2017-08-01 09:56:21 +02:00

619 lines
28 KiB
Rust

use rustc::mir;
use rustc::traits::Reveal;
use rustc::ty::layout::{Layout, Size, Align};
use rustc::ty::subst::Substs;
use rustc::ty::{self, Ty};
use interpret::{
EvalError, EvalResult,
EvalContext,
Lvalue, LvalueExtra,
PrimVal, PrimValKind, Value, Pointer,
HasMemory,
Machine,
};
impl<'a, 'tcx, M: Machine<'tcx>> EvalContext<'a, 'tcx, M> {
pub(super) fn call_intrinsic(
&mut self,
instance: ty::Instance<'tcx>,
args: &[mir::Operand<'tcx>],
dest: Lvalue<'tcx>,
dest_ty: Ty<'tcx>,
dest_layout: &'tcx Layout,
target: mir::BasicBlock,
) -> EvalResult<'tcx> {
let arg_vals: EvalResult<Vec<Value>> = args.iter()
.map(|arg| self.eval_operand(arg))
.collect();
let arg_vals = arg_vals?;
let i32 = self.tcx.types.i32;
let isize = self.tcx.types.isize;
let usize = self.tcx.types.usize;
let f32 = self.tcx.types.f32;
let f64 = self.tcx.types.f64;
let substs = instance.substs;
let intrinsic_name = &self.tcx.item_name(instance.def_id()).as_str()[..];
match intrinsic_name {
"add_with_overflow" =>
self.intrinsic_with_overflow(mir::BinOp::Add, &args[0], &args[1], dest, dest_ty)?,
"sub_with_overflow" =>
self.intrinsic_with_overflow(mir::BinOp::Sub, &args[0], &args[1], dest, dest_ty)?,
"mul_with_overflow" =>
self.intrinsic_with_overflow(mir::BinOp::Mul, &args[0], &args[1], dest, dest_ty)?,
"arith_offset" => {
let offset = self.value_to_primval(arg_vals[1], isize)?.to_i128()? as i64;
let ptr = arg_vals[0].into_ptr(&self.memory)?;
let result_ptr = self.wrapping_pointer_offset(ptr, substs.type_at(0), offset)?;
self.write_ptr(dest, result_ptr, dest_ty)?;
}
"assume" => {
let bool = self.tcx.types.bool;
let cond = self.value_to_primval(arg_vals[0], bool)?.to_bool()?;
if !cond { return Err(EvalError::AssumptionNotHeld); }
}
"atomic_load" |
"atomic_load_relaxed" |
"atomic_load_acq" |
"volatile_load" => {
let ty = substs.type_at(0);
let ptr = arg_vals[0].into_ptr(&self.memory)?;
self.write_value(Value::by_ref(ptr), dest, ty)?;
}
"atomic_store" |
"atomic_store_relaxed" |
"atomic_store_rel" |
"volatile_store" => {
let ty = substs.type_at(0);
let dest = arg_vals[0].into_ptr(&self.memory)?;
self.write_value_to_ptr(arg_vals[1], dest, ty)?;
}
"atomic_fence_acq" => {
// we are inherently singlethreaded and singlecored, this is a nop
}
_ if intrinsic_name.starts_with("atomic_xchg") => {
let ty = substs.type_at(0);
let ptr = arg_vals[0].into_ptr(&self.memory)?;
let change = self.value_to_primval(arg_vals[1], ty)?;
let old = self.read_value(ptr, ty)?;
let old = match old {
Value::ByVal(val) => val,
Value::ByRef { .. } => bug!("just read the value, can't be byref"),
Value::ByValPair(..) => bug!("atomic_xchg doesn't work with nonprimitives"),
};
self.write_primval(dest, old, ty)?;
self.write_primval(Lvalue::from_primval_ptr(ptr), change, ty)?;
}
_ if intrinsic_name.starts_with("atomic_cxchg") => {
let ty = substs.type_at(0);
let ptr = arg_vals[0].into_ptr(&self.memory)?;
let expect_old = self.value_to_primval(arg_vals[1], ty)?;
let change = self.value_to_primval(arg_vals[2], ty)?;
let old = self.read_value(ptr, ty)?;
let old = match old {
Value::ByVal(val) => val,
Value::ByRef { .. } => bug!("just read the value, can't be byref"),
Value::ByValPair(..) => bug!("atomic_cxchg doesn't work with nonprimitives"),
};
let (val, _) = self.binary_op(mir::BinOp::Eq, old, ty, expect_old, ty)?;
let dest = self.force_allocation(dest)?.to_ptr()?;
self.write_pair_to_ptr(old, val, dest, dest_ty)?;
self.write_primval(Lvalue::from_primval_ptr(ptr), change, ty)?;
}
"atomic_or" | "atomic_or_acq" | "atomic_or_rel" | "atomic_or_acqrel" | "atomic_or_relaxed" |
"atomic_xor" | "atomic_xor_acq" | "atomic_xor_rel" | "atomic_xor_acqrel" | "atomic_xor_relaxed" |
"atomic_and" | "atomic_and_acq" | "atomic_and_rel" | "atomic_and_acqrel" | "atomic_and_relaxed" |
"atomic_xadd" | "atomic_xadd_acq" | "atomic_xadd_rel" | "atomic_xadd_acqrel" | "atomic_xadd_relaxed" |
"atomic_xsub" | "atomic_xsub_acq" | "atomic_xsub_rel" | "atomic_xsub_acqrel" | "atomic_xsub_relaxed" => {
let ty = substs.type_at(0);
let ptr = arg_vals[0].into_ptr(&self.memory)?;
let change = self.value_to_primval(arg_vals[1], ty)?;
let old = self.read_value(ptr, ty)?;
let old = match old {
Value::ByVal(val) => val,
Value::ByRef { .. } => bug!("just read the value, can't be byref"),
Value::ByValPair(..) => bug!("atomic_xadd_relaxed doesn't work with nonprimitives"),
};
self.write_primval(dest, old, ty)?;
let op = match intrinsic_name.split('_').nth(1).unwrap() {
"or" => mir::BinOp::BitOr,
"xor" => mir::BinOp::BitXor,
"and" => mir::BinOp::BitAnd,
"xadd" => mir::BinOp::Add,
"xsub" => mir::BinOp::Sub,
_ => bug!(),
};
// FIXME: what do atomics do on overflow?
let (val, _) = self.binary_op(op, old, ty, change, ty)?;
self.write_primval(Lvalue::from_primval_ptr(ptr), val, ty)?;
},
"breakpoint" => unimplemented!(), // halt miri
"copy" |
"copy_nonoverlapping" => {
let elem_ty = substs.type_at(0);
let elem_size = self.type_size(elem_ty)?.expect("cannot copy unsized value");
let count = self.value_to_primval(arg_vals[2], usize)?.to_u64()?;
if count * elem_size != 0 {
// TODO: We do not even validate alignment for the 0-bytes case. libstd relies on this in vec::IntoIter::next.
// Also see the write_bytes intrinsic.
let elem_align = self.type_align(elem_ty)?;
let src = arg_vals[0].into_ptr(&self.memory)?;
let dest = arg_vals[1].into_ptr(&self.memory)?;
self.memory.copy(src, dest, count * elem_size, elem_align, intrinsic_name.ends_with("_nonoverlapping"))?;
}
}
"ctpop" |
"cttz" |
"cttz_nonzero" |
"ctlz" |
"ctlz_nonzero" |
"bswap" => {
let ty = substs.type_at(0);
let num = self.value_to_primval(arg_vals[0], ty)?.to_bytes()?;
let kind = self.ty_to_primval_kind(ty)?;
let num = if intrinsic_name.ends_with("_nonzero") {
if num == 0 {
return Err(EvalError::Intrinsic(format!("{} called on 0", intrinsic_name)))
}
numeric_intrinsic(intrinsic_name.trim_right_matches("_nonzero"), num, kind)?
} else {
numeric_intrinsic(intrinsic_name, num, kind)?
};
self.write_primval(dest, num, ty)?;
}
"discriminant_value" => {
let ty = substs.type_at(0);
let adt_ptr = arg_vals[0].into_ptr(&self.memory)?.to_ptr()?;
let discr_val = self.read_discriminant_value(adt_ptr, ty)?;
self.write_primval(dest, PrimVal::Bytes(discr_val), dest_ty)?;
}
"sinf32" | "fabsf32" | "cosf32" |
"sqrtf32" | "expf32" | "exp2f32" |
"logf32" | "log10f32" | "log2f32" |
"floorf32" | "ceilf32" | "truncf32" => {
let f = self.value_to_primval(arg_vals[0], f32)?.to_f32()?;
let f = match intrinsic_name {
"sinf32" => f.sin(),
"fabsf32" => f.abs(),
"cosf32" => f.cos(),
"sqrtf32" => f.sqrt(),
"expf32" => f.exp(),
"exp2f32" => f.exp2(),
"logf32" => f.ln(),
"log10f32" => f.log10(),
"log2f32" => f.log2(),
"floorf32" => f.floor(),
"ceilf32" => f.ceil(),
"truncf32" => f.trunc(),
_ => bug!(),
};
self.write_primval(dest, PrimVal::from_f32(f), dest_ty)?;
}
"sinf64" | "fabsf64" | "cosf64" |
"sqrtf64" | "expf64" | "exp2f64" |
"logf64" | "log10f64" | "log2f64" |
"floorf64" | "ceilf64" | "truncf64" => {
let f = self.value_to_primval(arg_vals[0], f64)?.to_f64()?;
let f = match intrinsic_name {
"sinf64" => f.sin(),
"fabsf64" => f.abs(),
"cosf64" => f.cos(),
"sqrtf64" => f.sqrt(),
"expf64" => f.exp(),
"exp2f64" => f.exp2(),
"logf64" => f.ln(),
"log10f64" => f.log10(),
"log2f64" => f.log2(),
"floorf64" => f.floor(),
"ceilf64" => f.ceil(),
"truncf64" => f.trunc(),
_ => bug!(),
};
self.write_primval(dest, PrimVal::from_f64(f), dest_ty)?;
}
"fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" => {
let ty = substs.type_at(0);
let a = self.value_to_primval(arg_vals[0], ty)?;
let b = self.value_to_primval(arg_vals[1], ty)?;
let op = match intrinsic_name {
"fadd_fast" => mir::BinOp::Add,
"fsub_fast" => mir::BinOp::Sub,
"fmul_fast" => mir::BinOp::Mul,
"fdiv_fast" => mir::BinOp::Div,
"frem_fast" => mir::BinOp::Rem,
_ => bug!(),
};
let result = self.binary_op(op, a, ty, b, ty)?;
self.write_primval(dest, result.0, dest_ty)?;
}
"likely" |
"unlikely" |
"forget" => {}
"init" => {
let size = self.type_size(dest_ty)?.expect("cannot zero unsized value");
let init = |this: &mut Self, val: Value| {
let zero_val = match val {
Value::ByRef { ptr, aligned } => {
// These writes have no alignment restriction anyway.
this.memory.write_repeat(ptr, 0, size)?;
Value::ByRef { ptr, aligned }
},
// TODO(solson): Revisit this, it's fishy to check for Undef here.
Value::ByVal(PrimVal::Undef) => match this.ty_to_primval_kind(dest_ty) {
Ok(_) => Value::ByVal(PrimVal::Bytes(0)),
Err(_) => {
let ptr = this.alloc_ptr_with_substs(dest_ty, substs)?;
let ptr = Pointer::from(PrimVal::Ptr(ptr));
this.memory.write_repeat(ptr, 0, size)?;
Value::by_ref(ptr)
}
},
Value::ByVal(_) => Value::ByVal(PrimVal::Bytes(0)),
Value::ByValPair(..) =>
Value::ByValPair(PrimVal::Bytes(0), PrimVal::Bytes(0)),
};
Ok(zero_val)
};
match dest {
Lvalue::Local { frame, local } => self.modify_local(frame, local, init)?,
Lvalue::Ptr { ptr, extra: LvalueExtra::None, aligned: true } => self.memory.write_repeat(ptr, 0, size)?,
Lvalue::Ptr { .. } => bug!("init intrinsic tried to write to fat or unaligned ptr target"),
Lvalue::Global(cid) => self.modify_global(cid, init)?,
}
}
"min_align_of" => {
let elem_ty = substs.type_at(0);
let elem_align = self.type_align(elem_ty)?;
let align_val = PrimVal::from_u128(elem_align as u128);
self.write_primval(dest, align_val, dest_ty)?;
}
"pref_align_of" => {
let ty = substs.type_at(0);
let layout = self.type_layout(ty)?;
let align = layout.align(&self.tcx.data_layout).pref();
let align_val = PrimVal::from_u128(align as u128);
self.write_primval(dest, align_val, dest_ty)?;
}
"move_val_init" => {
let ty = substs.type_at(0);
let ptr = arg_vals[0].into_ptr(&self.memory)?;
self.write_value_to_ptr(arg_vals[1], ptr, ty)?;
}
"needs_drop" => {
let ty = substs.type_at(0);
let env = ty::ParamEnv::empty(Reveal::All);
let needs_drop = ty.needs_drop(self.tcx, env);
self.write_primval(dest, PrimVal::from_bool(needs_drop), dest_ty)?;
}
"offset" => {
let offset = self.value_to_primval(arg_vals[1], isize)?.to_i128()? as i64;
let ptr = arg_vals[0].into_ptr(&self.memory)?;
let result_ptr = self.pointer_offset(ptr, substs.type_at(0), offset)?;
self.write_ptr(dest, result_ptr, dest_ty)?;
}
"overflowing_sub" => {
self.intrinsic_overflowing(mir::BinOp::Sub, &args[0], &args[1], dest, dest_ty)?;
}
"overflowing_mul" => {
self.intrinsic_overflowing(mir::BinOp::Mul, &args[0], &args[1], dest, dest_ty)?;
}
"overflowing_add" => {
self.intrinsic_overflowing(mir::BinOp::Add, &args[0], &args[1], dest, dest_ty)?;
}
"powf32" => {
let f = self.value_to_primval(arg_vals[0], f32)?.to_f32()?;
let f2 = self.value_to_primval(arg_vals[1], f32)?.to_f32()?;
self.write_primval(dest, PrimVal::from_f32(f.powf(f2)), dest_ty)?;
}
"powf64" => {
let f = self.value_to_primval(arg_vals[0], f64)?.to_f64()?;
let f2 = self.value_to_primval(arg_vals[1], f64)?.to_f64()?;
self.write_primval(dest, PrimVal::from_f64(f.powf(f2)), dest_ty)?;
}
"fmaf32" => {
let a = self.value_to_primval(arg_vals[0], f32)?.to_f32()?;
let b = self.value_to_primval(arg_vals[1], f32)?.to_f32()?;
let c = self.value_to_primval(arg_vals[2], f32)?.to_f32()?;
self.write_primval(dest, PrimVal::from_f32(a * b + c), dest_ty)?;
}
"fmaf64" => {
let a = self.value_to_primval(arg_vals[0], f64)?.to_f64()?;
let b = self.value_to_primval(arg_vals[1], f64)?.to_f64()?;
let c = self.value_to_primval(arg_vals[2], f64)?.to_f64()?;
self.write_primval(dest, PrimVal::from_f64(a * b + c), dest_ty)?;
}
"powif32" => {
let f = self.value_to_primval(arg_vals[0], f32)?.to_f32()?;
let i = self.value_to_primval(arg_vals[1], i32)?.to_i128()?;
self.write_primval(dest, PrimVal::from_f32(f.powi(i as i32)), dest_ty)?;
}
"powif64" => {
let f = self.value_to_primval(arg_vals[0], f64)?.to_f64()?;
let i = self.value_to_primval(arg_vals[1], i32)?.to_i128()?;
self.write_primval(dest, PrimVal::from_f64(f.powi(i as i32)), dest_ty)?;
}
"size_of" => {
let ty = substs.type_at(0);
let size = self.type_size(ty)?.expect("size_of intrinsic called on unsized value") as u128;
self.write_primval(dest, PrimVal::from_u128(size), dest_ty)?;
}
"size_of_val" => {
let ty = substs.type_at(0);
let (size, _) = self.size_and_align_of_dst(ty, arg_vals[0])?;
self.write_primval(dest, PrimVal::from_u128(size as u128), dest_ty)?;
}
"min_align_of_val" |
"align_of_val" => {
let ty = substs.type_at(0);
let (_, align) = self.size_and_align_of_dst(ty, arg_vals[0])?;
self.write_primval(dest, PrimVal::from_u128(align as u128), dest_ty)?;
}
"type_name" => {
let ty = substs.type_at(0);
let ty_name = ty.to_string();
let s = self.str_to_value(&ty_name)?;
self.write_value(s, dest, dest_ty)?;
}
"type_id" => {
let ty = substs.type_at(0);
let n = self.tcx.type_id_hash(ty);
self.write_primval(dest, PrimVal::Bytes(n as u128), dest_ty)?;
}
"transmute" => {
let src_ty = substs.type_at(0);
let ptr = self.force_allocation(dest)?.to_ptr()?;
self.write_maybe_aligned_mut(/*aligned*/false, |ectx| {
ectx.write_value_to_ptr(arg_vals[0], ptr.into(), src_ty)
})?;
}
"unchecked_shl" => {
let bits = self.type_size(dest_ty)?.expect("intrinsic can't be called on unsized type") as u128 * 8;
let rhs = self.value_to_primval(arg_vals[1], substs.type_at(0))?.to_bytes()?;
if rhs >= bits {
return Err(EvalError::Intrinsic(format!("Overflowing shift by {} in unchecked_shl", rhs)));
}
self.intrinsic_overflowing(mir::BinOp::Shl, &args[0], &args[1], dest, dest_ty)?;
}
"unchecked_shr" => {
let bits = self.type_size(dest_ty)?.expect("intrinsic can't be called on unsized type") as u128 * 8;
let rhs = self.value_to_primval(arg_vals[1], substs.type_at(0))?.to_bytes()?;
if rhs >= bits {
return Err(EvalError::Intrinsic(format!("Overflowing shift by {} in unchecked_shr", rhs)));
}
self.intrinsic_overflowing(mir::BinOp::Shr, &args[0], &args[1], dest, dest_ty)?;
}
"unchecked_div" => {
let rhs = self.value_to_primval(arg_vals[1], substs.type_at(0))?.to_bytes()?;
if rhs == 0 {
return Err(EvalError::Intrinsic(format!("Division by 0 in unchecked_div")));
}
self.intrinsic_overflowing(mir::BinOp::Div, &args[0], &args[1], dest, dest_ty)?;
}
"unchecked_rem" => {
let rhs = self.value_to_primval(arg_vals[1], substs.type_at(0))?.to_bytes()?;
if rhs == 0 {
return Err(EvalError::Intrinsic(format!("Division by 0 in unchecked_rem")));
}
self.intrinsic_overflowing(mir::BinOp::Rem, &args[0], &args[1], dest, dest_ty)?;
}
"uninit" => {
let size = dest_layout.size(&self.tcx.data_layout).bytes();
let uninit = |this: &mut Self, val: Value| {
match val {
Value::ByRef { ptr, aligned } => {
this.memory.mark_definedness(ptr, size, false)?;
Ok(Value::ByRef { ptr, aligned })
},
_ => Ok(Value::ByVal(PrimVal::Undef)),
}
};
match dest {
Lvalue::Local { frame, local } => self.modify_local(frame, local, uninit)?,
Lvalue::Ptr { ptr, extra: LvalueExtra::None, aligned: true } =>
self.memory.mark_definedness(ptr, size, false)?,
Lvalue::Ptr { .. } => bug!("uninit intrinsic tried to write to fat or unaligned ptr target"),
Lvalue::Global(cid) => self.modify_global(cid, uninit)?,
}
}
"write_bytes" => {
let u8 = self.tcx.types.u8;
let ty = substs.type_at(0);
let ty_align = self.type_align(ty)?;
let val_byte = self.value_to_primval(arg_vals[1], u8)?.to_u128()? as u8;
let size = self.type_size(ty)?.expect("write_bytes() type must be sized");
let ptr = arg_vals[0].into_ptr(&self.memory)?;
let count = self.value_to_primval(arg_vals[2], usize)?.to_u64()?;
if count > 0 {
// HashMap relies on write_bytes on a NULL ptr with count == 0 to work
// TODO: Should we, at least, validate the alignment? (Also see the copy intrinsic)
self.memory.check_align(ptr, ty_align)?;
self.memory.write_repeat(ptr, val_byte, size * count)?;
}
}
name => return Err(EvalError::Unimplemented(format!("unimplemented intrinsic: {}", name))),
}
self.goto_block(target);
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(())
}
pub fn size_and_align_of_dst(
&mut self,
ty: ty::Ty<'tcx>,
value: Value,
) -> EvalResult<'tcx, (u64, u64)> {
if let Some(size) = self.type_size(ty)? {
Ok((size as u64, self.type_align(ty)? as u64))
} else {
match ty.sty {
ty::TyAdt(def, substs) => {
// First get the size of all statically known fields.
// Don't use type_of::sizing_type_of because that expects t to be sized,
// and it also rounds up to alignment, which we want to avoid,
// as the unsized field's alignment could be smaller.
assert!(!ty.is_simd());
let layout = self.type_layout(ty)?;
debug!("DST {} layout: {:?}", ty, layout);
let (sized_size, sized_align) = match *layout {
ty::layout::Layout::Univariant { ref variant, .. } => {
(variant.offsets.last().map_or(0, |o| o.bytes()), variant.align)
}
_ => {
bug!("size_and_align_of_dst: expcted Univariant for `{}`, found {:#?}",
ty, layout);
}
};
debug!("DST {} statically sized prefix size: {} align: {:?}",
ty, sized_size, sized_align);
// Recurse to get the size of the dynamically sized field (must be
// the last field).
let last_field = def.struct_variant().fields.last().unwrap();
let field_ty = self.field_ty(substs, last_field);
let (unsized_size, unsized_align) = self.size_and_align_of_dst(field_ty, value)?;
// FIXME (#26403, #27023): We should be adding padding
// to `sized_size` (to accommodate the `unsized_align`
// required of the unsized field that follows) before
// summing it with `sized_size`. (Note that since #26403
// is unfixed, we do not yet add the necessary padding
// here. But this is where the add would go.)
// Return the sum of sizes and max of aligns.
let size = sized_size + unsized_size;
// Choose max of two known alignments (combined value must
// be aligned according to more restrictive of the two).
let align = sized_align.max(Align::from_bytes(unsized_align, unsized_align).unwrap());
// Issue #27023: must add any necessary padding to `size`
// (to make it a multiple of `align`) before returning it.
//
// Namely, the returned size should be, in C notation:
//
// `size + ((size & (align-1)) ? align : 0)`
//
// emulated via the semi-standard fast bit trick:
//
// `(size + (align-1)) & -align`
let size = Size::from_bytes(size).abi_align(align).bytes();
Ok((size, align.abi()))
}
ty::TyDynamic(..) => {
let (_, vtable) = value.into_ptr_vtable_pair(&self.memory)?;
// the second entry in the vtable is the dynamic size of the object.
self.read_size_and_align_from_vtable(vtable)
}
ty::TySlice(_) | ty::TyStr => {
let elem_ty = ty.sequence_element_type(self.tcx);
let elem_size = self.type_size(elem_ty)?.expect("slice element must be sized") as u64;
let (_, len) = value.into_slice(&self.memory)?;
let align = self.type_align(elem_ty)?;
Ok((len * elem_size, align as u64))
}
_ => bug!("size_of_val::<{:?}>", ty),
}
}
}
/// Returns the normalized type of a struct field
fn field_ty(
&self,
param_substs: &Substs<'tcx>,
f: &ty::FieldDef,
) -> ty::Ty<'tcx> {
self.tcx.normalize_associated_type(&f.ty(self.tcx, param_substs))
}
}
fn numeric_intrinsic<'tcx>(
name: &str,
bytes: u128,
kind: PrimValKind
) -> EvalResult<'tcx, PrimVal> {
macro_rules! integer_intrinsic {
($method:ident) => ({
use interpret::PrimValKind::*;
let result_bytes = match kind {
I8 => (bytes as i8).$method() as u128,
U8 => (bytes as u8).$method() as u128,
I16 => (bytes as i16).$method() as u128,
U16 => (bytes as u16).$method() as u128,
I32 => (bytes as i32).$method() as u128,
U32 => (bytes as u32).$method() as u128,
I64 => (bytes as i64).$method() as u128,
U64 => (bytes as u64).$method() as u128,
I128 => (bytes as i128).$method() as u128,
U128 => bytes.$method() as u128,
_ => bug!("invalid `{}` argument: {:?}", name, bytes),
};
PrimVal::Bytes(result_bytes)
});
}
let result_val = match name {
"bswap" => integer_intrinsic!(swap_bytes),
"ctlz" => integer_intrinsic!(leading_zeros),
"ctpop" => integer_intrinsic!(count_ones),
"cttz" => integer_intrinsic!(trailing_zeros),
_ => bug!("not a numeric intrinsic: {}", name),
};
Ok(result_val)
}