rust/src/librustc_mir/interpret/intrinsics.rs

447 lines
19 KiB
Rust

//! Intrinsics and other functions that the miri engine executes without
//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
//! and miri.
use syntax::symbol::Symbol;
use syntax_pos::Span;
use rustc::ty;
use rustc::ty::layout::{LayoutOf, Primitive, Size};
use rustc::ty::subst::SubstsRef;
use rustc::hir::def_id::DefId;
use rustc::ty::TyCtxt;
use rustc::mir::{
self, BinOp,
interpret::{InterpResult, Scalar, GlobalId, ConstValue}
};
use super::{
Machine, PlaceTy, OpTy, InterpCx, ImmTy,
};
mod caller_location;
mod type_name;
fn numeric_intrinsic<'tcx, Tag>(
name: &str,
bits: u128,
kind: Primitive,
) -> InterpResult<'tcx, Scalar<Tag>> {
let size = match kind {
Primitive::Int(integer, _) => integer.size(),
_ => bug!("invalid `{}` argument: {:?}", name, bits),
};
let extra = 128 - size.bits() as u128;
let bits_out = match name {
"ctpop" => bits.count_ones() as u128,
"ctlz" => bits.leading_zeros() as u128 - extra,
"cttz" => (bits << extra).trailing_zeros() as u128 - extra,
"bswap" => (bits << extra).swap_bytes(),
"bitreverse" => (bits << extra).reverse_bits(),
_ => bug!("not a numeric intrinsic: {}", name),
};
Ok(Scalar::from_uint(bits_out, size))
}
/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
crate fn eval_nullary_intrinsic<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
def_id: DefId,
substs: SubstsRef<'tcx>,
) -> InterpResult<'tcx, &'tcx ty::Const<'tcx>> {
let tp_ty = substs.type_at(0);
let name = &*tcx.item_name(def_id).as_str();
Ok(match name {
"type_name" => {
let alloc = type_name::alloc_type_name(tcx, tp_ty);
tcx.mk_const(ty::Const {
val: ty::ConstKind::Value(ConstValue::Slice {
data: alloc,
start: 0,
end: alloc.len(),
}),
ty: tcx.mk_static_str(),
})
},
"needs_drop" => ty::Const::from_bool(tcx, tp_ty.needs_drop(tcx, param_env)),
"size_of" |
"min_align_of" |
"pref_align_of" => {
let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
let n = match name {
"pref_align_of" => layout.align.pref.bytes(),
"min_align_of" => layout.align.abi.bytes(),
"size_of" => layout.size.bytes(),
_ => bug!(),
};
ty::Const::from_usize(tcx, n)
},
"type_id" => ty::Const::from_bits(
tcx,
tcx.type_id_hash(tp_ty).into(),
param_env.and(tcx.types.u64),
),
other => bug!("`{}` is not a zero arg intrinsic", other),
})
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Returns `true` if emulation happened.
pub fn emulate_intrinsic(
&mut self,
span: Span,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, M::PointerTag>],
ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
) -> InterpResult<'tcx, bool> {
let substs = instance.substs;
let intrinsic_name = &*self.tcx.item_name(instance.def_id()).as_str();
// We currently do not handle any intrinsics that are *allowed* to diverge,
// but `transmute` could lack a return place in case of UB.
let (dest, ret) = match ret {
Some(p) => p,
None => match intrinsic_name {
"transmute" => throw_ub!(Unreachable),
_ => return Ok(false),
}
};
match intrinsic_name {
"caller_location" => {
let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
let caller = self.tcx.sess.source_map().lookup_char_pos(topmost.lo());
let location = self.alloc_caller_location(
Symbol::intern(&caller.file.name.to_string()),
caller.line as u32,
caller.col_display as u32 + 1,
)?;
self.write_scalar(location.ptr, dest)?;
}
"min_align_of" |
"pref_align_of" |
"needs_drop" |
"size_of" |
"type_id" |
"type_name" => {
let gid = GlobalId {
instance,
promoted: None,
};
let val = self.tcx.const_eval(self.param_env.and(gid))?;
let val = self.eval_const_to_op(val, None)?;
self.copy_op(val, dest)?;
}
| "ctpop"
| "cttz"
| "cttz_nonzero"
| "ctlz"
| "ctlz_nonzero"
| "bswap"
| "bitreverse" => {
let ty = substs.type_at(0);
let layout_of = self.layout_of(ty)?;
let val = self.read_scalar(args[0])?.not_undef()?;
let bits = self.force_bits(val, layout_of.size)?;
let kind = match layout_of.abi {
ty::layout::Abi::Scalar(ref scalar) => scalar.value,
_ => throw_unsup!(TypeNotPrimitive(ty)),
};
let out_val = if intrinsic_name.ends_with("_nonzero") {
if bits == 0 {
throw_ub_format!("`{}` called on 0", intrinsic_name);
}
numeric_intrinsic(intrinsic_name.trim_end_matches("_nonzero"), bits, kind)?
} else {
numeric_intrinsic(intrinsic_name, bits, kind)?
};
self.write_scalar(out_val, dest)?;
}
| "wrapping_add"
| "wrapping_sub"
| "wrapping_mul"
| "add_with_overflow"
| "sub_with_overflow"
| "mul_with_overflow" => {
let lhs = self.read_immediate(args[0])?;
let rhs = self.read_immediate(args[1])?;
let (bin_op, ignore_overflow) = match intrinsic_name {
"wrapping_add" => (BinOp::Add, true),
"wrapping_sub" => (BinOp::Sub, true),
"wrapping_mul" => (BinOp::Mul, true),
"add_with_overflow" => (BinOp::Add, false),
"sub_with_overflow" => (BinOp::Sub, false),
"mul_with_overflow" => (BinOp::Mul, false),
_ => bug!("Already checked for int ops")
};
if ignore_overflow {
self.binop_ignore_overflow(bin_op, lhs, rhs, dest)?;
} else {
self.binop_with_overflow(bin_op, lhs, rhs, dest)?;
}
}
"saturating_add" | "saturating_sub" => {
let l = self.read_immediate(args[0])?;
let r = self.read_immediate(args[1])?;
let is_add = intrinsic_name == "saturating_add";
let (val, overflowed, _ty) = self.overflowing_binary_op(if is_add {
BinOp::Add
} else {
BinOp::Sub
}, l, r)?;
let val = if overflowed {
let num_bits = l.layout.size.bits();
if l.layout.abi.is_signed() {
// For signed ints the saturated value depends on the sign of the first
// term since the sign of the second term can be inferred from this and
// the fact that the operation has overflowed (if either is 0 no
// overflow can occur)
let first_term: u128 = self.force_bits(l.to_scalar()?, l.layout.size)?;
let first_term_positive = first_term & (1 << (num_bits-1)) == 0;
if first_term_positive {
// Negative overflow not possible since the positive first term
// can only increase an (in range) negative term for addition
// or corresponding negated positive term for subtraction
Scalar::from_uint((1u128 << (num_bits - 1)) - 1, // max positive
Size::from_bits(num_bits))
} else {
// Positive overflow not possible for similar reason
// max negative
Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
}
} else { // unsigned
if is_add {
// max unsigned
Scalar::from_uint(u128::max_value() >> (128 - num_bits),
Size::from_bits(num_bits))
} else { // underflow to 0
Scalar::from_uint(0u128, Size::from_bits(num_bits))
}
}
} else {
val
};
self.write_scalar(val, dest)?;
}
"unchecked_shl" | "unchecked_shr" => {
let l = self.read_immediate(args[0])?;
let r = self.read_immediate(args[1])?;
let bin_op = match intrinsic_name {
"unchecked_shl" => BinOp::Shl,
"unchecked_shr" => BinOp::Shr,
_ => bug!("Already checked for int ops")
};
let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, l, r)?;
if overflowed {
let layout = self.layout_of(substs.type_at(0))?;
let r_val = self.force_bits(r.to_scalar()?, layout.size)?;
throw_ub_format!("Overflowing shift by {} in `{}`", r_val, intrinsic_name);
}
self.write_scalar(val, dest)?;
}
"rotate_left" | "rotate_right" => {
// rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
// rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
let layout = self.layout_of(substs.type_at(0))?;
let val = self.read_scalar(args[0])?.not_undef()?;
let val_bits = self.force_bits(val, layout.size)?;
let raw_shift = self.read_scalar(args[1])?.not_undef()?;
let raw_shift_bits = self.force_bits(raw_shift, layout.size)?;
let width_bits = layout.size.bits() as u128;
let shift_bits = raw_shift_bits % width_bits;
let inv_shift_bits = (width_bits - shift_bits) % width_bits;
let result_bits = if intrinsic_name == "rotate_left" {
(val_bits << shift_bits) | (val_bits >> inv_shift_bits)
} else {
(val_bits >> shift_bits) | (val_bits << inv_shift_bits)
};
let truncated_bits = self.truncate(result_bits, layout);
let result = Scalar::from_uint(truncated_bits, layout.size);
self.write_scalar(result, dest)?;
}
"ptr_offset_from" => {
let isize_layout = self.layout_of(self.tcx.types.isize)?;
let a = self.read_immediate(args[0])?.to_scalar()?;
let b = self.read_immediate(args[1])?.to_scalar()?;
// Special case: if both scalars are *equal integers*
// and not NULL, we pretend there is an allocation of size 0 right there,
// and their offset is 0. (There's never a valid object at NULL, making it an
// exception from the exception.)
// This is the dual to the special exception for offset-by-0
// in the inbounds pointer offset operation (see the Miri code, `src/operator.rs`).
//
// Control flow is weird because we cannot early-return (to reach the
// `go_to_block` at the end).
let done = if a.is_bits() && b.is_bits() {
let a = a.to_machine_usize(self)?;
let b = b.to_machine_usize(self)?;
if a == b && a != 0 {
self.write_scalar(Scalar::from_int(0, isize_layout.size), dest)?;
true
} else { false }
} else { false };
if !done {
// General case: we need two pointers.
let a = self.force_ptr(a)?;
let b = self.force_ptr(b)?;
if a.alloc_id != b.alloc_id {
throw_ub_format!(
"ptr_offset_from cannot compute offset of pointers into different \
allocations.",
);
}
let usize_layout = self.layout_of(self.tcx.types.usize)?;
let a_offset = ImmTy::from_uint(a.offset.bytes(), usize_layout);
let b_offset = ImmTy::from_uint(b.offset.bytes(), usize_layout);
let (val, _overflowed, _ty) = self.overflowing_binary_op(
BinOp::Sub, a_offset, b_offset,
)?;
let pointee_layout = self.layout_of(substs.type_at(0))?;
let val = ImmTy::from_scalar(val, isize_layout);
let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
self.exact_div(val, size, dest)?;
}
}
"transmute" => {
self.copy_op_transmute(args[0], dest)?;
}
"simd_insert" => {
let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
let elem = args[2];
let input = args[0];
let (len, e_ty) = input.layout.ty.simd_size_and_type(self.tcx.tcx);
assert!(
index < len,
"Index `{}` must be in bounds of vector type `{}`: `[0, {})`",
index, e_ty, len
);
assert_eq!(
input.layout, dest.layout,
"Return type `{}` must match vector type `{}`",
dest.layout.ty, input.layout.ty
);
assert_eq!(
elem.layout.ty, e_ty,
"Scalar element type `{}` must match vector element type `{}`",
elem.layout.ty, e_ty
);
for i in 0..len {
let place = self.place_field(dest, i)?;
let value = if i == index {
elem
} else {
self.operand_field(input, i)?
};
self.copy_op(value, place)?;
}
}
"simd_extract" => {
let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
let (len, e_ty) = args[0].layout.ty.simd_size_and_type(self.tcx.tcx);
assert!(
index < len,
"index `{}` is out-of-bounds of vector type `{}` with length `{}`",
index, e_ty, len
);
assert_eq!(
e_ty, dest.layout.ty,
"Return type `{}` must match vector element type `{}`",
dest.layout.ty, e_ty
);
self.copy_op(self.operand_field(args[0], index)?, dest)?;
}
_ => return Ok(false),
}
self.dump_place(*dest);
self.go_to_block(ret);
Ok(true)
}
/// "Intercept" a function call to a panic-related function
/// because we have something special to do for it.
/// Returns `true` if an intercept happened.
pub fn hook_panic_fn(
&mut self,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, M::PointerTag>],
_ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
) -> InterpResult<'tcx, bool> {
let def_id = instance.def_id();
if Some(def_id) == self.tcx.lang_items().panic_fn() {
// &'static str, &core::panic::Location { &'static str, u32, u32 }
assert!(args.len() == 2);
let msg_place = self.deref_operand(args[0])?;
let msg = Symbol::intern(self.read_str(msg_place)?);
let location = self.deref_operand(args[1])?;
let (file, line, col) = (
self.mplace_field(location, 0)?,
self.mplace_field(location, 1)?,
self.mplace_field(location, 2)?,
);
let file_place = self.deref_operand(file.into())?;
let file = Symbol::intern(self.read_str(file_place)?);
let line = self.read_scalar(line.into())?.to_u32()?;
let col = self.read_scalar(col.into())?.to_u32()?;
throw_panic!(Panic { msg, file, line, col })
} else if Some(def_id) == self.tcx.lang_items().begin_panic_fn() {
assert!(args.len() == 2);
// &'static str, &(&'static str, u32, u32)
let msg = args[0];
let place = self.deref_operand(args[1])?;
let (file, line, col) = (
self.mplace_field(place, 0)?,
self.mplace_field(place, 1)?,
self.mplace_field(place, 2)?,
);
let msg_place = self.deref_operand(msg.into())?;
let msg = Symbol::intern(self.read_str(msg_place)?);
let file_place = self.deref_operand(file.into())?;
let file = Symbol::intern(self.read_str(file_place)?);
let line = self.read_scalar(line.into())?.to_u32()?;
let col = self.read_scalar(col.into())?.to_u32()?;
throw_panic!(Panic { msg, file, line, col })
} else {
return Ok(false);
}
}
pub fn exact_div(
&mut self,
a: ImmTy<'tcx, M::PointerTag>,
b: ImmTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
// Performs an exact division, resulting in undefined behavior where
// `x % y != 0` or `y == 0` or `x == T::min_value() && y == -1`.
// First, check x % y != 0.
if self.binary_op(BinOp::Rem, a, b)?.to_bits()? != 0 {
// Then, check if `b` is -1, which is the "min_value / -1" case.
let minus1 = Scalar::from_int(-1, dest.layout.size);
let b = b.to_scalar().unwrap();
if b == minus1 {
throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
} else {
throw_ub_format!(
"exact_div: {} cannot be divided by {} without remainder",
a.to_scalar().unwrap(),
b,
)
}
}
self.binop_ignore_overflow(BinOp::Div, a, b, dest)
}
}