rust/compiler/rustc_span/src/span_encoding.rs
2023-04-18 18:00:21 +00:00

222 lines
9.0 KiB
Rust

// Spans are encoded using 1-bit tag and 2 different encoding formats (one for each tag value).
// One format is used for keeping span data inline,
// another contains index into an out-of-line span interner.
// The encoding format for inline spans were obtained by optimizing over crates in rustc/libstd.
// See https://internals.rust-lang.org/t/rfc-compiler-refactoring-spans/1357/28
use crate::def_id::{DefIndex, LocalDefId};
use crate::hygiene::SyntaxContext;
use crate::SPAN_TRACK;
use crate::{BytePos, SpanData};
use rustc_data_structures::fx::FxIndexSet;
/// A compressed span.
///
/// Whereas [`SpanData`] is 16 bytes, which is a bit too big to stick everywhere, `Span`
/// is a form that only takes up 8 bytes, with less space for the length, parent and
/// context. The vast majority (99.9%+) of `SpanData` instances will fit within
/// those 8 bytes; any `SpanData` whose fields don't fit into a `Span` are
/// stored in a separate interner table, and the `Span` will index into that
/// table. Interning is rare enough that the cost is low, but common enough
/// that the code is exercised regularly.
///
/// An earlier version of this code used only 4 bytes for `Span`, but that was
/// slower because only 80--90% of spans could be stored inline (even less in
/// very large crates) and so the interner was used a lot more.
///
/// Inline (compressed) format with no parent:
/// - `span.base_or_index == span_data.lo`
/// - `span.len_or_tag == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`)
/// - `span.ctxt_or_tag == span_data.ctxt` (must be `<= MAX_CTXT`)
///
/// Interned format with inline `SyntaxContext`:
/// - `span.base_or_index == index` (indexes into the interner table)
/// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero)
/// - `span.ctxt_or_tag == span_data.ctxt` (must be `<= MAX_CTXT`)
///
/// Inline (compressed) format with root context:
/// - `span.base_or_index == span_data.lo`
/// - `span.len_or_tag == len == span_data.hi - span_data.lo` (must be `<= MAX_LEN`)
/// - `span.len_or_tag` has top bit (`PARENT_MASK`) set
/// - `span.ctxt == span_data.parent` (must be `<= MAX_CTXT`)
///
/// Interned format:
/// - `span.base_or_index == index` (indexes into the interner table)
/// - `span.len_or_tag == LEN_TAG` (high bit set, all other bits are zero)
/// - `span.ctxt_or_tag == CTXT_TAG`
///
/// The inline form uses 0 for the tag value (rather than 1) so that we don't
/// need to mask out the tag bit when getting the length, and so that the
/// dummy span can be all zeroes.
///
/// Notes about the choice of field sizes:
/// - `base` is 32 bits in both `Span` and `SpanData`, which means that `base`
/// values never cause interning. The number of bits needed for `base`
/// depends on the crate size. 32 bits allows up to 4 GiB of code in a crate.
/// - `len` is 15 bits in `Span` (a u16, minus 1 bit for the tag) and 32 bits
/// in `SpanData`, which means that large `len` values will cause interning.
/// The number of bits needed for `len` does not depend on the crate size.
/// The most common numbers of bits for `len` are from 0 to 7, with a peak usually
/// at 3 or 4, and then it drops off quickly from 8 onwards. 15 bits is enough
/// for 99.99%+ of cases, but larger values (sometimes 20+ bits) might occur
/// dozens of times in a typical crate.
/// - `ctxt_or_tag` is 16 bits in `Span` and 32 bits in `SpanData`, which means that
/// large `ctxt` values will cause interning. The number of bits needed for
/// `ctxt` values depend partly on the crate size and partly on the form of
/// the code. No crates in `rustc-perf` need more than 15 bits for `ctxt_or_tag`,
/// but larger crates might need more than 16 bits.
///
/// In order to reliably use parented spans in incremental compilation,
/// the dependency to the parent definition's span. This is performed
/// using the callback `SPAN_TRACK` to access the query engine.
///
#[derive(Clone, Copy, Eq, PartialEq, Hash)]
#[rustc_pass_by_value]
pub struct Span {
base_or_index: u32,
len_or_tag: u16,
ctxt_or_tag: u16,
}
const LEN_TAG: u16 = 0b1111_1111_1111_1111;
const PARENT_MASK: u16 = 0b1000_0000_0000_0000;
const MAX_LEN: u32 = 0b0111_1111_1111_1111;
const CTXT_TAG: u32 = 0b1111_1111_1111_1111;
const MAX_CTXT: u32 = CTXT_TAG - 1;
/// Dummy span, both position and length are zero, syntax context is zero as well.
pub const DUMMY_SP: Span = Span { base_or_index: 0, len_or_tag: 0, ctxt_or_tag: 0 };
impl Span {
#[inline]
pub fn new(
mut lo: BytePos,
mut hi: BytePos,
ctxt: SyntaxContext,
parent: Option<LocalDefId>,
) -> Self {
if lo > hi {
std::mem::swap(&mut lo, &mut hi);
}
let (base, len, ctxt2) = (lo.0, hi.0 - lo.0, ctxt.as_u32());
if len <= MAX_LEN && ctxt2 <= MAX_CTXT {
let len_or_tag = len as u16;
debug_assert_eq!(len_or_tag & PARENT_MASK, 0);
if let Some(parent) = parent {
// Inline format with parent.
let len_or_tag = len_or_tag | PARENT_MASK;
let parent2 = parent.local_def_index.as_u32();
if ctxt2 == SyntaxContext::root().as_u32()
&& parent2 <= MAX_CTXT
&& len_or_tag < LEN_TAG
{
debug_assert_ne!(len_or_tag, LEN_TAG);
return Span { base_or_index: base, len_or_tag, ctxt_or_tag: parent2 as u16 };
}
} else {
// Inline format with ctxt.
debug_assert_ne!(len_or_tag, LEN_TAG);
return Span {
base_or_index: base,
len_or_tag: len as u16,
ctxt_or_tag: ctxt2 as u16,
};
}
}
// Interned format.
let index =
with_span_interner(|interner| interner.intern(&SpanData { lo, hi, ctxt, parent }));
let ctxt_or_tag = if ctxt2 <= MAX_CTXT { ctxt2 } else { CTXT_TAG } as u16;
Span { base_or_index: index, len_or_tag: LEN_TAG, ctxt_or_tag }
}
#[inline]
pub fn data(self) -> SpanData {
let data = self.data_untracked();
if let Some(parent) = data.parent {
(*SPAN_TRACK)(parent);
}
data
}
/// Internal function to translate between an encoded span and the expanded representation.
/// This function must not be used outside the incremental engine.
#[inline]
pub fn data_untracked(self) -> SpanData {
if self.len_or_tag != LEN_TAG {
// Inline format.
if self.len_or_tag & PARENT_MASK == 0 {
debug_assert!(self.len_or_tag as u32 <= MAX_LEN);
SpanData {
lo: BytePos(self.base_or_index),
hi: BytePos(self.base_or_index + self.len_or_tag as u32),
ctxt: SyntaxContext::from_u32(self.ctxt_or_tag as u32),
parent: None,
}
} else {
let len = self.len_or_tag & !PARENT_MASK;
debug_assert!(len as u32 <= MAX_LEN);
let parent =
LocalDefId { local_def_index: DefIndex::from_u32(self.ctxt_or_tag as u32) };
SpanData {
lo: BytePos(self.base_or_index),
hi: BytePos(self.base_or_index + len as u32),
ctxt: SyntaxContext::root(),
parent: Some(parent),
}
}
} else {
// Interned format.
let index = self.base_or_index;
with_span_interner(|interner| interner.spans[index as usize])
}
}
/// This function is used as a fast path when decoding the full `SpanData` is not necessary.
#[inline]
pub fn ctxt(self) -> SyntaxContext {
let ctxt_or_tag = self.ctxt_or_tag as u32;
// Check for interned format.
if self.len_or_tag == LEN_TAG {
if ctxt_or_tag == CTXT_TAG {
// Fully interned format.
let index = self.base_or_index;
with_span_interner(|interner| interner.spans[index as usize].ctxt)
} else {
// Interned format with inline ctxt.
SyntaxContext::from_u32(ctxt_or_tag)
}
} else if self.len_or_tag & PARENT_MASK == 0 {
// Inline format with inline ctxt.
SyntaxContext::from_u32(ctxt_or_tag)
} else {
// Inline format with inline parent.
// We know that the SyntaxContext is root.
SyntaxContext::root()
}
}
}
#[derive(Default)]
pub struct SpanInterner {
spans: FxIndexSet<SpanData>,
}
impl SpanInterner {
fn intern(&mut self, span_data: &SpanData) -> u32 {
let (index, _) = self.spans.insert_full(*span_data);
index as u32
}
}
// If an interner exists, return it. Otherwise, prepare a fresh one.
#[inline]
fn with_span_interner<T, F: FnOnce(&mut SpanInterner) -> T>(f: F) -> T {
crate::with_session_globals(|session_globals| f(&mut session_globals.span_interner.lock()))
}