rust/crates/hir_ty/src/infer/unify.rs
Florian Diebold 7ec3b66f7a Turn Obligation into something similar to chalk_ir::DomainGoal
This includes starting to make use of Chalk's `Cast` trait.
2021-03-20 12:47:12 +01:00

556 lines
20 KiB
Rust

//! Unification and canonicalization logic.
use std::borrow::Cow;
use chalk_ir::{FloatTy, IntTy, TyVariableKind};
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
use super::{DomainGoal, InferenceContext};
use crate::{
AliasEq, AliasTy, BoundVar, Canonical, DebruijnIndex, FnPointer, InEnvironment, InferenceVar,
Interner, Scalar, Substitution, Ty, TyKind, TypeWalk, WhereClause,
};
impl<'a> InferenceContext<'a> {
pub(super) fn canonicalizer<'b>(&'b mut self) -> Canonicalizer<'a, 'b>
where
'a: 'b,
{
Canonicalizer { ctx: self, free_vars: Vec::new(), var_stack: Vec::new() }
}
}
pub(super) struct Canonicalizer<'a, 'b>
where
'a: 'b,
{
ctx: &'b mut InferenceContext<'a>,
free_vars: Vec<(InferenceVar, TyVariableKind)>,
/// A stack of type variables that is used to detect recursive types (which
/// are an error, but we need to protect against them to avoid stack
/// overflows).
var_stack: Vec<TypeVarId>,
}
#[derive(Debug)]
pub(super) struct Canonicalized<T> {
pub(super) value: Canonical<T>,
free_vars: Vec<(InferenceVar, TyVariableKind)>,
}
impl<'a, 'b> Canonicalizer<'a, 'b> {
fn add(&mut self, free_var: InferenceVar, kind: TyVariableKind) -> usize {
self.free_vars.iter().position(|&(v, _)| v == free_var).unwrap_or_else(|| {
let next_index = self.free_vars.len();
self.free_vars.push((free_var, kind));
next_index
})
}
fn do_canonicalize<T: TypeWalk>(&mut self, t: T, binders: DebruijnIndex) -> T {
t.fold_binders(
&mut |ty, binders| match ty.interned(&Interner) {
&TyKind::InferenceVar(var, kind) => {
let inner = var.to_inner();
if self.var_stack.contains(&inner) {
// recursive type
return self.ctx.table.type_variable_table.fallback_value(var, kind);
}
if let Some(known_ty) =
self.ctx.table.var_unification_table.inlined_probe_value(inner).known()
{
self.var_stack.push(inner);
let result = self.do_canonicalize(known_ty.clone(), binders);
self.var_stack.pop();
result
} else {
let root = self.ctx.table.var_unification_table.find(inner);
let position = self.add(InferenceVar::from_inner(root), kind);
TyKind::BoundVar(BoundVar::new(binders, position)).intern(&Interner)
}
}
_ => ty,
},
binders,
)
}
fn into_canonicalized<T>(self, result: T) -> Canonicalized<T> {
let kinds = self.free_vars.iter().map(|&(_, k)| k).collect();
Canonicalized { value: Canonical { value: result, kinds }, free_vars: self.free_vars }
}
pub(crate) fn canonicalize_ty(mut self, ty: Ty) -> Canonicalized<Ty> {
let result = self.do_canonicalize(ty, DebruijnIndex::INNERMOST);
self.into_canonicalized(result)
}
pub(crate) fn canonicalize_obligation(
mut self,
obligation: InEnvironment<DomainGoal>,
) -> Canonicalized<InEnvironment<DomainGoal>> {
let result = match obligation.value {
DomainGoal::Holds(wc) => {
DomainGoal::Holds(self.do_canonicalize(wc, DebruijnIndex::INNERMOST))
}
};
self.into_canonicalized(InEnvironment {
value: result,
environment: obligation.environment,
})
}
}
impl<T> Canonicalized<T> {
pub(super) fn decanonicalize_ty(&self, mut ty: Ty) -> Ty {
ty.walk_mut_binders(
&mut |ty, binders| {
if let &mut TyKind::BoundVar(bound) = ty.interned_mut() {
if bound.debruijn >= binders {
let (v, k) = self.free_vars[bound.index];
*ty = TyKind::InferenceVar(v, k).intern(&Interner);
}
}
},
DebruijnIndex::INNERMOST,
);
ty
}
pub(super) fn apply_solution(
&self,
ctx: &mut InferenceContext<'_>,
solution: Canonical<Substitution>,
) {
// the solution may contain new variables, which we need to convert to new inference vars
let new_vars = Substitution(
solution
.kinds
.iter()
.map(|k| match k {
TyVariableKind::General => ctx.table.new_type_var(),
TyVariableKind::Integer => ctx.table.new_integer_var(),
TyVariableKind::Float => ctx.table.new_float_var(),
})
.collect(),
);
for (i, ty) in solution.value.into_iter().enumerate() {
let (v, k) = self.free_vars[i];
// eagerly replace projections in the type; we may be getting types
// e.g. from where clauses where this hasn't happened yet
let ty = ctx.normalize_associated_types_in(ty.clone().subst_bound_vars(&new_vars));
ctx.table.unify(&TyKind::InferenceVar(v, k).intern(&Interner), &ty);
}
}
}
pub(crate) fn unify(tys: &Canonical<(Ty, Ty)>) -> Option<Substitution> {
let mut table = InferenceTable::new();
let vars = Substitution(
tys.kinds
.iter()
// we always use type vars here because we want everything to
// fallback to Unknown in the end (kind of hacky, as below)
.map(|_| table.new_type_var())
.collect(),
);
let ty1_with_vars = tys.value.0.clone().subst_bound_vars(&vars);
let ty2_with_vars = tys.value.1.clone().subst_bound_vars(&vars);
if !table.unify(&ty1_with_vars, &ty2_with_vars) {
return None;
}
// default any type vars that weren't unified back to their original bound vars
// (kind of hacky)
for (i, var) in vars.iter().enumerate() {
if &*table.resolve_ty_shallow(var) == var {
table.unify(
var,
&TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, i)).intern(&Interner),
);
}
}
Some(
Substitution::builder(tys.kinds.len())
.fill(vars.iter().map(|v| table.resolve_ty_completely(v.clone())))
.build(),
)
}
#[derive(Clone, Debug)]
pub(super) struct TypeVariableTable {
inner: Vec<TypeVariableData>,
}
impl TypeVariableTable {
fn push(&mut self, data: TypeVariableData) {
self.inner.push(data);
}
pub(super) fn set_diverging(&mut self, iv: InferenceVar, diverging: bool) {
self.inner[iv.to_inner().0 as usize].diverging = diverging;
}
fn is_diverging(&mut self, iv: InferenceVar) -> bool {
self.inner[iv.to_inner().0 as usize].diverging
}
fn fallback_value(&self, iv: InferenceVar, kind: TyVariableKind) -> Ty {
match kind {
_ if self.inner[iv.to_inner().0 as usize].diverging => TyKind::Never,
TyVariableKind::General => TyKind::Unknown,
TyVariableKind::Integer => TyKind::Scalar(Scalar::Int(IntTy::I32)),
TyVariableKind::Float => TyKind::Scalar(Scalar::Float(FloatTy::F64)),
}
.intern(&Interner)
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct TypeVariableData {
diverging: bool,
}
#[derive(Clone, Debug)]
pub(crate) struct InferenceTable {
pub(super) var_unification_table: InPlaceUnificationTable<TypeVarId>,
pub(super) type_variable_table: TypeVariableTable,
}
impl InferenceTable {
pub(crate) fn new() -> Self {
InferenceTable {
var_unification_table: InPlaceUnificationTable::new(),
type_variable_table: TypeVariableTable { inner: Vec::new() },
}
}
fn new_var(&mut self, kind: TyVariableKind, diverging: bool) -> Ty {
self.type_variable_table.push(TypeVariableData { diverging });
let key = self.var_unification_table.new_key(TypeVarValue::Unknown);
assert_eq!(key.0 as usize, self.type_variable_table.inner.len() - 1);
TyKind::InferenceVar(InferenceVar::from_inner(key), kind).intern(&Interner)
}
pub(crate) fn new_type_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, false)
}
pub(crate) fn new_integer_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Integer, false)
}
pub(crate) fn new_float_var(&mut self) -> Ty {
self.new_var(TyVariableKind::Float, false)
}
pub(crate) fn new_maybe_never_var(&mut self) -> Ty {
self.new_var(TyVariableKind::General, true)
}
pub(crate) fn resolve_ty_completely(&mut self, ty: Ty) -> Ty {
self.resolve_ty_completely_inner(&mut Vec::new(), ty)
}
pub(crate) fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty {
self.resolve_ty_as_possible_inner(&mut Vec::new(), ty)
}
pub(crate) fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
pub(crate) fn unify_substs(
&mut self,
substs1: &Substitution,
substs2: &Substitution,
depth: usize,
) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
if ty1.equals_ctor(&ty2) {
match (ty1.interned(&Interner), ty2.interned(&Interner)) {
(TyKind::Adt(_, substs1), TyKind::Adt(_, substs2))
| (TyKind::FnDef(_, substs1), TyKind::FnDef(_, substs2))
| (
TyKind::Function(FnPointer { substs: substs1, .. }),
TyKind::Function(FnPointer { substs: substs2, .. }),
)
| (TyKind::Tuple(_, substs1), TyKind::Tuple(_, substs2))
| (TyKind::OpaqueType(_, substs1), TyKind::OpaqueType(_, substs2))
| (TyKind::AssociatedType(_, substs1), TyKind::AssociatedType(_, substs2))
| (TyKind::Closure(.., substs1), TyKind::Closure(.., substs2)) => {
self.unify_substs(substs1, substs2, depth + 1)
}
(TyKind::Ref(_, ty1), TyKind::Ref(_, ty2))
| (TyKind::Raw(_, ty1), TyKind::Raw(_, ty2))
| (TyKind::Array(ty1), TyKind::Array(ty2))
| (TyKind::Slice(ty1), TyKind::Slice(ty2)) => self.unify_inner(ty1, ty2, depth + 1),
_ => true, /* we checked equals_ctor already */
}
} else {
self.unify_inner_trivial(&ty1, &ty2, depth)
}
}
pub(super) fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
match (ty1.interned(&Interner), ty2.interned(&Interner)) {
(TyKind::Unknown, _) | (_, TyKind::Unknown) => true,
(TyKind::Placeholder(p1), TyKind::Placeholder(p2)) if *p1 == *p2 => true,
(TyKind::Dyn(dyn1), TyKind::Dyn(dyn2)) if dyn1.len() == dyn2.len() => {
for (pred1, pred2) in dyn1.iter().zip(dyn2.iter()) {
if !self.unify_preds(pred1, pred2, depth + 1) {
return false;
}
}
true
}
(
TyKind::InferenceVar(tv1, TyVariableKind::General),
TyKind::InferenceVar(tv2, TyVariableKind::General),
)
| (
TyKind::InferenceVar(tv1, TyVariableKind::Integer),
TyKind::InferenceVar(tv2, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(tv1, TyVariableKind::Float),
TyKind::InferenceVar(tv2, TyVariableKind::Float),
) if self.type_variable_table.is_diverging(*tv1)
== self.type_variable_table.is_diverging(*tv2) =>
{
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(tv1.to_inner(), tv2.to_inner());
true
}
// The order of MaybeNeverTypeVar matters here.
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
(TyKind::InferenceVar(tv, TyVariableKind::General), other)
| (other, TyKind::InferenceVar(tv, TyVariableKind::General))
| (
TyKind::InferenceVar(tv, TyVariableKind::Integer),
other @ TyKind::Scalar(Scalar::Int(_)),
)
| (
other @ TyKind::Scalar(Scalar::Int(_)),
TyKind::InferenceVar(tv, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(tv, TyVariableKind::Integer),
other @ TyKind::Scalar(Scalar::Uint(_)),
)
| (
other @ TyKind::Scalar(Scalar::Uint(_)),
TyKind::InferenceVar(tv, TyVariableKind::Integer),
)
| (
TyKind::InferenceVar(tv, TyVariableKind::Float),
other @ TyKind::Scalar(Scalar::Float(_)),
)
| (
other @ TyKind::Scalar(Scalar::Float(_)),
TyKind::InferenceVar(tv, TyVariableKind::Float),
) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(
tv.to_inner(),
TypeVarValue::Known(other.clone().intern(&Interner)),
);
true
}
_ => false,
}
}
fn unify_preds(&mut self, pred1: &WhereClause, pred2: &WhereClause, depth: usize) -> bool {
match (pred1, pred2) {
(WhereClause::Implemented(tr1), WhereClause::Implemented(tr2))
if tr1.trait_id == tr2.trait_id =>
{
self.unify_substs(&tr1.substitution, &tr2.substitution, depth + 1)
}
(
WhereClause::AliasEq(AliasEq { alias: alias1, ty: ty1 }),
WhereClause::AliasEq(AliasEq { alias: alias2, ty: ty2 }),
) => {
let (substitution1, substitution2) = match (alias1, alias2) {
(AliasTy::Projection(projection_ty1), AliasTy::Projection(projection_ty2))
if projection_ty1.associated_ty_id == projection_ty2.associated_ty_id =>
{
(&projection_ty1.substitution, &projection_ty2.substitution)
}
(AliasTy::Opaque(opaque1), AliasTy::Opaque(opaque2))
if opaque1.opaque_ty_id == opaque2.opaque_ty_id =>
{
(&opaque1.substitution, &opaque2.substitution)
}
_ => return false,
};
self.unify_substs(&substitution1, &substitution2, depth + 1)
&& self.unify_inner(&ty1, &ty2, depth + 1)
}
_ => false,
}
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
pub(crate) fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
cov_mark::hit!(type_var_resolves_to_int_var);
}
match ty.interned(&Interner) {
TyKind::InferenceVar(tv, _) => {
let inner = tv.to_inner();
match self.var_unification_table.inlined_probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty.interned(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
cov_mark::hit!(type_var_cycles_resolve_as_possible);
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible_inner(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// Resolves the type completely; type variables without known type are
/// replaced by TyKind::Unknown.
fn resolve_ty_completely_inner(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty.interned(&Interner) {
&TyKind::InferenceVar(tv, kind) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
cov_mark::hit!(type_var_cycles_resolve_completely);
// recursive type
return self.type_variable_table.fallback_value(tv, kind);
}
if let Some(known_ty) =
self.var_unification_table.inlined_probe_value(inner).known()
{
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely_inner(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
self.type_variable_table.fallback_value(tv, kind)
}
}
_ => ty,
})
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub(super) struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub(super) enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}