rust/src/interpreter.rs
2016-03-13 14:46:24 -06:00

501 lines
18 KiB
Rust

use rustc::middle::const_eval;
use rustc::middle::ty::{self, TyCtxt};
use rustc::middle::subst::Substs;
use rustc::mir::mir_map::MirMap;
use rustc::mir::repr as mir;
use std::error::Error;
use std::fmt;
use memory::{FieldRepr, Memory, Pointer, Repr};
use primval::{self, PrimVal};
const TRACE_EXECUTION: bool = true;
#[derive(Clone, Debug)]
pub enum EvalError {
DanglingPointerDeref,
InvalidBool,
PointerOutOfBounds,
InvalidPointerAccess,
}
pub type EvalResult<T> = Result<T, EvalError>;
impl Error for EvalError {
fn description(&self) -> &str {
match *self {
EvalError::DanglingPointerDeref => "dangling pointer was dereferenced",
EvalError::InvalidBool => "invalid boolean value read",
EvalError::PointerOutOfBounds => "pointer offset outside bounds of allocation",
EvalError::InvalidPointerAccess =>
"a raw memory access tried to access part of a pointer value as bytes",
}
}
fn cause(&self) -> Option<&Error> { None }
}
impl fmt::Display for EvalError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.description())
}
}
/// A stack frame.
struct Frame<'a, 'tcx: 'a> {
/// The MIR for the function called on this frame.
mir: &'a mir::Mir<'tcx>,
/// A pointer for writing the return value of the current call, if it's not a diverging call.
return_ptr: Option<Pointer>,
/// The list of locals for the current function, stored in order as
/// `[arguments..., variables..., temporaries...]`. The variables begin at `self.var_offset`
/// and the temporaries at `self.temp_offset`.
locals: Vec<Pointer>,
/// The offset of the first variable in `self.locals`.
var_offset: usize,
/// The offset of the first temporary in `self.locals`.
temp_offset: usize,
}
impl<'a, 'tcx: 'a> Frame<'a, 'tcx> {
fn arg_ptr(&self, i: u32) -> Pointer {
self.locals[i as usize]
}
fn var_ptr(&self, i: u32) -> Pointer {
self.locals[self.var_offset + i as usize]
}
fn temp_ptr(&self, i: u32) -> Pointer {
self.locals[self.temp_offset + i as usize]
}
}
struct Interpreter<'a, 'tcx: 'a> {
tcx: &'a TyCtxt<'tcx>,
mir_map: &'a MirMap<'tcx>,
memory: Memory,
stack: Vec<Frame<'a, 'tcx>>,
}
impl<'a, 'tcx: 'a> Interpreter<'a, 'tcx> {
fn new(tcx: &'a TyCtxt<'tcx>, mir_map: &'a MirMap<'tcx>) -> Self {
Interpreter {
tcx: tcx,
mir_map: mir_map,
memory: Memory::new(),
stack: Vec::new(),
}
}
fn push_stack_frame(&mut self, mir: &'a mir::Mir<'tcx>, args: &[&mir::Operand<'tcx>],
return_ptr: Option<Pointer>) -> EvalResult<()> {
let num_args = mir.arg_decls.len();
let num_vars = mir.var_decls.len();
let num_temps = mir.temp_decls.len();
assert_eq!(args.len(), num_args);
let mut locals = Vec::with_capacity(num_args + num_vars + num_temps);
for (arg_decl, arg_operand) in mir.arg_decls.iter().zip(args) {
let repr = self.ty_to_repr(arg_decl.ty);
let dest = self.memory.allocate(repr.size());
let (src, _) = try!(self.eval_operand(arg_operand));
try!(self.memory.copy(src, dest, repr.size()));
locals.push(dest);
}
let var_tys = mir.var_decls.iter().map(|v| v.ty);
let temp_tys = mir.temp_decls.iter().map(|t| t.ty);
locals.extend(var_tys.chain(temp_tys).map(|ty| {
let repr = self.ty_to_repr(ty).size();
self.memory.allocate(repr)
}));
self.stack.push(Frame {
mir: mir,
return_ptr: return_ptr,
locals: locals,
var_offset: num_args,
temp_offset: num_args + num_vars,
});
Ok(())
}
fn pop_stack_frame(&mut self) {
let _frame = self.stack.pop().expect("tried to pop a stack frame, but there were none");
// TODO(tsion): Deallocate local variables.
}
fn call(&mut self, mir: &'a mir::Mir<'tcx>, args: &[&mir::Operand<'tcx>],
return_ptr: Option<Pointer>) -> EvalResult<()> {
try!(self.push_stack_frame(mir, args, return_ptr));
let mut current_block = mir::START_BLOCK;
loop {
if TRACE_EXECUTION { println!("Entering block: {:?}", current_block); }
let block_data = mir.basic_block_data(current_block);
for stmt in &block_data.statements {
if TRACE_EXECUTION { println!("{:?}", stmt); }
let mir::StatementKind::Assign(ref lvalue, ref rvalue) = stmt.kind;
try!(self.eval_assignment(lvalue, rvalue));
}
if TRACE_EXECUTION { println!("{:?}", block_data.terminator()); }
use rustc::mir::repr::Terminator::*;
match *block_data.terminator() {
Return => break,
Goto { target } => current_block = target,
If { ref cond, targets: (then_target, else_target) } => {
let (cond_ptr, _) = try!(self.eval_operand(cond));
let cond_val = try!(self.memory.read_bool(cond_ptr));
current_block = if cond_val { then_target } else { else_target };
}
SwitchInt { ref discr, ref values, ref targets, .. } => {
let (discr_ptr, discr_repr) = try!(self.eval_lvalue(discr));
let discr_val = try!(self.memory.read_primval(discr_ptr, &discr_repr));
// Branch to the `otherwise` case by default, if no match is found.
current_block = targets[targets.len() - 1];
for (index, val_const) in values.iter().enumerate() {
let ptr = try!(self.const_to_ptr(val_const));
let val = try!(self.memory.read_primval(ptr, &discr_repr));
if discr_val == val {
current_block = targets[index];
break;
}
}
}
Switch { ref discr, ref targets, .. } => {
let (adt_ptr, adt_repr) = try!(self.eval_lvalue(discr));
let discr_repr = match adt_repr {
Repr::Sum { ref discr, .. } => discr,
_ => panic!("attmpted to switch on non-sum type"),
};
let discr_val = try!(self.memory.read_primval(adt_ptr, &discr_repr));
current_block = targets[discr_val.to_int() as usize];
}
// Call { ref func, ref args, ref destination, .. } => {
// use rustc::middle::cstore::CrateStore;
// let ptr = destination.as_ref().map(|&(ref lv, _)| self.lvalue_to_ptr(lv));
// let func_val = self.operand_to_ptr(func);
// if let Value::Func(def_id) = func_val {
// let mir_data;
// let mir = match self.tcx.map.as_local_node_id(def_id) {
// Some(node_id) => self.mir_map.map.get(&node_id).unwrap(),
// None => {
// let cstore = &self.tcx.sess.cstore;
// mir_data = cstore.maybe_get_item_mir(self.tcx, def_id).unwrap();
// &mir_data
// }
// };
// let arg_vals: Vec<Value> =
// args.iter().map(|arg| self.operand_to_ptr(arg)).collect();
// self.call(mir, &arg_vals, ptr);
// if let Some((_, target)) = *destination {
// current_block = target;
// }
// } else {
// panic!("tried to call a non-function value: {:?}", func_val);
// }
// }
Drop { target, .. } => {
// TODO: Handle destructors and dynamic drop.
current_block = target;
}
Resume => unimplemented!(),
_ => unimplemented!(),
}
}
self.pop_stack_frame();
Ok(())
}
fn assign_to_product(&mut self, dest: Pointer, dest_repr: &Repr,
operands: &[mir::Operand<'tcx>]) -> EvalResult<()> {
match *dest_repr {
Repr::Product { ref fields, .. } => {
for (field, operand) in fields.iter().zip(operands) {
let (src, _) = try!(self.eval_operand(operand));
try!(self.memory.copy(src, dest.offset(field.offset), field.repr.size()));
}
}
_ => panic!("expected Repr::Product target"),
}
Ok(())
}
fn eval_assignment(&mut self, lvalue: &mir::Lvalue<'tcx>, rvalue: &mir::Rvalue<'tcx>)
-> EvalResult<()>
{
let (dest, dest_repr) = try!(self.eval_lvalue(lvalue));
use rustc::mir::repr::Rvalue::*;
match *rvalue {
Use(ref operand) => {
let (src, _) = try!(self.eval_operand(operand));
self.memory.copy(src, dest, dest_repr.size())
}
BinaryOp(bin_op, ref left, ref right) => {
let (left_ptr, left_repr) = try!(self.eval_operand(left));
let (right_ptr, right_repr) = try!(self.eval_operand(right));
let left_val = try!(self.memory.read_primval(left_ptr, &left_repr));
let right_val = try!(self.memory.read_primval(right_ptr, &right_repr));
self.memory.write_primval(dest, primval::binary_op(bin_op, left_val, right_val))
}
UnaryOp(un_op, ref operand) => {
let (ptr, repr) = try!(self.eval_operand(operand));
let val = try!(self.memory.read_primval(ptr, &repr));
self.memory.write_primval(dest, primval::unary_op(un_op, val))
}
Aggregate(ref kind, ref operands) => {
use rustc::mir::repr::AggregateKind::*;
match *kind {
Tuple => self.assign_to_product(dest, &dest_repr, operands),
Adt(ref adt_def, variant_idx, _) => match adt_def.adt_kind() {
ty::AdtKind::Struct => self.assign_to_product(dest, &dest_repr, operands),
ty::AdtKind::Enum => match dest_repr {
Repr::Sum { ref discr, ref variants, .. } => {
if discr.size() > 0 {
let discr_val = PrimVal::from_int(variant_idx as i64, discr);
try!(self.memory.write_primval(dest, discr_val));
}
self.assign_to_product(
dest.offset(discr.size()),
&variants[variant_idx],
operands
)
}
_ => panic!("expected Repr::Sum target"),
}
},
Vec => unimplemented!(),
Closure(..) => unimplemented!(),
}
}
Ref(_, _, ref lvalue) => {
let (ptr, _) = try!(self.eval_lvalue(lvalue));
self.memory.write_ptr(dest, ptr)
}
ref r => panic!("can't handle rvalue: {:?}", r),
}
}
fn eval_operand(&mut self, op: &mir::Operand<'tcx>) -> EvalResult<(Pointer, Repr)> {
use rustc::mir::repr::Operand::*;
match *op {
Consume(ref lvalue) => self.eval_lvalue(lvalue),
Constant(mir::Constant { ref literal, ty, .. }) => {
use rustc::mir::repr::Literal::*;
match *literal {
Value { ref value } => Ok((
try!(self.const_to_ptr(value)),
self.ty_to_repr(ty),
)),
ref l => panic!("can't handle item literal: {:?}", l),
}
}
}
}
fn eval_lvalue(&self, lvalue: &mir::Lvalue<'tcx>) -> EvalResult<(Pointer, Repr)> {
let frame = self.current_frame();
use rustc::mir::repr::Lvalue::*;
let ptr = match *lvalue {
ReturnPointer =>
frame.return_ptr.expect("ReturnPointer used in a function with no return value"),
Arg(i) => frame.arg_ptr(i),
Var(i) => frame.var_ptr(i),
Temp(i) => frame.temp_ptr(i),
Projection(ref proj) => {
let (base_ptr, base_repr) = try!(self.eval_lvalue(&proj.base));
use rustc::mir::repr::ProjectionElem::*;
match proj.elem {
Field(field, _) => match base_repr {
Repr::Product { ref fields, .. } =>
base_ptr.offset(fields[field.index()].offset),
_ => panic!("field access on non-product type: {:?}", base_repr),
},
Downcast(..) => match base_repr {
Repr::Sum { ref discr, .. } => base_ptr.offset(discr.size()),
_ => panic!("variant downcast on non-sum type"),
},
Deref => try!(self.memory.read_ptr(base_ptr)),
_ => unimplemented!(),
}
}
ref l => panic!("can't handle lvalue: {:?}", l),
};
use rustc::mir::tcx::LvalueTy;
let repr = match self.current_frame().mir.lvalue_ty(self.tcx, lvalue) {
LvalueTy::Ty { ty } => self.ty_to_repr(ty),
LvalueTy::Downcast { ref adt_def, substs, variant_index } =>
self.make_variant_repr(&adt_def.variants[variant_index], substs),
};
Ok((ptr, repr))
}
fn const_to_ptr(&mut self, const_val: &const_eval::ConstVal) -> EvalResult<Pointer> {
use rustc::middle::const_eval::ConstVal::*;
match *const_val {
Float(_f) => unimplemented!(),
Int(n) => {
// TODO(tsion): Check int constant type.
let ptr = self.memory.allocate(8);
try!(self.memory.write_i64(ptr, n));
Ok(ptr)
}
Uint(_u) => unimplemented!(),
Str(ref _s) => unimplemented!(),
ByteStr(ref _bs) => unimplemented!(),
Bool(b) => {
let ptr = self.memory.allocate(Repr::Bool.size());
try!(self.memory.write_bool(ptr, b));
Ok(ptr)
},
Struct(_node_id) => unimplemented!(),
Tuple(_node_id) => unimplemented!(),
Function(_def_id) => unimplemented!(),
Array(_, _) => unimplemented!(),
Repeat(_, _) => unimplemented!(),
}
}
fn make_product_repr<I>(&self, iter: I) -> Repr where I: IntoIterator<Item = ty::Ty<'tcx>> {
let mut size = 0;
let fields = iter.into_iter().map(|ty| {
let repr = self.ty_to_repr(ty);
let old_size = size;
size += repr.size();
FieldRepr { offset: old_size, repr: repr }
}).collect();
Repr::Product { size: size, fields: fields }
}
fn make_variant_repr(&self, v: ty::VariantDef<'tcx>, substs: &'tcx Substs<'tcx>) -> Repr {
let field_tys = v.fields.iter().map(|f| f.ty(self.tcx, substs));
self.make_product_repr(field_tys)
}
// TODO(tsion): Cache these outputs.
fn ty_to_repr(&self, ty: ty::Ty<'tcx>) -> Repr {
use syntax::ast::IntTy;
match ty.sty {
ty::TyBool => Repr::Bool,
ty::TyInt(IntTy::Is) => unimplemented!(),
ty::TyInt(IntTy::I8) => Repr::I8,
ty::TyInt(IntTy::I16) => Repr::I16,
ty::TyInt(IntTy::I32) => Repr::I32,
ty::TyInt(IntTy::I64) => Repr::I64,
ty::TyTuple(ref fields) => self.make_product_repr(fields.iter().cloned()),
ty::TyEnum(adt_def, substs) => {
let num_variants = adt_def.variants.len();
let discr = if num_variants <= 1 {
Repr::Product { size: 0, fields: vec![] }
} else if num_variants <= 1 << 8 {
Repr::I8
} else if num_variants <= 1 << 16 {
Repr::I16
} else if num_variants <= 1 << 32 {
Repr::I32
} else {
Repr::I64
};
let variants: Vec<Repr> = adt_def.variants.iter().map(|v| {
self.make_variant_repr(v, substs)
}).collect();
Repr::Sum {
discr: Box::new(discr),
max_variant_size: variants.iter().map(Repr::size).max().unwrap_or(0),
variants: variants,
}
}
ty::TyStruct(adt_def, substs) => {
assert_eq!(adt_def.variants.len(), 1);
self.make_variant_repr(&adt_def.variants[0], substs)
}
ty::TyRef(_, ty::TypeAndMut { ty, .. }) => {
Repr::Pointer { target: Box::new(self.ty_to_repr(ty)) }
}
ref t => panic!("can't convert type to repr: {:?}", t),
}
}
fn current_frame(&self) -> &Frame<'a, 'tcx> {
self.stack.last().expect("no call frames exist")
}
}
pub fn interpret_start_points<'tcx>(tcx: &TyCtxt<'tcx>, mir_map: &MirMap<'tcx>) {
for (&id, mir) in &mir_map.map {
for attr in tcx.map.attrs(id) {
use syntax::attr::AttrMetaMethods;
if attr.check_name("miri_run") {
let item = tcx.map.expect_item(id);
println!("Interpreting: {}", item.name);
let mut miri = Interpreter::new(tcx, mir_map);
let return_ptr = match mir.return_ty {
ty::FnConverging(ty) => {
let repr = miri.ty_to_repr(ty).size();
Some(miri.memory.allocate(repr))
}
ty::FnDiverging => None,
};
miri.call(mir, &[], return_ptr).unwrap();
if let Some(ret) = return_ptr {
println!("Returned: {:?}\n", miri.memory.get(ret.alloc_id).unwrap());
}
}
}
}
}