rust/src/librustc_mir/interpret/operand.rs
bors 876a72a251 Auto merge of #66677 - wesleywiser:fix_const_prop_alloc_id_ice, r=oli-obk
[const prop] Fix "alloc id without corresponding allocation" ICE

r? @oli-obk
2019-11-27 08:00:58 +00:00

708 lines
27 KiB
Rust

//! Functions concerning immediate values and operands, and reading from operands.
//! All high-level functions to read from memory work on operands as sources.
use std::convert::{TryInto, TryFrom};
use rustc::{mir, ty};
use rustc::ty::layout::{
self, Size, LayoutOf, TyLayout, HasDataLayout, IntegerExt, PrimitiveExt, VariantIdx,
};
use rustc::mir::interpret::{
GlobalId, AllocId,
ConstValue, Pointer, Scalar,
InterpResult, sign_extend, truncate,
};
use super::{
InterpCx, Machine,
MemPlace, MPlaceTy, PlaceTy, Place,
};
pub use rustc::mir::interpret::ScalarMaybeUndef;
use rustc_macros::HashStable;
/// An `Immediate` represents a single immediate self-contained Rust value.
///
/// For optimization of a few very common cases, there is also a representation for a pair of
/// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
/// operations and fat pointers. This idea was taken from rustc's codegen.
/// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
/// defined on `Immediate`, and do not have to work with a `Place`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, Hash)]
pub enum Immediate<Tag=(), Id=AllocId> {
Scalar(ScalarMaybeUndef<Tag, Id>),
ScalarPair(ScalarMaybeUndef<Tag, Id>, ScalarMaybeUndef<Tag, Id>),
}
impl<Tag> From<ScalarMaybeUndef<Tag>> for Immediate<Tag> {
#[inline(always)]
fn from(val: ScalarMaybeUndef<Tag>) -> Self {
Immediate::Scalar(val)
}
}
impl<Tag> From<Scalar<Tag>> for Immediate<Tag> {
#[inline(always)]
fn from(val: Scalar<Tag>) -> Self {
Immediate::Scalar(val.into())
}
}
impl<'tcx, Tag> Immediate<Tag> {
pub fn new_slice(
val: Scalar<Tag>,
len: u64,
cx: &impl HasDataLayout
) -> Self {
Immediate::ScalarPair(
val.into(),
Scalar::from_uint(len, cx.data_layout().pointer_size).into(),
)
}
pub fn new_dyn_trait(val: Scalar<Tag>, vtable: Pointer<Tag>) -> Self {
Immediate::ScalarPair(val.into(), Scalar::Ptr(vtable).into())
}
#[inline]
pub fn to_scalar_or_undef(self) -> ScalarMaybeUndef<Tag> {
match self {
Immediate::Scalar(val) => val,
Immediate::ScalarPair(..) => bug!("Got a fat pointer where a scalar was expected"),
}
}
#[inline]
pub fn to_scalar(self) -> InterpResult<'tcx, Scalar<Tag>> {
self.to_scalar_or_undef().not_undef()
}
#[inline]
pub fn to_scalar_pair(self) -> InterpResult<'tcx, (Scalar<Tag>, Scalar<Tag>)> {
match self {
Immediate::Scalar(..) => bug!("Got a thin pointer where a scalar pair was expected"),
Immediate::ScalarPair(a, b) => Ok((a.not_undef()?, b.not_undef()?))
}
}
}
// ScalarPair needs a type to interpret, so we often have an immediate and a type together
// as input for binary and cast operations.
#[derive(Copy, Clone, Debug)]
pub struct ImmTy<'tcx, Tag=()> {
pub(crate) imm: Immediate<Tag>,
pub layout: TyLayout<'tcx>,
}
impl<'tcx, Tag> ::std::ops::Deref for ImmTy<'tcx, Tag> {
type Target = Immediate<Tag>;
#[inline(always)]
fn deref(&self) -> &Immediate<Tag> {
&self.imm
}
}
/// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
/// or still in memory. The latter is an optimization, to delay reading that chunk of
/// memory and to avoid having to store arbitrary-sized data here.
#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, Hash)]
pub enum Operand<Tag=(), Id=AllocId> {
Immediate(Immediate<Tag, Id>),
Indirect(MemPlace<Tag, Id>),
}
impl<Tag> Operand<Tag> {
#[inline]
pub fn assert_mem_place(self) -> MemPlace<Tag>
where Tag: ::std::fmt::Debug
{
match self {
Operand::Indirect(mplace) => mplace,
_ => bug!("assert_mem_place: expected Operand::Indirect, got {:?}", self),
}
}
#[inline]
pub fn assert_immediate(self) -> Immediate<Tag>
where Tag: ::std::fmt::Debug
{
match self {
Operand::Immediate(imm) => imm,
_ => bug!("assert_immediate: expected Operand::Immediate, got {:?}", self),
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct OpTy<'tcx, Tag=()> {
op: Operand<Tag>, // Keep this private; it helps enforce invariants.
pub layout: TyLayout<'tcx>,
}
impl<'tcx, Tag> ::std::ops::Deref for OpTy<'tcx, Tag> {
type Target = Operand<Tag>;
#[inline(always)]
fn deref(&self) -> &Operand<Tag> {
&self.op
}
}
impl<'tcx, Tag: Copy> From<MPlaceTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
#[inline(always)]
fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
OpTy {
op: Operand::Indirect(*mplace),
layout: mplace.layout
}
}
}
impl<'tcx, Tag> From<ImmTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
#[inline(always)]
fn from(val: ImmTy<'tcx, Tag>) -> Self {
OpTy {
op: Operand::Immediate(val.imm),
layout: val.layout
}
}
}
impl<'tcx, Tag: Copy> ImmTy<'tcx, Tag> {
#[inline]
pub fn from_scalar(val: Scalar<Tag>, layout: TyLayout<'tcx>) -> Self {
ImmTy { imm: val.into(), layout }
}
#[inline]
pub fn from_uint(i: impl Into<u128>, layout: TyLayout<'tcx>) -> Self {
Self::from_scalar(Scalar::from_uint(i, layout.size), layout)
}
#[inline]
pub fn from_int(i: impl Into<i128>, layout: TyLayout<'tcx>) -> Self {
Self::from_scalar(Scalar::from_int(i, layout.size), layout)
}
#[inline]
pub fn to_bits(self) -> InterpResult<'tcx, u128> {
self.to_scalar()?.to_bits(self.layout.size)
}
}
// Use the existing layout if given (but sanity check in debug mode),
// or compute the layout.
#[inline(always)]
pub(super) fn from_known_layout<'tcx>(
layout: Option<TyLayout<'tcx>>,
compute: impl FnOnce() -> InterpResult<'tcx, TyLayout<'tcx>>
) -> InterpResult<'tcx, TyLayout<'tcx>> {
match layout {
None => compute(),
Some(layout) => {
if cfg!(debug_assertions) {
let layout2 = compute()?;
assert_eq!(layout.details, layout2.details,
"mismatch in layout of supposedly equal-layout types {:?} and {:?}",
layout.ty, layout2.ty);
}
Ok(layout)
}
}
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Normalice `place.ptr` to a `Pointer` if this is a place and not a ZST.
/// Can be helpful to avoid lots of `force_ptr` calls later, if this place is used a lot.
#[inline]
pub fn force_op_ptr(
&self,
op: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
match op.try_as_mplace() {
Ok(mplace) => Ok(self.force_mplace_ptr(mplace)?.into()),
Err(imm) => Ok(imm.into()), // Nothing to cast/force
}
}
/// Try reading an immediate in memory; this is interesting particularly for `ScalarPair`.
/// Returns `None` if the layout does not permit loading this as a value.
fn try_read_immediate_from_mplace(
&self,
mplace: MPlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::PointerTag>>> {
if mplace.layout.is_unsized() {
// Don't touch unsized
return Ok(None);
}
let ptr = match self.check_mplace_access(mplace, None)
.expect("places should be checked on creation")
{
Some(ptr) => ptr,
None => return Ok(Some(ImmTy { // zero-sized type
imm: Scalar::zst().into(),
layout: mplace.layout,
})),
};
match mplace.layout.abi {
layout::Abi::Scalar(..) => {
let scalar = self.memory
.get_raw(ptr.alloc_id)?
.read_scalar(self, ptr, mplace.layout.size)?;
Ok(Some(ImmTy {
imm: scalar.into(),
layout: mplace.layout,
}))
}
layout::Abi::ScalarPair(ref a, ref b) => {
// We checked `ptr_align` above, so all fields will have the alignment they need.
// We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
// which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
let (a, b) = (&a.value, &b.value);
let (a_size, b_size) = (a.size(self), b.size(self));
let a_ptr = ptr;
let b_offset = a_size.align_to(b.align(self).abi);
assert!(b_offset.bytes() > 0); // we later use the offset to tell apart the fields
let b_ptr = ptr.offset(b_offset, self)?;
let a_val = self.memory
.get_raw(ptr.alloc_id)?
.read_scalar(self, a_ptr, a_size)?;
let b_val = self.memory
.get_raw(ptr.alloc_id)?
.read_scalar(self, b_ptr, b_size)?;
Ok(Some(ImmTy {
imm: Immediate::ScalarPair(a_val, b_val),
layout: mplace.layout,
}))
}
_ => Ok(None),
}
}
/// Try returning an immediate for the operand.
/// If the layout does not permit loading this as an immediate, return where in memory
/// we can find the data.
/// Note that for a given layout, this operation will either always fail or always
/// succeed! Whether it succeeds depends on whether the layout can be represented
/// in a `Immediate`, not on which data is stored there currently.
pub(crate) fn try_read_immediate(
&self,
src: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::PointerTag>, MPlaceTy<'tcx, M::PointerTag>>> {
Ok(match src.try_as_mplace() {
Ok(mplace) => {
if let Some(val) = self.try_read_immediate_from_mplace(mplace)? {
Ok(val)
} else {
Err(mplace)
}
},
Err(val) => Ok(val),
})
}
/// Read an immediate from a place, asserting that that is possible with the given layout.
#[inline(always)]
pub fn read_immediate(
&self,
op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
if let Ok(imm) = self.try_read_immediate(op)? {
Ok(imm)
} else {
bug!("primitive read failed for type: {:?}", op.layout.ty);
}
}
/// Read a scalar from a place
pub fn read_scalar(
&self,
op: OpTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, ScalarMaybeUndef<M::PointerTag>> {
Ok(self.read_immediate(op)?.to_scalar_or_undef())
}
// Turn the MPlace into a string (must already be dereferenced!)
pub fn read_str(
&self,
mplace: MPlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, &str> {
let len = mplace.len(self)?;
let bytes = self.memory.read_bytes(mplace.ptr, Size::from_bytes(len as u64))?;
let str = ::std::str::from_utf8(bytes).map_err(|err| {
err_unsup!(ValidationFailure(err.to_string()))
})?;
Ok(str)
}
/// Projection functions
pub fn operand_field(
&self,
op: OpTy<'tcx, M::PointerTag>,
field: u64,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
let base = match op.try_as_mplace() {
Ok(mplace) => {
// The easy case
let field = self.mplace_field(mplace, field)?;
return Ok(field.into());
},
Err(value) => value
};
let field = field.try_into().unwrap();
let field_layout = op.layout.field(self, field)?;
if field_layout.is_zst() {
let immediate = Scalar::zst().into();
return Ok(OpTy { op: Operand::Immediate(immediate), layout: field_layout });
}
let offset = op.layout.fields.offset(field);
let immediate = match *base {
// the field covers the entire type
_ if offset.bytes() == 0 && field_layout.size == op.layout.size => *base,
// extract fields from types with `ScalarPair` ABI
Immediate::ScalarPair(a, b) => {
let val = if offset.bytes() == 0 { a } else { b };
Immediate::from(val)
},
Immediate::Scalar(val) =>
bug!("field access on non aggregate {:#?}, {:#?}", val, op.layout),
};
Ok(OpTy { op: Operand::Immediate(immediate), layout: field_layout })
}
pub fn operand_downcast(
&self,
op: OpTy<'tcx, M::PointerTag>,
variant: VariantIdx,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
// Downcasts only change the layout
Ok(match op.try_as_mplace() {
Ok(mplace) => {
self.mplace_downcast(mplace, variant)?.into()
},
Err(..) => {
let layout = op.layout.for_variant(self, variant);
OpTy { layout, ..op }
}
})
}
pub fn operand_projection(
&self,
base: OpTy<'tcx, M::PointerTag>,
proj_elem: &mir::PlaceElem<'tcx>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
use rustc::mir::ProjectionElem::*;
Ok(match *proj_elem {
Field(field, _) => self.operand_field(base, field.index() as u64)?,
Downcast(_, variant) => self.operand_downcast(base, variant)?,
Deref => self.deref_operand(base)?.into(),
Subslice { .. } | ConstantIndex { .. } | Index(_) => if base.layout.is_zst() {
OpTy {
op: Operand::Immediate(Scalar::zst().into()),
// the actual index doesn't matter, so we just pick a convenient one like 0
layout: base.layout.field(self, 0)?,
}
} else {
// The rest should only occur as mplace, we do not use Immediates for types
// allowing such operations. This matches place_projection forcing an allocation.
let mplace = base.assert_mem_place();
self.mplace_projection(mplace, proj_elem)?.into()
}
})
}
/// This is used by [priroda](https://github.com/oli-obk/priroda) to get an OpTy from a local
pub fn access_local(
&self,
frame: &super::Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
local: mir::Local,
layout: Option<TyLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
assert_ne!(local, mir::RETURN_PLACE);
let layout = self.layout_of_local(frame, local, layout)?;
let op = if layout.is_zst() {
// Do not read from ZST, they might not be initialized
Operand::Immediate(Scalar::zst().into())
} else {
M::access_local(&self, frame, local)?
};
Ok(OpTy { op, layout })
}
/// Every place can be read from, so we can turn them into an operand
#[inline(always)]
pub fn place_to_op(
&self,
place: PlaceTy<'tcx, M::PointerTag>
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
let op = match *place {
Place::Ptr(mplace) => {
Operand::Indirect(mplace)
}
Place::Local { frame, local } =>
*self.access_local(&self.stack[frame], local, None)?
};
Ok(OpTy { op, layout: place.layout })
}
// Evaluate a place with the goal of reading from it. This lets us sometimes
// avoid allocations.
pub fn eval_place_to_op(
&self,
place: &mir::Place<'tcx>,
layout: Option<TyLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
use rustc::mir::PlaceBase;
let base_op = match &place.base {
PlaceBase::Local(mir::RETURN_PLACE) =>
throw_unsup!(ReadFromReturnPointer),
PlaceBase::Local(local) => {
// Do not use the layout passed in as argument if the base we are looking at
// here is not the entire place.
// FIXME use place_projection.is_empty() when is available
let layout = if place.projection.is_empty() {
layout
} else {
None
};
self.access_local(self.frame(), *local, layout)?
}
PlaceBase::Static(place_static) => {
self.eval_static_to_mplace(&place_static)?.into()
}
};
let op = place.projection.iter().try_fold(
base_op,
|op, elem| self.operand_projection(op, elem)
)?;
trace!("eval_place_to_op: got {:?}", *op);
Ok(op)
}
/// Evaluate the operand, returning a place where you can then find the data.
/// If you already know the layout, you can save two table lookups
/// by passing it in here.
pub fn eval_operand(
&self,
mir_op: &mir::Operand<'tcx>,
layout: Option<TyLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
use rustc::mir::Operand::*;
let op = match *mir_op {
// FIXME: do some more logic on `move` to invalidate the old location
Copy(ref place) |
Move(ref place) =>
self.eval_place_to_op(place, layout)?,
Constant(ref constant) => {
let val = self.subst_from_frame_and_normalize_erasing_regions(constant.literal);
self.eval_const_to_op(val, layout)?
}
};
trace!("{:?}: {:?}", mir_op, *op);
Ok(op)
}
/// Evaluate a bunch of operands at once
pub(super) fn eval_operands(
&self,
ops: &[mir::Operand<'tcx>],
) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::PointerTag>>> {
ops.into_iter()
.map(|op| self.eval_operand(op, None))
.collect()
}
// Used when the miri-engine runs into a constant and for extracting information from constants
// in patterns via the `const_eval` module
/// The `val` and `layout` are assumed to already be in our interpreter
/// "universe" (param_env).
crate fn eval_const_to_op(
&self,
val: &'tcx ty::Const<'tcx>,
layout: Option<TyLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
let tag_scalar = |scalar| match scalar {
Scalar::Ptr(ptr) => Scalar::Ptr(self.tag_static_base_pointer(ptr)),
Scalar::Raw { data, size } => Scalar::Raw { data, size },
};
// Early-return cases.
let val_val = match val.val {
ty::ConstKind::Param(_) =>
throw_inval!(TooGeneric),
ty::ConstKind::Unevaluated(def_id, substs) => {
let instance = self.resolve(def_id, substs)?;
return Ok(OpTy::from(self.const_eval_raw(GlobalId {
instance,
promoted: None,
})?));
}
ty::ConstKind::Infer(..) |
ty::ConstKind::Bound(..) |
ty::ConstKind::Placeholder(..) =>
bug!("eval_const_to_op: Unexpected ConstKind {:?}", val),
ty::ConstKind::Value(val_val) => val_val,
};
// Other cases need layout.
let layout = from_known_layout(layout, || {
self.layout_of(val.ty)
})?;
let op = match val_val {
ConstValue::ByRef { alloc, offset } => {
let id = self.tcx.alloc_map.lock().create_memory_alloc(alloc);
// We rely on mutability being set correctly in that allocation to prevent writes
// where none should happen.
let ptr = self.tag_static_base_pointer(Pointer::new(id, offset));
Operand::Indirect(MemPlace::from_ptr(ptr, layout.align.abi))
},
ConstValue::Scalar(x) => Operand::Immediate(tag_scalar(x).into()),
ConstValue::Slice { data, start, end } => {
// We rely on mutability being set correctly in `data` to prevent writes
// where none should happen.
let ptr = Pointer::new(
self.tcx.alloc_map.lock().create_memory_alloc(data),
Size::from_bytes(start as u64), // offset: `start`
);
Operand::Immediate(Immediate::new_slice(
self.tag_static_base_pointer(ptr).into(),
(end - start) as u64, // len: `end - start`
self,
))
}
};
Ok(OpTy { op, layout })
}
/// Read discriminant, return the runtime value as well as the variant index.
pub fn read_discriminant(
&self,
rval: OpTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, (u128, VariantIdx)> {
trace!("read_discriminant_value {:#?}", rval.layout);
let (discr_layout, discr_kind, discr_index) = match rval.layout.variants {
layout::Variants::Single { index } => {
let discr_val = rval.layout.ty.discriminant_for_variant(*self.tcx, index).map_or(
index.as_u32() as u128,
|discr| discr.val);
return Ok((discr_val, index));
}
layout::Variants::Multiple {
discr: ref discr_layout,
ref discr_kind,
discr_index,
..
} =>
(discr_layout, discr_kind, discr_index),
};
// read raw discriminant value
let discr_op = self.operand_field(rval, discr_index as u64)?;
let discr_val = self.read_immediate(discr_op)?;
let raw_discr = discr_val.to_scalar_or_undef();
trace!("discr value: {:?}", raw_discr);
// post-process
Ok(match *discr_kind {
layout::DiscriminantKind::Tag => {
let bits_discr = raw_discr
.not_undef()
.and_then(|raw_discr| self.force_bits(raw_discr, discr_val.layout.size))
.map_err(|_| err_ub!(InvalidDiscriminant(raw_discr.erase_tag())))?;
let real_discr = if discr_val.layout.ty.is_signed() {
// going from layout tag type to typeck discriminant type
// requires first sign extending with the discriminant layout
let sexted = sign_extend(bits_discr, discr_val.layout.size) as i128;
// and then zeroing with the typeck discriminant type
let discr_ty = rval.layout.ty
.ty_adt_def().expect("tagged layout corresponds to adt")
.repr
.discr_type();
let size = layout::Integer::from_attr(self, discr_ty).size();
let truncatee = sexted as u128;
truncate(truncatee, size)
} else {
bits_discr
};
// Make sure we catch invalid discriminants
let index = match rval.layout.ty.kind {
ty::Adt(adt, _) => adt
.discriminants(self.tcx.tcx)
.find(|(_, var)| var.val == real_discr),
ty::Generator(def_id, substs, _) => {
let substs = substs.as_generator();
substs
.discriminants(def_id, self.tcx.tcx)
.find(|(_, var)| var.val == real_discr)
}
_ => bug!("tagged layout for non-adt non-generator"),
}.ok_or_else(
|| err_ub!(InvalidDiscriminant(raw_discr.erase_tag()))
)?;
(real_discr, index.0)
},
layout::DiscriminantKind::Niche {
dataful_variant,
ref niche_variants,
niche_start,
} => {
let variants_start = niche_variants.start().as_u32();
let variants_end = niche_variants.end().as_u32();
let raw_discr = raw_discr.not_undef().map_err(|_| {
err_ub!(InvalidDiscriminant(ScalarMaybeUndef::Undef))
})?;
match raw_discr.to_bits_or_ptr(discr_val.layout.size, self) {
Err(ptr) => {
// The niche must be just 0 (which an inbounds pointer value never is)
let ptr_valid = niche_start == 0 && variants_start == variants_end &&
!self.memory.ptr_may_be_null(ptr);
if !ptr_valid {
throw_ub!(InvalidDiscriminant(raw_discr.erase_tag().into()))
}
(dataful_variant.as_u32() as u128, dataful_variant)
},
Ok(raw_discr) => {
// We need to use machine arithmetic to get the relative variant idx:
// variant_index_relative = discr_val - niche_start_val
let discr_layout = self.layout_of(discr_layout.value.to_int_ty(*self.tcx))?;
let discr_val = ImmTy::from_uint(raw_discr, discr_layout);
let niche_start_val = ImmTy::from_uint(niche_start, discr_layout);
let variant_index_relative_val = self.binary_op(
mir::BinOp::Sub,
discr_val,
niche_start_val,
)?;
let variant_index_relative = variant_index_relative_val
.to_scalar()?
.assert_bits(discr_val.layout.size);
// Check if this is in the range that indicates an actual discriminant.
if variant_index_relative <= u128::from(variants_end - variants_start) {
let variant_index_relative = u32::try_from(variant_index_relative)
.expect("we checked that this fits into a u32");
// Then computing the absolute variant idx should not overflow any more.
let variant_index = variants_start
.checked_add(variant_index_relative)
.expect("oveflow computing absolute variant idx");
assert!((variant_index as usize) < rval.layout.ty
.ty_adt_def()
.expect("tagged layout for non adt")
.variants.len());
(u128::from(variant_index), VariantIdx::from_u32(variant_index))
} else {
(u128::from(dataful_variant.as_u32()), dataful_variant)
}
},
}
}
})
}
}