876a72a251
[const prop] Fix "alloc id without corresponding allocation" ICE r? @oli-obk
708 lines
27 KiB
Rust
708 lines
27 KiB
Rust
//! Functions concerning immediate values and operands, and reading from operands.
|
|
//! All high-level functions to read from memory work on operands as sources.
|
|
|
|
use std::convert::{TryInto, TryFrom};
|
|
|
|
use rustc::{mir, ty};
|
|
use rustc::ty::layout::{
|
|
self, Size, LayoutOf, TyLayout, HasDataLayout, IntegerExt, PrimitiveExt, VariantIdx,
|
|
};
|
|
|
|
use rustc::mir::interpret::{
|
|
GlobalId, AllocId,
|
|
ConstValue, Pointer, Scalar,
|
|
InterpResult, sign_extend, truncate,
|
|
};
|
|
use super::{
|
|
InterpCx, Machine,
|
|
MemPlace, MPlaceTy, PlaceTy, Place,
|
|
};
|
|
pub use rustc::mir::interpret::ScalarMaybeUndef;
|
|
use rustc_macros::HashStable;
|
|
|
|
/// An `Immediate` represents a single immediate self-contained Rust value.
|
|
///
|
|
/// For optimization of a few very common cases, there is also a representation for a pair of
|
|
/// primitive values (`ScalarPair`). It allows Miri to avoid making allocations for checked binary
|
|
/// operations and fat pointers. This idea was taken from rustc's codegen.
|
|
/// In particular, thanks to `ScalarPair`, arithmetic operations and casts can be entirely
|
|
/// defined on `Immediate`, and do not have to work with a `Place`.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, Hash)]
|
|
pub enum Immediate<Tag=(), Id=AllocId> {
|
|
Scalar(ScalarMaybeUndef<Tag, Id>),
|
|
ScalarPair(ScalarMaybeUndef<Tag, Id>, ScalarMaybeUndef<Tag, Id>),
|
|
}
|
|
|
|
impl<Tag> From<ScalarMaybeUndef<Tag>> for Immediate<Tag> {
|
|
#[inline(always)]
|
|
fn from(val: ScalarMaybeUndef<Tag>) -> Self {
|
|
Immediate::Scalar(val)
|
|
}
|
|
}
|
|
|
|
impl<Tag> From<Scalar<Tag>> for Immediate<Tag> {
|
|
#[inline(always)]
|
|
fn from(val: Scalar<Tag>) -> Self {
|
|
Immediate::Scalar(val.into())
|
|
}
|
|
}
|
|
|
|
impl<'tcx, Tag> Immediate<Tag> {
|
|
pub fn new_slice(
|
|
val: Scalar<Tag>,
|
|
len: u64,
|
|
cx: &impl HasDataLayout
|
|
) -> Self {
|
|
Immediate::ScalarPair(
|
|
val.into(),
|
|
Scalar::from_uint(len, cx.data_layout().pointer_size).into(),
|
|
)
|
|
}
|
|
|
|
pub fn new_dyn_trait(val: Scalar<Tag>, vtable: Pointer<Tag>) -> Self {
|
|
Immediate::ScalarPair(val.into(), Scalar::Ptr(vtable).into())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_scalar_or_undef(self) -> ScalarMaybeUndef<Tag> {
|
|
match self {
|
|
Immediate::Scalar(val) => val,
|
|
Immediate::ScalarPair(..) => bug!("Got a fat pointer where a scalar was expected"),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_scalar(self) -> InterpResult<'tcx, Scalar<Tag>> {
|
|
self.to_scalar_or_undef().not_undef()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_scalar_pair(self) -> InterpResult<'tcx, (Scalar<Tag>, Scalar<Tag>)> {
|
|
match self {
|
|
Immediate::Scalar(..) => bug!("Got a thin pointer where a scalar pair was expected"),
|
|
Immediate::ScalarPair(a, b) => Ok((a.not_undef()?, b.not_undef()?))
|
|
}
|
|
}
|
|
}
|
|
|
|
// ScalarPair needs a type to interpret, so we often have an immediate and a type together
|
|
// as input for binary and cast operations.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub struct ImmTy<'tcx, Tag=()> {
|
|
pub(crate) imm: Immediate<Tag>,
|
|
pub layout: TyLayout<'tcx>,
|
|
}
|
|
|
|
impl<'tcx, Tag> ::std::ops::Deref for ImmTy<'tcx, Tag> {
|
|
type Target = Immediate<Tag>;
|
|
#[inline(always)]
|
|
fn deref(&self) -> &Immediate<Tag> {
|
|
&self.imm
|
|
}
|
|
}
|
|
|
|
/// An `Operand` is the result of computing a `mir::Operand`. It can be immediate,
|
|
/// or still in memory. The latter is an optimization, to delay reading that chunk of
|
|
/// memory and to avoid having to store arbitrary-sized data here.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable, Hash)]
|
|
pub enum Operand<Tag=(), Id=AllocId> {
|
|
Immediate(Immediate<Tag, Id>),
|
|
Indirect(MemPlace<Tag, Id>),
|
|
}
|
|
|
|
impl<Tag> Operand<Tag> {
|
|
#[inline]
|
|
pub fn assert_mem_place(self) -> MemPlace<Tag>
|
|
where Tag: ::std::fmt::Debug
|
|
{
|
|
match self {
|
|
Operand::Indirect(mplace) => mplace,
|
|
_ => bug!("assert_mem_place: expected Operand::Indirect, got {:?}", self),
|
|
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn assert_immediate(self) -> Immediate<Tag>
|
|
where Tag: ::std::fmt::Debug
|
|
{
|
|
match self {
|
|
Operand::Immediate(imm) => imm,
|
|
_ => bug!("assert_immediate: expected Operand::Immediate, got {:?}", self),
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub struct OpTy<'tcx, Tag=()> {
|
|
op: Operand<Tag>, // Keep this private; it helps enforce invariants.
|
|
pub layout: TyLayout<'tcx>,
|
|
}
|
|
|
|
impl<'tcx, Tag> ::std::ops::Deref for OpTy<'tcx, Tag> {
|
|
type Target = Operand<Tag>;
|
|
#[inline(always)]
|
|
fn deref(&self) -> &Operand<Tag> {
|
|
&self.op
|
|
}
|
|
}
|
|
|
|
impl<'tcx, Tag: Copy> From<MPlaceTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
|
|
#[inline(always)]
|
|
fn from(mplace: MPlaceTy<'tcx, Tag>) -> Self {
|
|
OpTy {
|
|
op: Operand::Indirect(*mplace),
|
|
layout: mplace.layout
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, Tag> From<ImmTy<'tcx, Tag>> for OpTy<'tcx, Tag> {
|
|
#[inline(always)]
|
|
fn from(val: ImmTy<'tcx, Tag>) -> Self {
|
|
OpTy {
|
|
op: Operand::Immediate(val.imm),
|
|
layout: val.layout
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, Tag: Copy> ImmTy<'tcx, Tag> {
|
|
#[inline]
|
|
pub fn from_scalar(val: Scalar<Tag>, layout: TyLayout<'tcx>) -> Self {
|
|
ImmTy { imm: val.into(), layout }
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_uint(i: impl Into<u128>, layout: TyLayout<'tcx>) -> Self {
|
|
Self::from_scalar(Scalar::from_uint(i, layout.size), layout)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_int(i: impl Into<i128>, layout: TyLayout<'tcx>) -> Self {
|
|
Self::from_scalar(Scalar::from_int(i, layout.size), layout)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn to_bits(self) -> InterpResult<'tcx, u128> {
|
|
self.to_scalar()?.to_bits(self.layout.size)
|
|
}
|
|
}
|
|
|
|
// Use the existing layout if given (but sanity check in debug mode),
|
|
// or compute the layout.
|
|
#[inline(always)]
|
|
pub(super) fn from_known_layout<'tcx>(
|
|
layout: Option<TyLayout<'tcx>>,
|
|
compute: impl FnOnce() -> InterpResult<'tcx, TyLayout<'tcx>>
|
|
) -> InterpResult<'tcx, TyLayout<'tcx>> {
|
|
match layout {
|
|
None => compute(),
|
|
Some(layout) => {
|
|
if cfg!(debug_assertions) {
|
|
let layout2 = compute()?;
|
|
assert_eq!(layout.details, layout2.details,
|
|
"mismatch in layout of supposedly equal-layout types {:?} and {:?}",
|
|
layout.ty, layout2.ty);
|
|
}
|
|
Ok(layout)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
/// Normalice `place.ptr` to a `Pointer` if this is a place and not a ZST.
|
|
/// Can be helpful to avoid lots of `force_ptr` calls later, if this place is used a lot.
|
|
#[inline]
|
|
pub fn force_op_ptr(
|
|
&self,
|
|
op: OpTy<'tcx, M::PointerTag>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
match op.try_as_mplace() {
|
|
Ok(mplace) => Ok(self.force_mplace_ptr(mplace)?.into()),
|
|
Err(imm) => Ok(imm.into()), // Nothing to cast/force
|
|
}
|
|
}
|
|
|
|
/// Try reading an immediate in memory; this is interesting particularly for `ScalarPair`.
|
|
/// Returns `None` if the layout does not permit loading this as a value.
|
|
fn try_read_immediate_from_mplace(
|
|
&self,
|
|
mplace: MPlaceTy<'tcx, M::PointerTag>,
|
|
) -> InterpResult<'tcx, Option<ImmTy<'tcx, M::PointerTag>>> {
|
|
if mplace.layout.is_unsized() {
|
|
// Don't touch unsized
|
|
return Ok(None);
|
|
}
|
|
|
|
let ptr = match self.check_mplace_access(mplace, None)
|
|
.expect("places should be checked on creation")
|
|
{
|
|
Some(ptr) => ptr,
|
|
None => return Ok(Some(ImmTy { // zero-sized type
|
|
imm: Scalar::zst().into(),
|
|
layout: mplace.layout,
|
|
})),
|
|
};
|
|
|
|
match mplace.layout.abi {
|
|
layout::Abi::Scalar(..) => {
|
|
let scalar = self.memory
|
|
.get_raw(ptr.alloc_id)?
|
|
.read_scalar(self, ptr, mplace.layout.size)?;
|
|
Ok(Some(ImmTy {
|
|
imm: scalar.into(),
|
|
layout: mplace.layout,
|
|
}))
|
|
}
|
|
layout::Abi::ScalarPair(ref a, ref b) => {
|
|
// We checked `ptr_align` above, so all fields will have the alignment they need.
|
|
// We would anyway check against `ptr_align.restrict_for_offset(b_offset)`,
|
|
// which `ptr.offset(b_offset)` cannot possibly fail to satisfy.
|
|
let (a, b) = (&a.value, &b.value);
|
|
let (a_size, b_size) = (a.size(self), b.size(self));
|
|
let a_ptr = ptr;
|
|
let b_offset = a_size.align_to(b.align(self).abi);
|
|
assert!(b_offset.bytes() > 0); // we later use the offset to tell apart the fields
|
|
let b_ptr = ptr.offset(b_offset, self)?;
|
|
let a_val = self.memory
|
|
.get_raw(ptr.alloc_id)?
|
|
.read_scalar(self, a_ptr, a_size)?;
|
|
let b_val = self.memory
|
|
.get_raw(ptr.alloc_id)?
|
|
.read_scalar(self, b_ptr, b_size)?;
|
|
Ok(Some(ImmTy {
|
|
imm: Immediate::ScalarPair(a_val, b_val),
|
|
layout: mplace.layout,
|
|
}))
|
|
}
|
|
_ => Ok(None),
|
|
}
|
|
}
|
|
|
|
/// Try returning an immediate for the operand.
|
|
/// If the layout does not permit loading this as an immediate, return where in memory
|
|
/// we can find the data.
|
|
/// Note that for a given layout, this operation will either always fail or always
|
|
/// succeed! Whether it succeeds depends on whether the layout can be represented
|
|
/// in a `Immediate`, not on which data is stored there currently.
|
|
pub(crate) fn try_read_immediate(
|
|
&self,
|
|
src: OpTy<'tcx, M::PointerTag>,
|
|
) -> InterpResult<'tcx, Result<ImmTy<'tcx, M::PointerTag>, MPlaceTy<'tcx, M::PointerTag>>> {
|
|
Ok(match src.try_as_mplace() {
|
|
Ok(mplace) => {
|
|
if let Some(val) = self.try_read_immediate_from_mplace(mplace)? {
|
|
Ok(val)
|
|
} else {
|
|
Err(mplace)
|
|
}
|
|
},
|
|
Err(val) => Ok(val),
|
|
})
|
|
}
|
|
|
|
/// Read an immediate from a place, asserting that that is possible with the given layout.
|
|
#[inline(always)]
|
|
pub fn read_immediate(
|
|
&self,
|
|
op: OpTy<'tcx, M::PointerTag>
|
|
) -> InterpResult<'tcx, ImmTy<'tcx, M::PointerTag>> {
|
|
if let Ok(imm) = self.try_read_immediate(op)? {
|
|
Ok(imm)
|
|
} else {
|
|
bug!("primitive read failed for type: {:?}", op.layout.ty);
|
|
}
|
|
}
|
|
|
|
/// Read a scalar from a place
|
|
pub fn read_scalar(
|
|
&self,
|
|
op: OpTy<'tcx, M::PointerTag>
|
|
) -> InterpResult<'tcx, ScalarMaybeUndef<M::PointerTag>> {
|
|
Ok(self.read_immediate(op)?.to_scalar_or_undef())
|
|
}
|
|
|
|
// Turn the MPlace into a string (must already be dereferenced!)
|
|
pub fn read_str(
|
|
&self,
|
|
mplace: MPlaceTy<'tcx, M::PointerTag>,
|
|
) -> InterpResult<'tcx, &str> {
|
|
let len = mplace.len(self)?;
|
|
let bytes = self.memory.read_bytes(mplace.ptr, Size::from_bytes(len as u64))?;
|
|
let str = ::std::str::from_utf8(bytes).map_err(|err| {
|
|
err_unsup!(ValidationFailure(err.to_string()))
|
|
})?;
|
|
Ok(str)
|
|
}
|
|
|
|
/// Projection functions
|
|
pub fn operand_field(
|
|
&self,
|
|
op: OpTy<'tcx, M::PointerTag>,
|
|
field: u64,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
let base = match op.try_as_mplace() {
|
|
Ok(mplace) => {
|
|
// The easy case
|
|
let field = self.mplace_field(mplace, field)?;
|
|
return Ok(field.into());
|
|
},
|
|
Err(value) => value
|
|
};
|
|
|
|
let field = field.try_into().unwrap();
|
|
let field_layout = op.layout.field(self, field)?;
|
|
if field_layout.is_zst() {
|
|
let immediate = Scalar::zst().into();
|
|
return Ok(OpTy { op: Operand::Immediate(immediate), layout: field_layout });
|
|
}
|
|
let offset = op.layout.fields.offset(field);
|
|
let immediate = match *base {
|
|
// the field covers the entire type
|
|
_ if offset.bytes() == 0 && field_layout.size == op.layout.size => *base,
|
|
// extract fields from types with `ScalarPair` ABI
|
|
Immediate::ScalarPair(a, b) => {
|
|
let val = if offset.bytes() == 0 { a } else { b };
|
|
Immediate::from(val)
|
|
},
|
|
Immediate::Scalar(val) =>
|
|
bug!("field access on non aggregate {:#?}, {:#?}", val, op.layout),
|
|
};
|
|
Ok(OpTy { op: Operand::Immediate(immediate), layout: field_layout })
|
|
}
|
|
|
|
pub fn operand_downcast(
|
|
&self,
|
|
op: OpTy<'tcx, M::PointerTag>,
|
|
variant: VariantIdx,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
// Downcasts only change the layout
|
|
Ok(match op.try_as_mplace() {
|
|
Ok(mplace) => {
|
|
self.mplace_downcast(mplace, variant)?.into()
|
|
},
|
|
Err(..) => {
|
|
let layout = op.layout.for_variant(self, variant);
|
|
OpTy { layout, ..op }
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn operand_projection(
|
|
&self,
|
|
base: OpTy<'tcx, M::PointerTag>,
|
|
proj_elem: &mir::PlaceElem<'tcx>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
use rustc::mir::ProjectionElem::*;
|
|
Ok(match *proj_elem {
|
|
Field(field, _) => self.operand_field(base, field.index() as u64)?,
|
|
Downcast(_, variant) => self.operand_downcast(base, variant)?,
|
|
Deref => self.deref_operand(base)?.into(),
|
|
Subslice { .. } | ConstantIndex { .. } | Index(_) => if base.layout.is_zst() {
|
|
OpTy {
|
|
op: Operand::Immediate(Scalar::zst().into()),
|
|
// the actual index doesn't matter, so we just pick a convenient one like 0
|
|
layout: base.layout.field(self, 0)?,
|
|
}
|
|
} else {
|
|
// The rest should only occur as mplace, we do not use Immediates for types
|
|
// allowing such operations. This matches place_projection forcing an allocation.
|
|
let mplace = base.assert_mem_place();
|
|
self.mplace_projection(mplace, proj_elem)?.into()
|
|
}
|
|
})
|
|
}
|
|
|
|
/// This is used by [priroda](https://github.com/oli-obk/priroda) to get an OpTy from a local
|
|
pub fn access_local(
|
|
&self,
|
|
frame: &super::Frame<'mir, 'tcx, M::PointerTag, M::FrameExtra>,
|
|
local: mir::Local,
|
|
layout: Option<TyLayout<'tcx>>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
assert_ne!(local, mir::RETURN_PLACE);
|
|
let layout = self.layout_of_local(frame, local, layout)?;
|
|
let op = if layout.is_zst() {
|
|
// Do not read from ZST, they might not be initialized
|
|
Operand::Immediate(Scalar::zst().into())
|
|
} else {
|
|
M::access_local(&self, frame, local)?
|
|
};
|
|
Ok(OpTy { op, layout })
|
|
}
|
|
|
|
/// Every place can be read from, so we can turn them into an operand
|
|
#[inline(always)]
|
|
pub fn place_to_op(
|
|
&self,
|
|
place: PlaceTy<'tcx, M::PointerTag>
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
let op = match *place {
|
|
Place::Ptr(mplace) => {
|
|
Operand::Indirect(mplace)
|
|
}
|
|
Place::Local { frame, local } =>
|
|
*self.access_local(&self.stack[frame], local, None)?
|
|
};
|
|
Ok(OpTy { op, layout: place.layout })
|
|
}
|
|
|
|
// Evaluate a place with the goal of reading from it. This lets us sometimes
|
|
// avoid allocations.
|
|
pub fn eval_place_to_op(
|
|
&self,
|
|
place: &mir::Place<'tcx>,
|
|
layout: Option<TyLayout<'tcx>>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
use rustc::mir::PlaceBase;
|
|
|
|
let base_op = match &place.base {
|
|
PlaceBase::Local(mir::RETURN_PLACE) =>
|
|
throw_unsup!(ReadFromReturnPointer),
|
|
PlaceBase::Local(local) => {
|
|
// Do not use the layout passed in as argument if the base we are looking at
|
|
// here is not the entire place.
|
|
// FIXME use place_projection.is_empty() when is available
|
|
let layout = if place.projection.is_empty() {
|
|
layout
|
|
} else {
|
|
None
|
|
};
|
|
|
|
self.access_local(self.frame(), *local, layout)?
|
|
}
|
|
PlaceBase::Static(place_static) => {
|
|
self.eval_static_to_mplace(&place_static)?.into()
|
|
}
|
|
};
|
|
|
|
let op = place.projection.iter().try_fold(
|
|
base_op,
|
|
|op, elem| self.operand_projection(op, elem)
|
|
)?;
|
|
|
|
trace!("eval_place_to_op: got {:?}", *op);
|
|
Ok(op)
|
|
}
|
|
|
|
/// Evaluate the operand, returning a place where you can then find the data.
|
|
/// If you already know the layout, you can save two table lookups
|
|
/// by passing it in here.
|
|
pub fn eval_operand(
|
|
&self,
|
|
mir_op: &mir::Operand<'tcx>,
|
|
layout: Option<TyLayout<'tcx>>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
use rustc::mir::Operand::*;
|
|
let op = match *mir_op {
|
|
// FIXME: do some more logic on `move` to invalidate the old location
|
|
Copy(ref place) |
|
|
Move(ref place) =>
|
|
self.eval_place_to_op(place, layout)?,
|
|
|
|
Constant(ref constant) => {
|
|
let val = self.subst_from_frame_and_normalize_erasing_regions(constant.literal);
|
|
self.eval_const_to_op(val, layout)?
|
|
}
|
|
};
|
|
trace!("{:?}: {:?}", mir_op, *op);
|
|
Ok(op)
|
|
}
|
|
|
|
/// Evaluate a bunch of operands at once
|
|
pub(super) fn eval_operands(
|
|
&self,
|
|
ops: &[mir::Operand<'tcx>],
|
|
) -> InterpResult<'tcx, Vec<OpTy<'tcx, M::PointerTag>>> {
|
|
ops.into_iter()
|
|
.map(|op| self.eval_operand(op, None))
|
|
.collect()
|
|
}
|
|
|
|
// Used when the miri-engine runs into a constant and for extracting information from constants
|
|
// in patterns via the `const_eval` module
|
|
/// The `val` and `layout` are assumed to already be in our interpreter
|
|
/// "universe" (param_env).
|
|
crate fn eval_const_to_op(
|
|
&self,
|
|
val: &'tcx ty::Const<'tcx>,
|
|
layout: Option<TyLayout<'tcx>>,
|
|
) -> InterpResult<'tcx, OpTy<'tcx, M::PointerTag>> {
|
|
let tag_scalar = |scalar| match scalar {
|
|
Scalar::Ptr(ptr) => Scalar::Ptr(self.tag_static_base_pointer(ptr)),
|
|
Scalar::Raw { data, size } => Scalar::Raw { data, size },
|
|
};
|
|
// Early-return cases.
|
|
let val_val = match val.val {
|
|
ty::ConstKind::Param(_) =>
|
|
throw_inval!(TooGeneric),
|
|
ty::ConstKind::Unevaluated(def_id, substs) => {
|
|
let instance = self.resolve(def_id, substs)?;
|
|
return Ok(OpTy::from(self.const_eval_raw(GlobalId {
|
|
instance,
|
|
promoted: None,
|
|
})?));
|
|
}
|
|
ty::ConstKind::Infer(..) |
|
|
ty::ConstKind::Bound(..) |
|
|
ty::ConstKind::Placeholder(..) =>
|
|
bug!("eval_const_to_op: Unexpected ConstKind {:?}", val),
|
|
ty::ConstKind::Value(val_val) => val_val,
|
|
};
|
|
// Other cases need layout.
|
|
let layout = from_known_layout(layout, || {
|
|
self.layout_of(val.ty)
|
|
})?;
|
|
let op = match val_val {
|
|
ConstValue::ByRef { alloc, offset } => {
|
|
let id = self.tcx.alloc_map.lock().create_memory_alloc(alloc);
|
|
// We rely on mutability being set correctly in that allocation to prevent writes
|
|
// where none should happen.
|
|
let ptr = self.tag_static_base_pointer(Pointer::new(id, offset));
|
|
Operand::Indirect(MemPlace::from_ptr(ptr, layout.align.abi))
|
|
},
|
|
ConstValue::Scalar(x) => Operand::Immediate(tag_scalar(x).into()),
|
|
ConstValue::Slice { data, start, end } => {
|
|
// We rely on mutability being set correctly in `data` to prevent writes
|
|
// where none should happen.
|
|
let ptr = Pointer::new(
|
|
self.tcx.alloc_map.lock().create_memory_alloc(data),
|
|
Size::from_bytes(start as u64), // offset: `start`
|
|
);
|
|
Operand::Immediate(Immediate::new_slice(
|
|
self.tag_static_base_pointer(ptr).into(),
|
|
(end - start) as u64, // len: `end - start`
|
|
self,
|
|
))
|
|
}
|
|
};
|
|
Ok(OpTy { op, layout })
|
|
}
|
|
|
|
/// Read discriminant, return the runtime value as well as the variant index.
|
|
pub fn read_discriminant(
|
|
&self,
|
|
rval: OpTy<'tcx, M::PointerTag>,
|
|
) -> InterpResult<'tcx, (u128, VariantIdx)> {
|
|
trace!("read_discriminant_value {:#?}", rval.layout);
|
|
|
|
let (discr_layout, discr_kind, discr_index) = match rval.layout.variants {
|
|
layout::Variants::Single { index } => {
|
|
let discr_val = rval.layout.ty.discriminant_for_variant(*self.tcx, index).map_or(
|
|
index.as_u32() as u128,
|
|
|discr| discr.val);
|
|
return Ok((discr_val, index));
|
|
}
|
|
layout::Variants::Multiple {
|
|
discr: ref discr_layout,
|
|
ref discr_kind,
|
|
discr_index,
|
|
..
|
|
} =>
|
|
(discr_layout, discr_kind, discr_index),
|
|
};
|
|
|
|
// read raw discriminant value
|
|
let discr_op = self.operand_field(rval, discr_index as u64)?;
|
|
let discr_val = self.read_immediate(discr_op)?;
|
|
let raw_discr = discr_val.to_scalar_or_undef();
|
|
trace!("discr value: {:?}", raw_discr);
|
|
// post-process
|
|
Ok(match *discr_kind {
|
|
layout::DiscriminantKind::Tag => {
|
|
let bits_discr = raw_discr
|
|
.not_undef()
|
|
.and_then(|raw_discr| self.force_bits(raw_discr, discr_val.layout.size))
|
|
.map_err(|_| err_ub!(InvalidDiscriminant(raw_discr.erase_tag())))?;
|
|
let real_discr = if discr_val.layout.ty.is_signed() {
|
|
// going from layout tag type to typeck discriminant type
|
|
// requires first sign extending with the discriminant layout
|
|
let sexted = sign_extend(bits_discr, discr_val.layout.size) as i128;
|
|
// and then zeroing with the typeck discriminant type
|
|
let discr_ty = rval.layout.ty
|
|
.ty_adt_def().expect("tagged layout corresponds to adt")
|
|
.repr
|
|
.discr_type();
|
|
let size = layout::Integer::from_attr(self, discr_ty).size();
|
|
let truncatee = sexted as u128;
|
|
truncate(truncatee, size)
|
|
} else {
|
|
bits_discr
|
|
};
|
|
// Make sure we catch invalid discriminants
|
|
let index = match rval.layout.ty.kind {
|
|
ty::Adt(adt, _) => adt
|
|
.discriminants(self.tcx.tcx)
|
|
.find(|(_, var)| var.val == real_discr),
|
|
ty::Generator(def_id, substs, _) => {
|
|
let substs = substs.as_generator();
|
|
substs
|
|
.discriminants(def_id, self.tcx.tcx)
|
|
.find(|(_, var)| var.val == real_discr)
|
|
}
|
|
_ => bug!("tagged layout for non-adt non-generator"),
|
|
|
|
}.ok_or_else(
|
|
|| err_ub!(InvalidDiscriminant(raw_discr.erase_tag()))
|
|
)?;
|
|
(real_discr, index.0)
|
|
},
|
|
layout::DiscriminantKind::Niche {
|
|
dataful_variant,
|
|
ref niche_variants,
|
|
niche_start,
|
|
} => {
|
|
let variants_start = niche_variants.start().as_u32();
|
|
let variants_end = niche_variants.end().as_u32();
|
|
let raw_discr = raw_discr.not_undef().map_err(|_| {
|
|
err_ub!(InvalidDiscriminant(ScalarMaybeUndef::Undef))
|
|
})?;
|
|
match raw_discr.to_bits_or_ptr(discr_val.layout.size, self) {
|
|
Err(ptr) => {
|
|
// The niche must be just 0 (which an inbounds pointer value never is)
|
|
let ptr_valid = niche_start == 0 && variants_start == variants_end &&
|
|
!self.memory.ptr_may_be_null(ptr);
|
|
if !ptr_valid {
|
|
throw_ub!(InvalidDiscriminant(raw_discr.erase_tag().into()))
|
|
}
|
|
(dataful_variant.as_u32() as u128, dataful_variant)
|
|
},
|
|
Ok(raw_discr) => {
|
|
// We need to use machine arithmetic to get the relative variant idx:
|
|
// variant_index_relative = discr_val - niche_start_val
|
|
let discr_layout = self.layout_of(discr_layout.value.to_int_ty(*self.tcx))?;
|
|
let discr_val = ImmTy::from_uint(raw_discr, discr_layout);
|
|
let niche_start_val = ImmTy::from_uint(niche_start, discr_layout);
|
|
let variant_index_relative_val = self.binary_op(
|
|
mir::BinOp::Sub,
|
|
discr_val,
|
|
niche_start_val,
|
|
)?;
|
|
let variant_index_relative = variant_index_relative_val
|
|
.to_scalar()?
|
|
.assert_bits(discr_val.layout.size);
|
|
// Check if this is in the range that indicates an actual discriminant.
|
|
if variant_index_relative <= u128::from(variants_end - variants_start) {
|
|
let variant_index_relative = u32::try_from(variant_index_relative)
|
|
.expect("we checked that this fits into a u32");
|
|
// Then computing the absolute variant idx should not overflow any more.
|
|
let variant_index = variants_start
|
|
.checked_add(variant_index_relative)
|
|
.expect("oveflow computing absolute variant idx");
|
|
assert!((variant_index as usize) < rval.layout.ty
|
|
.ty_adt_def()
|
|
.expect("tagged layout for non adt")
|
|
.variants.len());
|
|
(u128::from(variant_index), VariantIdx::from_u32(variant_index))
|
|
} else {
|
|
(u128::from(dataful_variant.as_u32()), dataful_variant)
|
|
}
|
|
},
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|