _) => {
match dest {
Ignore => {
return expr::trans_into(bcx, element, Ignore);
}
SaveIn(lldest) => {
let count = ty::eval_repeat_count(&bcx.tcx(), count_expr);
if count == 0 {
return bcx;
}
// Some cleanup would be required in the case in which failure happens
// during a copy. But given that copy constructors are not overridable,
// this can only happen as a result of OOM. So we just skip out on the
// cleanup since things would *probably* be broken at that point anyways.
let elem = unpack_datum!(bcx, expr::trans(bcx, element));
assert!(!ty::type_moves_by_default(bcx.tcx(), elem.ty));
let bcx = iter_vec_loop(bcx, lldest, vt,
C_uint(bcx.ccx(), count), |set_bcx, lleltptr, _| {
elem.shallow_copy_and_take(set_bcx, lleltptr)
});
elem.add_clean_if_rvalue(bcx, element.id);
bcx
}
}
}
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"Unexpected vec content");
}
}
}
pub fn vec_types_from_expr(bcx: &Block, vec_expr: &ast::Expr) -> VecTypes {
let vec_ty = node_id_type(bcx, vec_expr.id);
vec_types(bcx, vec_ty)
}
pub fn vec_types(bcx: &Block, vec_ty: ty::t) -> VecTypes {
let ccx = bcx.ccx();
let unit_ty = ty::sequence_element_type(bcx.tcx(), vec_ty);
let llunit_ty = type_of::type_of(ccx, unit_ty);
let llunit_size = nonzero_llsize_of(ccx, llunit_ty);
let llunit_alloc_size = llsize_of_alloc(ccx, llunit_ty);
VecTypes {vec_ty: vec_ty,
unit_ty: unit_ty,
llunit_ty: llunit_ty,
llunit_size: llunit_size,
llunit_alloc_size: llunit_alloc_size}
}
pub fn elements_required(bcx: &Block, content_expr: &ast::Expr) -> uint {
//! Figure out the number of elements we need to store this content
match content_expr.node {
ast::ExprLit(lit) => {
match lit.node {
ast::LitStr(s, _) => s.len(),
_ => {
bcx.tcx().sess.span_bug(content_expr.span,
"Unexpected evec content")
}
}
},
ast::ExprVec(ref es, _) => es.len(),
ast::ExprRepeat(_, count_expr, _) => {
ty::eval_repeat_count(&bcx.tcx(), count_expr)
}
_ => bcx.tcx().sess.span_bug(content_expr.span,
"Unexpected vec content")
}
}
pub fn get_base_and_byte_len(bcx: &Block,
llval: ValueRef,
vec_ty: ty::t)
-> (ValueRef, ValueRef) {
/*!
* Converts a vector into the slice pair. The vector should be
* stored in `llval` which should be by ref. If you have a datum,
* you would probably prefer to call
* `Datum::get_base_and_byte_len()`.
*/
let ccx = bcx.ccx();
let vt = vec_types(bcx, vec_ty);
let vstore = match ty::get(vt.vec_ty).sty {
ty::ty_str(vst) | ty::ty_vec(_, vst) => vst,
_ => ty::vstore_uniq
};
match vstore {
ty::vstore_fixed(n) => {
let base = GEPi(bcx, llval, [0u, 0u]);
let len = Mul(bcx, C_uint(ccx, n), vt.llunit_size);
(base, len)
}
ty::vstore_slice(_) => {
assert!(!type_is_immediate(bcx.ccx(), vt.vec_ty));
let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base]));
let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len]));
let len = Mul(bcx, count, vt.llunit_size);
(base, len)
}
ty::vstore_uniq | ty::vstore_box => {
assert!(type_is_immediate(bcx.ccx(), vt.vec_ty));
let llval = Load(bcx, llval);
let body = get_bodyptr(bcx, llval, vec_ty);
(get_dataptr(bcx, body), get_fill(bcx, body))
}
}
}
pub fn get_base_and_len(bcx: &Block,
llval: ValueRef,
vec_ty: ty::t)
-> (ValueRef, ValueRef) {
/*!
* Converts a vector into the slice pair. The vector should be
* stored in `llval` which should be by-reference. If you have a
* datum, you would probably prefer to call
* `Datum::get_base_and_len()` which will handle any conversions
* for you.
*/
let ccx = bcx.ccx();
let vt = vec_types(bcx, vec_ty);
let vstore = match ty::get(vt.vec_ty).sty {
ty::ty_str(vst) | ty::ty_vec(_, vst) => vst,
_ => ty::vstore_uniq
};
match vstore {
ty::vstore_fixed(n) => {
let base = GEPi(bcx, llval, [0u, 0u]);
(base, C_uint(ccx, n))
}
ty::vstore_slice(_) => {
assert!(!type_is_immediate(bcx.ccx(), vt.vec_ty));
let base = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_base]));
let count = Load(bcx, GEPi(bcx, llval, [0u, abi::slice_elt_len]));
(base, count)
}
ty::vstore_uniq | ty::vstore_box => {
assert!(type_is_immediate(bcx.ccx(), vt.vec_ty));
let llval = Load(bcx, llval);
let body = get_bodyptr(bcx, llval, vec_ty);
(get_dataptr(bcx, body), UDiv(bcx, get_fill(bcx, body), vt.llunit_size))
}
}
}
pub type iter_vec_block<'r,'b> =
'r |&'b Block<'b>, ValueRef, ty::t| -> &'b Block<'b>;
pub fn iter_vec_loop<'r,
'b>(
bcx: &'b Block<'b>,
data_ptr: ValueRef,
vt: &VecTypes,
count: ValueRef,
f: iter_vec_block<'r,'b>)
-> &'b Block<'b> {
let _icx = push_ctxt("tvec::iter_vec_loop");
let fcx = bcx.fcx;
let next_bcx = fcx.new_temp_block("expr_repeat: while next");
let loop_bcx = fcx.new_temp_block("expr_repeat");
let cond_bcx = fcx.new_temp_block("expr_repeat: loop cond");
let body_bcx = fcx.new_temp_block("expr_repeat: body: set");
let inc_bcx = fcx.new_temp_block("expr_repeat: body: inc");
Br(bcx, loop_bcx.llbb);
let loop_counter = {
// i = 0
let i = alloca(loop_bcx, bcx.ccx().int_type, "__i");
Store(loop_bcx, C_uint(bcx.ccx(), 0), i);
Br(loop_bcx, cond_bcx.llbb);
i
};
{ // i < count
let lhs = Load(cond_bcx, loop_counter);
let rhs = count;
let cond_val = ICmp(cond_bcx, lib::llvm::IntULT, lhs, rhs);
CondBr(cond_bcx, cond_val, body_bcx.llbb, next_bcx.llbb);
}
{ // loop body
let i = Load(body_bcx, loop_counter);
let lleltptr = if vt.llunit_alloc_size == 0 {
data_ptr
} else {
InBoundsGEP(body_bcx, data_ptr, [i])
};
let body_bcx = f(body_bcx, lleltptr, vt.unit_ty);
Br(body_bcx, inc_bcx.llbb);
}
{ // i += 1
let i = Load(inc_bcx, loop_counter);
let plusone = Add(inc_bcx, i, C_uint(bcx.ccx(), 1));
Store(inc_bcx, plusone, loop_counter);
Br(inc_bcx, cond_bcx.llbb);
}
next_bcx
}
pub fn iter_vec_raw<'r,
'b>(
bcx: &'b Block<'b>,
data_ptr: ValueRef,
vec_ty: ty::t,
fill: ValueRef,
f: iter_vec_block<'r,'b>)
-> &'b Block<'b> {
let _icx = push_ctxt("tvec::iter_vec_raw");
let fcx = bcx.fcx;
let vt = vec_types(bcx, vec_ty);
if (vt.llunit_alloc_size == 0) {
// Special-case vectors with elements of size 0 so they don't go out of bounds (#9890)
iter_vec_loop(bcx, data_ptr, &vt, fill, f)
} else {
// Calculate the last pointer address we want to handle.
// FIXME (#3729): Optimize this when the size of the unit type is
// statically known to not use pointer casts, which tend to confuse
// LLVM.
let data_end_ptr = pointer_add_byte(bcx, data_ptr, fill);
// Now perform the iteration.
let header_bcx = fcx.new_temp_block("iter_vec_loop_header");
Br(bcx, header_bcx.llbb);
let data_ptr =
Phi(header_bcx, val_ty(data_ptr), [data_ptr], [bcx.llbb]);
let not_yet_at_end =
ICmp(header_bcx, lib::llvm::IntULT, data_ptr, data_end_ptr);
let body_bcx = fcx.new_temp_block("iter_vec_loop_body");
let next_bcx = fcx.new_temp_block("iter_vec_next");
CondBr(header_bcx, not_yet_at_end, body_bcx.llbb, next_bcx.llbb);
let body_bcx = f(body_bcx, data_ptr, vt.unit_ty);
AddIncomingToPhi(data_ptr, InBoundsGEP(body_bcx, data_ptr,
[C_int(bcx.ccx(), 1)]),
body_bcx.llbb);
Br(body_bcx, header_bcx.llbb);
next_bcx
}
}
pub fn iter_vec_uniq<'r,
'b>(
bcx: &'b Block<'b>,
vptr: ValueRef,
vec_ty: ty::t,
fill: ValueRef,
f: iter_vec_block<'r,'b>)
-> &'b Block<'b> {
let _icx = push_ctxt("tvec::iter_vec_uniq");
let data_ptr = get_dataptr(bcx, get_bodyptr(bcx, vptr, vec_ty));
iter_vec_raw(bcx, data_ptr, vec_ty, fill, f)
}
pub fn iter_vec_unboxed<'r,
'b>(
bcx: &'b Block<'b>,
body_ptr: ValueRef,
vec_ty: ty::t,
f: iter_vec_block<'r,'b>)
-> &'b Block<'b> {
let _icx = push_ctxt("tvec::iter_vec_unboxed");
let fill = get_fill(bcx, body_ptr);
let dataptr = get_dataptr(bcx, body_ptr);
return iter_vec_raw(bcx, dataptr, vec_ty, fill, f);
}