1320 lines
40 KiB
Rust
1320 lines
40 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Code that is useful in various trans modules.
|
|
|
|
|
|
use driver::session;
|
|
use driver::session::Session;
|
|
use lib::llvm::{ValueRef, BasicBlockRef, BuilderRef};
|
|
use lib::llvm::{True, False, Bool};
|
|
use lib::llvm::llvm;
|
|
use lib;
|
|
use middle::lang_items::LangItem;
|
|
use middle::trans::base;
|
|
use middle::trans::build;
|
|
use middle::trans::datum;
|
|
use middle::trans::glue;
|
|
use middle::trans::write_guard;
|
|
use middle::trans::debuginfo;
|
|
use middle::ty::substs;
|
|
use middle::ty;
|
|
use middle::typeck;
|
|
use middle::borrowck::root_map_key;
|
|
use util::ppaux::Repr;
|
|
|
|
use middle::trans::type_::Type;
|
|
|
|
use std::c_str::ToCStr;
|
|
use std::cast::transmute;
|
|
use std::cast;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::hashmap::HashMap;
|
|
use std::libc::{c_uint, c_longlong, c_ulonglong, c_char};
|
|
use std::vec;
|
|
use syntax::ast::{Name, Ident};
|
|
use syntax::ast_map::{path, path_elt, path_pretty_name};
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token;
|
|
use syntax::{ast, ast_map};
|
|
|
|
pub use middle::trans::context::CrateContext;
|
|
|
|
fn type_is_newtype_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
|
|
match ty::get(ty).sty {
|
|
ty::ty_struct(def_id, ref substs) => {
|
|
let fields = ty::struct_fields(ccx.tcx, def_id, substs);
|
|
fields.len() == 1 &&
|
|
fields[0].ident.name == token::special_idents::unnamed_field.name &&
|
|
type_is_immediate(ccx, fields[0].mt.ty)
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
|
|
use middle::trans::machine::llsize_of_alloc;
|
|
use middle::trans::type_of::sizing_type_of;
|
|
let tcx = ccx.tcx;
|
|
let simple = ty::type_is_scalar(ty) || ty::type_is_boxed(ty) ||
|
|
ty::type_is_unique(ty) || ty::type_is_region_ptr(ty) ||
|
|
type_is_newtype_immediate(ccx, ty) ||
|
|
ty::type_is_simd(tcx, ty);
|
|
if simple {
|
|
return true;
|
|
}
|
|
match ty::get(ty).sty {
|
|
ty::ty_bot => true,
|
|
ty::ty_struct(..) | ty::ty_enum(..) | ty::ty_tup(..) => {
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type)
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn gensym_name(name: &str) -> (Ident, path_elt) {
|
|
let name = token::gensym(name);
|
|
let ident = Ident::new(name);
|
|
(ident, path_pretty_name(ident, name as u64))
|
|
}
|
|
|
|
pub struct tydesc_info {
|
|
ty: ty::t,
|
|
tydesc: ValueRef,
|
|
size: ValueRef,
|
|
align: ValueRef,
|
|
borrow_offset: ValueRef,
|
|
name: ValueRef,
|
|
take_glue: Cell<Option<ValueRef>>,
|
|
drop_glue: Cell<Option<ValueRef>>,
|
|
free_glue: Cell<Option<ValueRef>>,
|
|
visit_glue: Cell<Option<ValueRef>>,
|
|
}
|
|
|
|
/*
|
|
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
|
|
*
|
|
* An "extern" is an LLVM symbol we wind up emitting an undefined external
|
|
* reference to. This means "we don't have the thing in this compilation unit,
|
|
* please make sure you link it in at runtime". This could be a reference to
|
|
* C code found in a C library, or rust code found in a rust crate.
|
|
*
|
|
* Most "externs" are implicitly declared (automatically) as a result of a
|
|
* user declaring an extern _module_ dependency; this causes the rust driver
|
|
* to locate an extern crate, scan its compilation metadata, and emit extern
|
|
* declarations for any symbols used by the declaring crate.
|
|
*
|
|
* A "foreign" is an extern that references C (or other non-rust ABI) code.
|
|
* There is no metadata to scan for extern references so in these cases either
|
|
* a header-digester like bindgen, or manual function prototypes, have to
|
|
* serve as declarators. So these are usually given explicitly as prototype
|
|
* declarations, in rust code, with ABI attributes on them noting which ABI to
|
|
* link via.
|
|
*
|
|
* An "upcall" is a foreign call generated by the compiler (not corresponding
|
|
* to any user-written call in the code) into the runtime library, to perform
|
|
* some helper task such as bringing a task to life, allocating memory, etc.
|
|
*
|
|
*/
|
|
|
|
pub struct Stats {
|
|
n_static_tydescs: Cell<uint>,
|
|
n_glues_created: Cell<uint>,
|
|
n_null_glues: Cell<uint>,
|
|
n_real_glues: Cell<uint>,
|
|
n_fns: Cell<uint>,
|
|
n_monos: uint,
|
|
n_inlines: uint,
|
|
n_closures: uint,
|
|
n_llvm_insns: uint,
|
|
llvm_insn_ctxt: ~[~str],
|
|
llvm_insns: HashMap<~str, uint>,
|
|
fn_stats: ~[(~str, uint, uint)] // (ident, time-in-ms, llvm-instructions)
|
|
}
|
|
|
|
pub struct BuilderRef_res {
|
|
B: BuilderRef,
|
|
}
|
|
|
|
impl Drop for BuilderRef_res {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
llvm::LLVMDisposeBuilder(self.B);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn BuilderRef_res(B: BuilderRef) -> BuilderRef_res {
|
|
BuilderRef_res {
|
|
B: B
|
|
}
|
|
}
|
|
|
|
pub type ExternMap = HashMap<~str, ValueRef>;
|
|
|
|
// Types used for llself.
|
|
pub struct ValSelfData {
|
|
v: ValueRef,
|
|
t: ty::t,
|
|
is_copy: bool,
|
|
}
|
|
|
|
// Here `self_ty` is the real type of the self parameter to this method. It
|
|
// will only be set in the case of default methods.
|
|
pub struct param_substs {
|
|
tys: ~[ty::t],
|
|
self_ty: Option<ty::t>,
|
|
vtables: Option<typeck::vtable_res>,
|
|
self_vtables: Option<typeck::vtable_param_res>
|
|
}
|
|
|
|
impl param_substs {
|
|
pub fn validate(&self) {
|
|
for t in self.tys.iter() { assert!(!ty::type_needs_infer(*t)); }
|
|
for t in self.self_ty.iter() { assert!(!ty::type_needs_infer(*t)); }
|
|
}
|
|
}
|
|
|
|
fn param_substs_to_str(this: ¶m_substs, tcx: ty::ctxt) -> ~str {
|
|
format!("param_substs \\{tys:{}, vtables:{}\\}",
|
|
this.tys.repr(tcx),
|
|
this.vtables.repr(tcx))
|
|
}
|
|
|
|
impl Repr for param_substs {
|
|
fn repr(&self, tcx: ty::ctxt) -> ~str {
|
|
param_substs_to_str(self, tcx)
|
|
}
|
|
}
|
|
|
|
// Function context. Every LLVM function we create will have one of
|
|
// these.
|
|
pub struct FunctionContext {
|
|
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
|
|
// address of the first instruction in the sequence of
|
|
// instructions for this function that will go in the .text
|
|
// section of the executable we're generating.
|
|
llfn: ValueRef,
|
|
|
|
// The implicit environment argument that arrives in the function we're
|
|
// creating.
|
|
llenv: Cell<ValueRef>,
|
|
|
|
// The place to store the return value. If the return type is immediate,
|
|
// this is an alloca in the function. Otherwise, it's the hidden first
|
|
// parameter to the function. After function construction, this should
|
|
// always be Some.
|
|
llretptr: Cell<Option<ValueRef>>,
|
|
|
|
entry_bcx: RefCell<Option<@Block>>,
|
|
|
|
// These elements: "hoisted basic blocks" containing
|
|
// administrative activities that have to happen in only one place in
|
|
// the function, due to LLVM's quirks.
|
|
// A marker for the place where we want to insert the function's static
|
|
// allocas, so that LLVM will coalesce them into a single alloca call.
|
|
alloca_insert_pt: Cell<Option<ValueRef>>,
|
|
llreturn: Cell<Option<BasicBlockRef>>,
|
|
// The 'self' value currently in use in this function, if there
|
|
// is one.
|
|
//
|
|
// NB: This is the type of the self *variable*, not the self *type*. The
|
|
// self type is set only for default methods, while the self variable is
|
|
// set for all methods.
|
|
llself: Cell<Option<ValSelfData>>,
|
|
// The a value alloca'd for calls to upcalls.rust_personality. Used when
|
|
// outputting the resume instruction.
|
|
personality: Cell<Option<ValueRef>>,
|
|
|
|
// True if the caller expects this fn to use the out pointer to
|
|
// return. Either way, your code should write into llretptr, but if
|
|
// this value is false, llretptr will be a local alloca.
|
|
caller_expects_out_pointer: bool,
|
|
|
|
// Maps arguments to allocas created for them in llallocas.
|
|
llargs: RefCell<HashMap<ast::NodeId, ValueRef>>,
|
|
// Maps the def_ids for local variables to the allocas created for
|
|
// them in llallocas.
|
|
lllocals: RefCell<HashMap<ast::NodeId, ValueRef>>,
|
|
// Same as above, but for closure upvars
|
|
llupvars: RefCell<HashMap<ast::NodeId, ValueRef>>,
|
|
|
|
// The NodeId of the function, or -1 if it doesn't correspond to
|
|
// a user-defined function.
|
|
id: ast::NodeId,
|
|
|
|
// If this function is being monomorphized, this contains the type
|
|
// substitutions used.
|
|
param_substs: Option<@param_substs>,
|
|
|
|
// The source span and nesting context where this function comes from, for
|
|
// error reporting and symbol generation.
|
|
span: Option<Span>,
|
|
path: path,
|
|
|
|
// This function's enclosing crate context.
|
|
ccx: @CrateContext,
|
|
|
|
// Used and maintained by the debuginfo module.
|
|
debug_context: debuginfo::FunctionDebugContext,
|
|
}
|
|
|
|
impl FunctionContext {
|
|
pub fn arg_pos(&self, arg: uint) -> uint {
|
|
if self.caller_expects_out_pointer {
|
|
arg + 2u
|
|
} else {
|
|
arg + 1u
|
|
}
|
|
}
|
|
|
|
pub fn out_arg_pos(&self) -> uint {
|
|
assert!(self.caller_expects_out_pointer);
|
|
0u
|
|
}
|
|
|
|
pub fn env_arg_pos(&self) -> uint {
|
|
if self.caller_expects_out_pointer {
|
|
1u
|
|
} else {
|
|
0u
|
|
}
|
|
}
|
|
|
|
pub fn cleanup(&self) {
|
|
unsafe {
|
|
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
|
|
.get()
|
|
.unwrap());
|
|
}
|
|
// Remove the cycle between fcx and bcx, so memory can be freed
|
|
self.entry_bcx.set(None);
|
|
}
|
|
|
|
pub fn get_llreturn(&self) -> BasicBlockRef {
|
|
if self.llreturn.get().is_none() {
|
|
self.llreturn.set(Some(base::mk_return_basic_block(self.llfn)));
|
|
}
|
|
|
|
self.llreturn.get().unwrap()
|
|
}
|
|
}
|
|
|
|
pub fn warn_not_to_commit(ccx: &CrateContext, msg: &str) {
|
|
if !ccx.do_not_commit_warning_issued.get() {
|
|
ccx.do_not_commit_warning_issued.set(true);
|
|
ccx.sess.warn(msg.to_str() + " -- do not commit like this!");
|
|
}
|
|
}
|
|
|
|
// Heap selectors. Indicate which heap something should go on.
|
|
#[deriving(Eq)]
|
|
pub enum heap {
|
|
heap_managed,
|
|
heap_managed_unique,
|
|
heap_exchange,
|
|
heap_exchange_closure
|
|
}
|
|
|
|
#[deriving(Clone, Eq)]
|
|
pub enum cleantype {
|
|
normal_exit_only,
|
|
normal_exit_and_unwind
|
|
}
|
|
|
|
// Cleanup functions
|
|
|
|
/// A cleanup function: a built-in destructor.
|
|
pub trait CleanupFunction {
|
|
fn clean(&self, block: @Block) -> @Block;
|
|
}
|
|
|
|
/// A cleanup function that calls the "drop glue" (destructor function) on
|
|
/// a typed value.
|
|
pub struct TypeDroppingCleanupFunction {
|
|
val: ValueRef,
|
|
t: ty::t,
|
|
}
|
|
|
|
impl CleanupFunction for TypeDroppingCleanupFunction {
|
|
fn clean(&self, block: @Block) -> @Block {
|
|
glue::drop_ty(block, self.val, self.t)
|
|
}
|
|
}
|
|
|
|
/// A cleanup function that calls the "drop glue" (destructor function) on
|
|
/// an immediate typed value.
|
|
pub struct ImmediateTypeDroppingCleanupFunction {
|
|
val: ValueRef,
|
|
t: ty::t,
|
|
}
|
|
|
|
impl CleanupFunction for ImmediateTypeDroppingCleanupFunction {
|
|
fn clean(&self, block: @Block) -> @Block {
|
|
glue::drop_ty_immediate(block, self.val, self.t)
|
|
}
|
|
}
|
|
|
|
/// A cleanup function that releases a write guard, returning a value to
|
|
/// mutable status.
|
|
pub struct WriteGuardReleasingCleanupFunction {
|
|
root_key: root_map_key,
|
|
frozen_val_ref: ValueRef,
|
|
bits_val_ref: ValueRef,
|
|
filename_val: ValueRef,
|
|
line_val: ValueRef,
|
|
}
|
|
|
|
impl CleanupFunction for WriteGuardReleasingCleanupFunction {
|
|
fn clean(&self, bcx: @Block) -> @Block {
|
|
write_guard::return_to_mut(bcx,
|
|
self.root_key,
|
|
self.frozen_val_ref,
|
|
self.bits_val_ref,
|
|
self.filename_val,
|
|
self.line_val)
|
|
}
|
|
}
|
|
|
|
/// A cleanup function that frees some memory in the garbage-collected heap.
|
|
pub struct GCHeapFreeingCleanupFunction {
|
|
ptr: ValueRef,
|
|
}
|
|
|
|
impl CleanupFunction for GCHeapFreeingCleanupFunction {
|
|
fn clean(&self, bcx: @Block) -> @Block {
|
|
glue::trans_free(bcx, self.ptr)
|
|
}
|
|
}
|
|
|
|
/// A cleanup function that frees some memory in the exchange heap.
|
|
pub struct ExchangeHeapFreeingCleanupFunction {
|
|
ptr: ValueRef,
|
|
}
|
|
|
|
impl CleanupFunction for ExchangeHeapFreeingCleanupFunction {
|
|
fn clean(&self, bcx: @Block) -> @Block {
|
|
glue::trans_exchange_free(bcx, self.ptr)
|
|
}
|
|
}
|
|
|
|
pub enum cleanup {
|
|
clean(@CleanupFunction, cleantype),
|
|
clean_temp(ValueRef, @CleanupFunction, cleantype),
|
|
}
|
|
|
|
// Can't use deriving(Clone) because of the managed closure.
|
|
impl Clone for cleanup {
|
|
fn clone(&self) -> cleanup {
|
|
match *self {
|
|
clean(f, ct) => clean(f, ct),
|
|
clean_temp(v, f, ct) => clean_temp(v, f, ct),
|
|
}
|
|
}
|
|
}
|
|
|
|
// Used to remember and reuse existing cleanup paths
|
|
// target: none means the path ends in an resume instruction
|
|
#[deriving(Clone)]
|
|
pub struct cleanup_path {
|
|
target: Option<BasicBlockRef>,
|
|
size: uint,
|
|
dest: BasicBlockRef
|
|
}
|
|
|
|
pub fn shrink_scope_clean(scope_info: &ScopeInfo, size: uint) {
|
|
scope_info.landing_pad.set(None);
|
|
let new_cleanup_paths = {
|
|
let cleanup_paths = scope_info.cleanup_paths.borrow();
|
|
cleanup_paths.get()
|
|
.iter()
|
|
.take_while(|&cu| cu.size <= size)
|
|
.map(|&x| x)
|
|
.collect()
|
|
};
|
|
scope_info.cleanup_paths.set(new_cleanup_paths)
|
|
}
|
|
|
|
pub fn grow_scope_clean(scope_info: &ScopeInfo) {
|
|
scope_info.landing_pad.set(None);
|
|
}
|
|
|
|
pub fn cleanup_type(cx: ty::ctxt, ty: ty::t) -> cleantype {
|
|
if ty::type_needs_unwind_cleanup(cx, ty) {
|
|
normal_exit_and_unwind
|
|
} else {
|
|
normal_exit_only
|
|
}
|
|
}
|
|
|
|
pub fn add_clean(bcx: @Block, val: ValueRef, t: ty::t) {
|
|
if !ty::type_needs_drop(bcx.tcx(), t) {
|
|
return
|
|
}
|
|
|
|
debug!("add_clean({}, {}, {})", bcx.to_str(), bcx.val_to_str(val), t.repr(bcx.tcx()));
|
|
|
|
let cleanup_type = cleanup_type(bcx.tcx(), t);
|
|
in_scope_cx(bcx, None, |scope_info| {
|
|
{
|
|
let mut cleanups = scope_info.cleanups.borrow_mut();
|
|
cleanups.get().push(clean(@TypeDroppingCleanupFunction {
|
|
val: val,
|
|
t: t,
|
|
} as @CleanupFunction,
|
|
cleanup_type));
|
|
}
|
|
grow_scope_clean(scope_info);
|
|
})
|
|
}
|
|
|
|
pub fn add_clean_temp_immediate(cx: @Block, val: ValueRef, ty: ty::t) {
|
|
if !ty::type_needs_drop(cx.tcx(), ty) { return; }
|
|
debug!("add_clean_temp_immediate({}, {}, {})",
|
|
cx.to_str(), cx.val_to_str(val),
|
|
ty.repr(cx.tcx()));
|
|
let cleanup_type = cleanup_type(cx.tcx(), ty);
|
|
in_scope_cx(cx, None, |scope_info| {
|
|
{
|
|
let mut cleanups = scope_info.cleanups.borrow_mut();
|
|
cleanups.get().push(clean_temp(val,
|
|
@ImmediateTypeDroppingCleanupFunction {
|
|
val: val,
|
|
t: ty,
|
|
} as @CleanupFunction,
|
|
cleanup_type));
|
|
}
|
|
grow_scope_clean(scope_info);
|
|
})
|
|
}
|
|
|
|
pub fn add_clean_temp_mem(bcx: @Block, val: ValueRef, t: ty::t) {
|
|
add_clean_temp_mem_in_scope_(bcx, None, val, t);
|
|
}
|
|
|
|
pub fn add_clean_temp_mem_in_scope(bcx: @Block,
|
|
scope_id: ast::NodeId,
|
|
val: ValueRef,
|
|
t: ty::t) {
|
|
add_clean_temp_mem_in_scope_(bcx, Some(scope_id), val, t);
|
|
}
|
|
|
|
pub fn add_clean_temp_mem_in_scope_(bcx: @Block, scope_id: Option<ast::NodeId>,
|
|
val: ValueRef, t: ty::t) {
|
|
if !ty::type_needs_drop(bcx.tcx(), t) { return; }
|
|
debug!("add_clean_temp_mem({}, {}, {})",
|
|
bcx.to_str(), bcx.val_to_str(val),
|
|
t.repr(bcx.tcx()));
|
|
let cleanup_type = cleanup_type(bcx.tcx(), t);
|
|
in_scope_cx(bcx, scope_id, |scope_info| {
|
|
{
|
|
let mut cleanups = scope_info.cleanups.borrow_mut();
|
|
cleanups.get().push(clean_temp(val,
|
|
@TypeDroppingCleanupFunction {
|
|
val: val,
|
|
t: t,
|
|
} as @CleanupFunction,
|
|
cleanup_type));
|
|
}
|
|
grow_scope_clean(scope_info);
|
|
})
|
|
}
|
|
pub fn add_clean_return_to_mut(bcx: @Block,
|
|
scope_id: ast::NodeId,
|
|
root_key: root_map_key,
|
|
frozen_val_ref: ValueRef,
|
|
bits_val_ref: ValueRef,
|
|
filename_val: ValueRef,
|
|
line_val: ValueRef) {
|
|
//! When an `@mut` has been frozen, we have to
|
|
//! call the lang-item `return_to_mut` when the
|
|
//! freeze goes out of scope. We need to pass
|
|
//! in both the value which was frozen (`frozen_val`) and
|
|
//! the value (`bits_val_ref`) which was returned when the
|
|
//! box was frozen initially. Here, both `frozen_val_ref` and
|
|
//! `bits_val_ref` are in fact pointers to stack slots.
|
|
|
|
debug!("add_clean_return_to_mut({}, {}, {})",
|
|
bcx.to_str(),
|
|
bcx.val_to_str(frozen_val_ref),
|
|
bcx.val_to_str(bits_val_ref));
|
|
in_scope_cx(bcx, Some(scope_id), |scope_info| {
|
|
{
|
|
let mut cleanups = scope_info.cleanups.borrow_mut();
|
|
cleanups.get().push(clean_temp(
|
|
frozen_val_ref,
|
|
@WriteGuardReleasingCleanupFunction {
|
|
root_key: root_key,
|
|
frozen_val_ref: frozen_val_ref,
|
|
bits_val_ref: bits_val_ref,
|
|
filename_val: filename_val,
|
|
line_val: line_val,
|
|
} as @CleanupFunction,
|
|
normal_exit_only));
|
|
}
|
|
grow_scope_clean(scope_info);
|
|
})
|
|
}
|
|
pub fn add_clean_free(cx: @Block, ptr: ValueRef, heap: heap) {
|
|
let free_fn = match heap {
|
|
heap_managed | heap_managed_unique => {
|
|
@GCHeapFreeingCleanupFunction {
|
|
ptr: ptr,
|
|
} as @CleanupFunction
|
|
}
|
|
heap_exchange | heap_exchange_closure => {
|
|
@ExchangeHeapFreeingCleanupFunction {
|
|
ptr: ptr,
|
|
} as @CleanupFunction
|
|
}
|
|
};
|
|
in_scope_cx(cx, None, |scope_info| {
|
|
{
|
|
let mut cleanups = scope_info.cleanups.borrow_mut();
|
|
cleanups.get().push(clean_temp(ptr,
|
|
free_fn,
|
|
normal_exit_and_unwind));
|
|
}
|
|
grow_scope_clean(scope_info);
|
|
})
|
|
}
|
|
|
|
// Note that this only works for temporaries. We should, at some point, move
|
|
// to a system where we can also cancel the cleanup on local variables, but
|
|
// this will be more involved. For now, we simply zero out the local, and the
|
|
// drop glue checks whether it is zero.
|
|
pub fn revoke_clean(cx: @Block, val: ValueRef) {
|
|
in_scope_cx(cx, None, |scope_info| {
|
|
let cleanup_pos = {
|
|
let mut cleanups = scope_info.cleanups.borrow_mut();
|
|
cleanups.get().iter().position(|cu| {
|
|
match *cu {
|
|
clean_temp(v, _, _) if v == val => true,
|
|
_ => false
|
|
}
|
|
})
|
|
};
|
|
for i in cleanup_pos.iter() {
|
|
let new_cleanups = {
|
|
let cleanups = scope_info.cleanups.borrow();
|
|
vec::append(cleanups.get().slice(0u, *i).to_owned(),
|
|
cleanups.get().slice(*i + 1u, cleanups.get()
|
|
.len()))
|
|
};
|
|
scope_info.cleanups.set(new_cleanups);
|
|
shrink_scope_clean(scope_info, *i);
|
|
}
|
|
})
|
|
}
|
|
|
|
pub fn block_cleanups(bcx: &Block) -> ~[cleanup] {
|
|
match bcx.scope.get() {
|
|
None => ~[],
|
|
Some(inf) => inf.cleanups.get(),
|
|
}
|
|
}
|
|
|
|
pub struct ScopeInfo {
|
|
parent: Option<@ScopeInfo>,
|
|
loop_break: Option<@Block>,
|
|
loop_label: Option<Name>,
|
|
// A list of functions that must be run at when leaving this
|
|
// block, cleaning up any variables that were introduced in the
|
|
// block.
|
|
cleanups: RefCell<~[cleanup]>,
|
|
// Existing cleanup paths that may be reused, indexed by destination and
|
|
// cleared when the set of cleanups changes.
|
|
cleanup_paths: RefCell<~[cleanup_path]>,
|
|
// Unwinding landing pad. Also cleared when cleanups change.
|
|
landing_pad: Cell<Option<BasicBlockRef>>,
|
|
// info about the AST node this scope originated from, if any
|
|
node_info: Option<NodeInfo>,
|
|
}
|
|
|
|
impl ScopeInfo {
|
|
pub fn empty_cleanups(&self) -> bool {
|
|
let cleanups = self.cleanups.borrow();
|
|
cleanups.get().is_empty()
|
|
}
|
|
}
|
|
|
|
pub trait get_node_info {
|
|
fn info(&self) -> Option<NodeInfo>;
|
|
}
|
|
|
|
impl get_node_info for ast::Expr {
|
|
fn info(&self) -> Option<NodeInfo> {
|
|
Some(NodeInfo {id: self.id,
|
|
callee_id: self.get_callee_id(),
|
|
span: self.span})
|
|
}
|
|
}
|
|
|
|
impl get_node_info for ast::Block {
|
|
fn info(&self) -> Option<NodeInfo> {
|
|
Some(NodeInfo {id: self.id,
|
|
callee_id: None,
|
|
span: self.span})
|
|
}
|
|
}
|
|
|
|
impl get_node_info for Option<@ast::Expr> {
|
|
fn info(&self) -> Option<NodeInfo> {
|
|
self.as_ref().and_then(|s| s.info())
|
|
}
|
|
}
|
|
|
|
pub struct NodeInfo {
|
|
id: ast::NodeId,
|
|
callee_id: Option<ast::NodeId>,
|
|
span: Span
|
|
}
|
|
|
|
// Basic block context. We create a block context for each basic block
|
|
// (single-entry, single-exit sequence of instructions) we generate from Rust
|
|
// code. Each basic block we generate is attached to a function, typically
|
|
// with many basic blocks per function. All the basic blocks attached to a
|
|
// function are organized as a directed graph.
|
|
pub struct Block {
|
|
// The BasicBlockRef returned from a call to
|
|
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
|
|
// block to the function pointed to by llfn. We insert
|
|
// instructions into that block by way of this block context.
|
|
// The block pointing to this one in the function's digraph.
|
|
llbb: BasicBlockRef,
|
|
terminated: Cell<bool>,
|
|
unreachable: Cell<bool>,
|
|
parent: Option<@Block>,
|
|
// The current scope within this basic block
|
|
scope: RefCell<Option<@ScopeInfo>>,
|
|
// Is this block part of a landing pad?
|
|
is_lpad: bool,
|
|
// info about the AST node this block originated from, if any
|
|
node_info: Option<NodeInfo>,
|
|
// The function context for the function to which this block is
|
|
// attached.
|
|
fcx: @FunctionContext
|
|
}
|
|
|
|
impl Block {
|
|
pub fn new(llbb: BasicBlockRef,
|
|
parent: Option<@Block>,
|
|
is_lpad: bool,
|
|
node_info: Option<NodeInfo>,
|
|
fcx: @FunctionContext)
|
|
-> Block {
|
|
Block {
|
|
llbb: llbb,
|
|
terminated: Cell::new(false),
|
|
unreachable: Cell::new(false),
|
|
parent: parent,
|
|
scope: RefCell::new(None),
|
|
is_lpad: is_lpad,
|
|
node_info: node_info,
|
|
fcx: fcx
|
|
}
|
|
}
|
|
|
|
pub fn ccx(&self) -> @CrateContext { self.fcx.ccx }
|
|
pub fn tcx(&self) -> ty::ctxt { self.fcx.ccx.tcx }
|
|
pub fn sess(&self) -> Session { self.fcx.ccx.sess }
|
|
|
|
pub fn ident(&self, ident: Ident) -> @str {
|
|
token::ident_to_str(&ident)
|
|
}
|
|
|
|
pub fn node_id_to_str(&self, id: ast::NodeId) -> ~str {
|
|
ast_map::node_id_to_str(self.tcx().items, id, self.sess().intr())
|
|
}
|
|
|
|
pub fn expr_to_str(&self, e: &ast::Expr) -> ~str {
|
|
e.repr(self.tcx())
|
|
}
|
|
|
|
pub fn expr_is_lval(&self, e: &ast::Expr) -> bool {
|
|
ty::expr_is_lval(self.tcx(), self.ccx().maps.method_map, e)
|
|
}
|
|
|
|
pub fn expr_kind(&self, e: &ast::Expr) -> ty::ExprKind {
|
|
ty::expr_kind(self.tcx(), self.ccx().maps.method_map, e)
|
|
}
|
|
|
|
pub fn def(&self, nid: ast::NodeId) -> ast::Def {
|
|
match self.tcx().def_map.find(&nid) {
|
|
Some(&v) => v,
|
|
None => {
|
|
self.tcx().sess.bug(format!(
|
|
"No def associated with node id {:?}", nid));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn val_to_str(&self, val: ValueRef) -> ~str {
|
|
self.ccx().tn.val_to_str(val)
|
|
}
|
|
|
|
pub fn llty_str(&self, ty: Type) -> ~str {
|
|
self.ccx().tn.type_to_str(ty)
|
|
}
|
|
|
|
pub fn ty_to_str(&self, t: ty::t) -> ~str {
|
|
t.repr(self.tcx())
|
|
}
|
|
|
|
pub fn to_str(&self) -> ~str {
|
|
unsafe {
|
|
match self.node_info {
|
|
Some(node_info) => format!("[block {}]", node_info.id),
|
|
None => format!("[block {}]", transmute::<&Block, *Block>(self)),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct Result {
|
|
bcx: @Block,
|
|
val: ValueRef
|
|
}
|
|
|
|
pub fn rslt(bcx: @Block, val: ValueRef) -> Result {
|
|
Result {bcx: bcx, val: val}
|
|
}
|
|
|
|
impl Result {
|
|
pub fn unpack(&self, bcx: &mut @Block) -> ValueRef {
|
|
*bcx = self.bcx;
|
|
return self.val;
|
|
}
|
|
}
|
|
|
|
pub fn val_ty(v: ValueRef) -> Type {
|
|
unsafe {
|
|
Type::from_ref(llvm::LLVMTypeOf(v))
|
|
}
|
|
}
|
|
|
|
pub fn in_scope_cx(cx: @Block,
|
|
scope_id: Option<ast::NodeId>,
|
|
f: |si: &ScopeInfo|) {
|
|
let mut cur = cx;
|
|
let mut cur_scope = cur.scope.get();
|
|
loop {
|
|
cur_scope = match cur_scope {
|
|
Some(inf) => match scope_id {
|
|
Some(wanted) => match inf.node_info {
|
|
Some(NodeInfo { id: actual, .. }) if wanted == actual => {
|
|
debug!("in_scope_cx: selected cur={} (cx={})",
|
|
cur.to_str(), cx.to_str());
|
|
f(inf);
|
|
return;
|
|
},
|
|
_ => inf.parent,
|
|
},
|
|
None => {
|
|
debug!("in_scope_cx: selected cur={} (cx={})",
|
|
cur.to_str(), cx.to_str());
|
|
f(inf);
|
|
return;
|
|
}
|
|
},
|
|
None => {
|
|
cur = block_parent(cur);
|
|
cur.scope.get()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn block_parent(cx: @Block) -> @Block {
|
|
match cx.parent {
|
|
Some(b) => b,
|
|
None => cx.sess().bug(format!("block_parent called on root block {:?}",
|
|
cx))
|
|
}
|
|
}
|
|
|
|
|
|
// Let T be the content of a box @T. tuplify_box_ty(t) returns the
|
|
// representation of @T as a tuple (i.e., the ty::t version of what T_box()
|
|
// returns).
|
|
pub fn tuplify_box_ty(tcx: ty::ctxt, t: ty::t) -> ty::t {
|
|
let ptr = ty::mk_ptr(
|
|
tcx,
|
|
ty::mt {ty: ty::mk_i8(), mutbl: ast::MutImmutable}
|
|
);
|
|
return ty::mk_tup(tcx, ~[ty::mk_uint(), ty::mk_type(tcx),
|
|
ptr, ptr,
|
|
t]);
|
|
}
|
|
|
|
// LLVM constant constructors.
|
|
pub fn C_null(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNull(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_undef(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMGetUndef(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_floating(s: &str, t: Type) -> ValueRef {
|
|
unsafe {
|
|
s.with_c_str(|buf| llvm::LLVMConstRealOfString(t.to_ref(), buf))
|
|
}
|
|
}
|
|
|
|
pub fn C_nil() -> ValueRef {
|
|
C_struct([], false)
|
|
}
|
|
|
|
pub fn C_bool(val: bool) -> ValueRef {
|
|
C_integral(Type::bool(), val as u64, false)
|
|
}
|
|
|
|
pub fn C_i1(val: bool) -> ValueRef {
|
|
C_integral(Type::i1(), val as u64, false)
|
|
}
|
|
|
|
pub fn C_i32(i: i32) -> ValueRef {
|
|
return C_integral(Type::i32(), i as u64, true);
|
|
}
|
|
|
|
pub fn C_i64(i: i64) -> ValueRef {
|
|
return C_integral(Type::i64(), i as u64, true);
|
|
}
|
|
|
|
pub fn C_u64(i: u64) -> ValueRef {
|
|
return C_integral(Type::i64(), i, false);
|
|
}
|
|
|
|
pub fn C_int(cx: &CrateContext, i: int) -> ValueRef {
|
|
return C_integral(cx.int_type, i as u64, true);
|
|
}
|
|
|
|
pub fn C_uint(cx: &CrateContext, i: uint) -> ValueRef {
|
|
return C_integral(cx.int_type, i as u64, false);
|
|
}
|
|
|
|
pub fn C_u8(i: uint) -> ValueRef {
|
|
return C_integral(Type::i8(), i as u64, false);
|
|
}
|
|
|
|
|
|
// This is a 'c-like' raw string, which differs from
|
|
// our boxed-and-length-annotated strings.
|
|
pub fn C_cstr(cx: &CrateContext, s: @str) -> ValueRef {
|
|
unsafe {
|
|
{
|
|
let const_cstr_cache = cx.const_cstr_cache.borrow();
|
|
match const_cstr_cache.get().find_equiv(&s) {
|
|
Some(&llval) => return llval,
|
|
None => ()
|
|
}
|
|
}
|
|
|
|
let sc = llvm::LLVMConstStringInContext(cx.llcx,
|
|
s.as_ptr() as *c_char, s.len() as c_uint,
|
|
False);
|
|
|
|
let gsym = token::gensym("str");
|
|
let g = format!("str{}", gsym).with_c_str(|buf| {
|
|
llvm::LLVMAddGlobal(cx.llmod, val_ty(sc).to_ref(), buf)
|
|
});
|
|
llvm::LLVMSetInitializer(g, sc);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
|
|
|
|
let mut const_cstr_cache = cx.const_cstr_cache.borrow_mut();
|
|
const_cstr_cache.get().insert(s, g);
|
|
g
|
|
}
|
|
}
|
|
|
|
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
|
|
// you will be kicked off fast isel. See issue #4352 for an example of this.
|
|
pub fn C_estr_slice(cx: &CrateContext, s: @str) -> ValueRef {
|
|
unsafe {
|
|
let len = s.len();
|
|
let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s), Type::i8p().to_ref());
|
|
C_struct([cs, C_uint(cx, len)], false)
|
|
}
|
|
}
|
|
|
|
pub fn C_binary_slice(cx: &CrateContext, data: &[u8]) -> ValueRef {
|
|
unsafe {
|
|
let len = data.len();
|
|
let lldata = C_bytes(data);
|
|
|
|
let gsym = token::gensym("binary");
|
|
let g = format!("binary{}", gsym).with_c_str(|buf| {
|
|
llvm::LLVMAddGlobal(cx.llmod, val_ty(lldata).to_ref(), buf)
|
|
});
|
|
llvm::LLVMSetInitializer(g, lldata);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
lib::llvm::SetLinkage(g, lib::llvm::InternalLinkage);
|
|
|
|
let cs = llvm::LLVMConstPointerCast(g, Type::i8p().to_ref());
|
|
C_struct([cs, C_uint(cx, len)], false)
|
|
}
|
|
}
|
|
|
|
pub fn C_zero_byte_arr(size: uint) -> ValueRef {
|
|
unsafe {
|
|
let mut i = 0u;
|
|
let mut elts: ~[ValueRef] = ~[];
|
|
while i < size { elts.push(C_u8(0u)); i += 1u; }
|
|
return llvm::LLVMConstArray(Type::i8().to_ref(),
|
|
elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_struct(elts: &[ValueRef], packed: bool) -> ValueRef {
|
|
unsafe {
|
|
|
|
llvm::LLVMConstStructInContext(base::task_llcx(),
|
|
elts.as_ptr(), elts.len() as c_uint,
|
|
packed as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_named_struct(T: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNamedStruct(T.to_ref(), elts.as_ptr(), elts.len() as c_uint)
|
|
}
|
|
}
|
|
|
|
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_bytes(bytes: &[u8]) -> ValueRef {
|
|
unsafe {
|
|
let ptr = cast::transmute(bytes.as_ptr());
|
|
return llvm::LLVMConstStringInContext(base::task_llcx(), ptr, bytes.len() as c_uint, True);
|
|
}
|
|
}
|
|
|
|
pub fn get_param(fndecl: ValueRef, param: uint) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMGetParam(fndecl, param as c_uint)
|
|
}
|
|
}
|
|
|
|
pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
|
|
-> ValueRef {
|
|
unsafe {
|
|
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
|
|
|
|
debug!("const_get_elt(v={}, us={:?}, r={})",
|
|
cx.tn.val_to_str(v), us, cx.tn.val_to_str(r));
|
|
|
|
return r;
|
|
}
|
|
}
|
|
|
|
pub fn is_const(v: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsConstant(v) == True
|
|
}
|
|
}
|
|
|
|
pub fn const_to_int(v: ValueRef) -> c_longlong {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetSExtValue(v)
|
|
}
|
|
}
|
|
|
|
pub fn const_to_uint(v: ValueRef) -> c_ulonglong {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetZExtValue(v)
|
|
}
|
|
}
|
|
|
|
pub fn is_undef(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsUndef(val) != False
|
|
}
|
|
}
|
|
|
|
pub fn is_null(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsNull(val) != False
|
|
}
|
|
}
|
|
|
|
// Used to identify cached monomorphized functions and vtables
|
|
#[deriving(Eq,IterBytes)]
|
|
pub enum mono_param_id {
|
|
mono_precise(ty::t, Option<@~[mono_id]>),
|
|
mono_any,
|
|
mono_repr(uint /* size */,
|
|
uint /* align */,
|
|
MonoDataClass,
|
|
datum::DatumMode),
|
|
}
|
|
|
|
#[deriving(Eq,IterBytes)]
|
|
pub enum MonoDataClass {
|
|
MonoBits, // Anything not treated differently from arbitrary integer data
|
|
MonoNonNull, // Non-null pointers (used for optional-pointer optimization)
|
|
// FIXME(#3547)---scalars and floats are
|
|
// treated differently in most ABIs. But we
|
|
// should be doing something more detailed
|
|
// here.
|
|
MonoFloat
|
|
}
|
|
|
|
pub fn mono_data_classify(t: ty::t) -> MonoDataClass {
|
|
match ty::get(t).sty {
|
|
ty::ty_float(_) => MonoFloat,
|
|
ty::ty_rptr(..) | ty::ty_uniq(..) |
|
|
ty::ty_box(..) | ty::ty_opaque_box(..) |
|
|
ty::ty_estr(ty::vstore_uniq) | ty::ty_evec(_, ty::vstore_uniq) |
|
|
ty::ty_estr(ty::vstore_box) | ty::ty_evec(_, ty::vstore_box) |
|
|
ty::ty_bare_fn(..) => MonoNonNull,
|
|
// Is that everything? Would closures or slices qualify?
|
|
_ => MonoBits
|
|
}
|
|
}
|
|
|
|
|
|
#[deriving(Eq,IterBytes)]
|
|
pub struct mono_id_ {
|
|
def: ast::DefId,
|
|
params: ~[mono_param_id]
|
|
}
|
|
|
|
pub type mono_id = @mono_id_;
|
|
|
|
pub fn umax(cx: @Block, a: ValueRef, b: ValueRef) -> ValueRef {
|
|
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
|
|
return build::Select(cx, cond, b, a);
|
|
}
|
|
|
|
pub fn umin(cx: @Block, a: ValueRef, b: ValueRef) -> ValueRef {
|
|
let cond = build::ICmp(cx, lib::llvm::IntULT, a, b);
|
|
return build::Select(cx, cond, a, b);
|
|
}
|
|
|
|
pub fn align_to(cx: @Block, off: ValueRef, align: ValueRef) -> ValueRef {
|
|
let mask = build::Sub(cx, align, C_int(cx.ccx(), 1));
|
|
let bumped = build::Add(cx, off, mask);
|
|
return build::And(cx, bumped, build::Not(cx, mask));
|
|
}
|
|
|
|
pub fn path_str(sess: session::Session, p: &[path_elt]) -> ~str {
|
|
let mut r = ~"";
|
|
let mut first = true;
|
|
for e in p.iter() {
|
|
match *e {
|
|
ast_map::path_name(s) | ast_map::path_mod(s) |
|
|
ast_map::path_pretty_name(s, _) => {
|
|
if first {
|
|
first = false
|
|
} else {
|
|
r.push_str("::")
|
|
}
|
|
r.push_str(sess.str_of(s));
|
|
}
|
|
}
|
|
}
|
|
r
|
|
}
|
|
|
|
pub fn monomorphize_type(bcx: &Block, t: ty::t) -> ty::t {
|
|
match bcx.fcx.param_substs {
|
|
Some(substs) => {
|
|
ty::subst_tps(bcx.tcx(), substs.tys, substs.self_ty, t)
|
|
}
|
|
_ => {
|
|
assert!(!ty::type_has_params(t));
|
|
assert!(!ty::type_has_self(t));
|
|
t
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn node_id_type(bcx: &Block, id: ast::NodeId) -> ty::t {
|
|
let tcx = bcx.tcx();
|
|
let t = ty::node_id_to_type(tcx, id);
|
|
monomorphize_type(bcx, t)
|
|
}
|
|
|
|
pub fn expr_ty(bcx: &Block, ex: &ast::Expr) -> ty::t {
|
|
node_id_type(bcx, ex.id)
|
|
}
|
|
|
|
pub fn expr_ty_adjusted(bcx: &Block, ex: &ast::Expr) -> ty::t {
|
|
let tcx = bcx.tcx();
|
|
let t = ty::expr_ty_adjusted(tcx, ex);
|
|
monomorphize_type(bcx, t)
|
|
}
|
|
|
|
pub fn node_id_type_params(bcx: &Block, id: ast::NodeId) -> ~[ty::t] {
|
|
let tcx = bcx.tcx();
|
|
let params = ty::node_id_to_type_params(tcx, id);
|
|
|
|
if !params.iter().all(|t| !ty::type_needs_infer(*t)) {
|
|
bcx.sess().bug(
|
|
format!("Type parameters for node {} include inference types: {}",
|
|
id, params.map(|t| bcx.ty_to_str(*t)).connect(",")));
|
|
}
|
|
|
|
match bcx.fcx.param_substs {
|
|
Some(substs) => {
|
|
params.iter().map(|t| {
|
|
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
|
|
}).collect()
|
|
}
|
|
_ => params
|
|
}
|
|
}
|
|
|
|
pub fn node_vtables(bcx: @Block, id: ast::NodeId)
|
|
-> Option<typeck::vtable_res> {
|
|
let vtable_map = bcx.ccx().maps.vtable_map.borrow();
|
|
let raw_vtables = vtable_map.get().find(&id);
|
|
raw_vtables.map(|vts| resolve_vtables_in_fn_ctxt(bcx.fcx, *vts))
|
|
}
|
|
|
|
// Apply the typaram substitutions in the FunctionContext to some
|
|
// vtables. This should eliminate any vtable_params.
|
|
pub fn resolve_vtables_in_fn_ctxt(fcx: &FunctionContext, vts: typeck::vtable_res)
|
|
-> typeck::vtable_res {
|
|
resolve_vtables_under_param_substs(fcx.ccx.tcx,
|
|
fcx.param_substs,
|
|
vts)
|
|
}
|
|
|
|
pub fn resolve_vtables_under_param_substs(tcx: ty::ctxt,
|
|
param_substs: Option<@param_substs>,
|
|
vts: typeck::vtable_res)
|
|
-> typeck::vtable_res {
|
|
@vts.iter().map(|ds|
|
|
resolve_param_vtables_under_param_substs(tcx,
|
|
param_substs,
|
|
*ds))
|
|
.collect()
|
|
}
|
|
|
|
pub fn resolve_param_vtables_under_param_substs(
|
|
tcx: ty::ctxt,
|
|
param_substs: Option<@param_substs>,
|
|
ds: typeck::vtable_param_res)
|
|
-> typeck::vtable_param_res {
|
|
@ds.iter().map(
|
|
|d| resolve_vtable_under_param_substs(tcx,
|
|
param_substs,
|
|
d))
|
|
.collect()
|
|
}
|
|
|
|
|
|
|
|
pub fn resolve_vtable_under_param_substs(tcx: ty::ctxt,
|
|
param_substs: Option<@param_substs>,
|
|
vt: &typeck::vtable_origin)
|
|
-> typeck::vtable_origin {
|
|
match *vt {
|
|
typeck::vtable_static(trait_id, ref tys, sub) => {
|
|
let tys = match param_substs {
|
|
Some(substs) => {
|
|
tys.iter().map(|t| {
|
|
ty::subst_tps(tcx, substs.tys, substs.self_ty, *t)
|
|
}).collect()
|
|
}
|
|
_ => tys.to_owned()
|
|
};
|
|
typeck::vtable_static(
|
|
trait_id, tys,
|
|
resolve_vtables_under_param_substs(tcx, param_substs, sub))
|
|
}
|
|
typeck::vtable_param(n_param, n_bound) => {
|
|
match param_substs {
|
|
Some(substs) => {
|
|
find_vtable(tcx, substs, n_param, n_bound)
|
|
}
|
|
_ => {
|
|
tcx.sess.bug(format!(
|
|
"resolve_vtable_under_param_substs: asked to lookup \
|
|
but no vtables in the fn_ctxt!"))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn find_vtable(tcx: ty::ctxt,
|
|
ps: ¶m_substs,
|
|
n_param: typeck::param_index,
|
|
n_bound: uint)
|
|
-> typeck::vtable_origin {
|
|
debug!("find_vtable(n_param={:?}, n_bound={}, ps={})",
|
|
n_param, n_bound, ps.repr(tcx));
|
|
|
|
let param_bounds = match n_param {
|
|
typeck::param_self => ps.self_vtables.expect("self vtables missing"),
|
|
typeck::param_numbered(n) => {
|
|
let tables = ps.vtables
|
|
.expect("vtables missing where they are needed");
|
|
tables[n]
|
|
}
|
|
};
|
|
param_bounds[n_bound].clone()
|
|
}
|
|
|
|
pub fn dummy_substs(tps: ~[ty::t]) -> ty::substs {
|
|
substs {
|
|
regions: ty::ErasedRegions,
|
|
self_ty: None,
|
|
tps: tps
|
|
}
|
|
}
|
|
|
|
pub fn filename_and_line_num_from_span(bcx: @Block,
|
|
span: Span) -> (ValueRef, ValueRef) {
|
|
let loc = bcx.sess().parse_sess.cm.lookup_char_pos(span.lo);
|
|
let filename_cstr = C_cstr(bcx.ccx(), loc.file.name);
|
|
let filename = build::PointerCast(bcx, filename_cstr, Type::i8p());
|
|
let line = C_int(bcx.ccx(), loc.line as int);
|
|
(filename, line)
|
|
}
|
|
|
|
// Casts a Rust bool value to an i1.
|
|
pub fn bool_to_i1(bcx: @Block, llval: ValueRef) -> ValueRef {
|
|
build::ICmp(bcx, lib::llvm::IntNE, llval, C_bool(false))
|
|
}
|
|
|
|
pub fn langcall(bcx: @Block, span: Option<Span>, msg: &str,
|
|
li: LangItem) -> ast::DefId {
|
|
match bcx.tcx().lang_items.require(li) {
|
|
Ok(id) => id,
|
|
Err(s) => {
|
|
let msg = format!("{} {}", msg, s);
|
|
match span {
|
|
Some(span) => { bcx.tcx().sess.span_fatal(span, msg); }
|
|
None => { bcx.tcx().sess.fatal(msg); }
|
|
}
|
|
}
|
|
}
|
|
}
|