rust/src/librustc/util/ppaux.rs
Patrick Walton 357d5cd96c librustc: Implement the fully-expanded, UFCS form of explicit self.
This makes two changes to region inference: (1) it allows region
inference to relate early-bound regions; and (2) it allows regions to be
related before variance runs. The former is needed because there is no
relation between the two regions before region substitution happens,
while the latter is needed because type collection has to run before
variance. We assume that, before variance is inferred, that lifetimes
are invariant. This is a conservative overapproximation.

This relates to #13885. This does not remove `~self` from the language
yet, however.

[breaking-change]
2014-07-16 20:01:52 -07:00

1110 lines
32 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::def;
use middle::subst;
use middle::subst::{VecPerParamSpace,Subst};
use middle::ty::{ReSkolemized, ReVar};
use middle::ty::{BoundRegion, BrAnon, BrNamed};
use middle::ty::{ReEarlyBound, BrFresh, ctxt};
use middle::ty::{mt, t, ParamTy};
use middle::ty::{ReFree, ReScope, ReInfer, ReStatic, Region, ReEmpty};
use middle::ty::{ty_bool, ty_char, ty_bot, ty_box, ty_struct, ty_enum};
use middle::ty::{ty_err, ty_str, ty_vec, ty_float, ty_bare_fn, ty_closure};
use middle::ty::{ty_nil, ty_param, ty_ptr, ty_rptr, ty_tup};
use middle::ty::{ty_uniq, ty_trait, ty_int, ty_uint, ty_infer};
use middle::ty;
use middle::typeck;
use middle::typeck::infer;
use middle::typeck::infer::unify;
use VV = middle::typeck::infer::unify::VarValue;
use middle::typeck::infer::region_inference;
use std::rc::Rc;
use std::gc::Gc;
use syntax::abi;
use syntax::ast_map;
use syntax::codemap::{Span, Pos};
use syntax::parse::token;
use syntax::print::pprust;
use syntax::{ast, ast_util};
use syntax::owned_slice::OwnedSlice;
/// Produces a string suitable for debugging output.
pub trait Repr {
fn repr(&self, tcx: &ctxt) -> String;
}
/// Produces a string suitable for showing to the user.
pub trait UserString {
fn user_string(&self, tcx: &ctxt) -> String;
}
pub fn note_and_explain_region(cx: &ctxt,
prefix: &str,
region: ty::Region,
suffix: &str) {
match explain_region_and_span(cx, region) {
(ref str, Some(span)) => {
cx.sess.span_note(
span,
format!("{}{}{}", prefix, *str, suffix).as_slice());
}
(ref str, None) => {
cx.sess.note(
format!("{}{}{}", prefix, *str, suffix).as_slice());
}
}
}
pub fn explain_region_and_span(cx: &ctxt, region: ty::Region)
-> (String, Option<Span>) {
return match region {
ReScope(node_id) => {
match cx.map.find(node_id) {
Some(ast_map::NodeBlock(ref blk)) => {
explain_span(cx, "block", blk.span)
}
Some(ast_map::NodeExpr(expr)) => {
match expr.node {
ast::ExprCall(..) => explain_span(cx, "call", expr.span),
ast::ExprMethodCall(..) => {
explain_span(cx, "method call", expr.span)
},
ast::ExprMatch(..) => explain_span(cx, "match", expr.span),
_ => explain_span(cx, "expression", expr.span)
}
}
Some(ast_map::NodeStmt(stmt)) => {
explain_span(cx, "statement", stmt.span)
}
Some(ast_map::NodeItem(it)) if (match it.node {
ast::ItemFn(..) => true, _ => false}) => {
explain_span(cx, "function body", it.span)
}
Some(_) | None => {
// this really should not happen
(format!("unknown scope: {}. Please report a bug.", node_id), None)
}
}
}
ReFree(ref fr) => {
let prefix = match fr.bound_region {
BrAnon(idx) => {
format!("the anonymous lifetime #{} defined on", idx + 1)
}
BrFresh(_) => "an anonymous lifetime defined on".to_string(),
_ => {
format!("the lifetime {} as defined on",
bound_region_ptr_to_string(cx, fr.bound_region))
}
};
match cx.map.find(fr.scope_id) {
Some(ast_map::NodeBlock(ref blk)) => {
let (msg, opt_span) = explain_span(cx, "block", blk.span);
(format!("{} {}", prefix, msg), opt_span)
}
Some(ast_map::NodeItem(it)) if match it.node {
ast::ItemImpl(..) => true, _ => false} => {
let (msg, opt_span) = explain_span(cx, "impl", it.span);
(format!("{} {}", prefix, msg), opt_span)
}
Some(_) | None => {
// this really should not happen
(format!("{} node {}", prefix, fr.scope_id), None)
}
}
}
ReStatic => { ("the static lifetime".to_string(), None) }
ReEmpty => { ("the empty lifetime".to_string(), None) }
ReEarlyBound(_, _, _, name) => {
(format!("{}", token::get_name(name)), None)
}
// I believe these cases should not occur (except when debugging,
// perhaps)
ty::ReInfer(_) | ty::ReLateBound(..) => {
(format!("lifetime {:?}", region), None)
}
};
fn explain_span(cx: &ctxt, heading: &str, span: Span)
-> (String, Option<Span>) {
let lo = cx.sess.codemap().lookup_char_pos_adj(span.lo);
(format!("the {} at {}:{}", heading, lo.line, lo.col.to_uint()),
Some(span))
}
}
pub fn bound_region_ptr_to_string(cx: &ctxt, br: BoundRegion) -> String {
bound_region_to_string(cx, "", false, br)
}
pub fn bound_region_to_string(cx: &ctxt,
prefix: &str, space: bool,
br: BoundRegion) -> String {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return format!("{}{}{}", prefix, br.repr(cx), space_str)
}
match br {
BrNamed(_, name) => {
format!("{}{}{}", prefix, token::get_name(name), space_str)
}
BrAnon(_) => prefix.to_string(),
BrFresh(_) => prefix.to_string(),
}
}
// In general, if you are giving a region error message,
// you should use `explain_region()` or, better yet,
// `note_and_explain_region()`
pub fn region_ptr_to_string(cx: &ctxt, region: Region) -> String {
region_to_string(cx, "&", true, region)
}
pub fn region_to_string(cx: &ctxt, prefix: &str, space: bool, region: Region) -> String {
let space_str = if space { " " } else { "" };
if cx.sess.verbose() {
return format!("{}{}{}", prefix, region.repr(cx), space_str)
}
// These printouts are concise. They do not contain all the information
// the user might want to diagnose an error, but there is basically no way
// to fit that into a short string. Hence the recommendation to use
// `explain_region()` or `note_and_explain_region()`.
match region {
ty::ReScope(_) => prefix.to_string(),
ty::ReEarlyBound(_, _, _, name) => {
token::get_name(name).get().to_string()
}
ty::ReLateBound(_, br) => bound_region_to_string(cx, prefix, space, br),
ty::ReFree(ref fr) => bound_region_to_string(cx, prefix, space, fr.bound_region),
ty::ReInfer(ReSkolemized(_, br)) => {
bound_region_to_string(cx, prefix, space, br)
}
ty::ReInfer(ReVar(_)) => prefix.to_string(),
ty::ReStatic => format!("{}'static{}", prefix, space_str),
ty::ReEmpty => format!("{}'<empty>{}", prefix, space_str),
}
}
pub fn mutability_to_string(m: ast::Mutability) -> String {
match m {
ast::MutMutable => "mut ".to_string(),
ast::MutImmutable => "".to_string(),
}
}
pub fn mt_to_string(cx: &ctxt, m: &mt) -> String {
format!("{}{}", mutability_to_string(m.mutbl), ty_to_string(cx, m.ty))
}
pub fn trait_store_to_string(cx: &ctxt, s: ty::TraitStore) -> String {
match s {
ty::UniqTraitStore => "Box ".to_string(),
ty::RegionTraitStore(r, m) => {
format!("{}{}", region_ptr_to_string(cx, r), mutability_to_string(m))
}
}
}
pub fn vec_map_to_string<T>(ts: &[T], f: |t: &T| -> String) -> String {
let tstrs = ts.iter().map(f).collect::<Vec<String>>();
format!("[{}]", tstrs.connect(", "))
}
pub fn fn_sig_to_string(cx: &ctxt, typ: &ty::FnSig) -> String {
format!("fn{}{} -> {}", typ.binder_id, typ.inputs.repr(cx),
typ.output.repr(cx))
}
pub fn trait_ref_to_string(cx: &ctxt, trait_ref: &ty::TraitRef) -> String {
trait_ref.user_string(cx).to_string()
}
pub fn ty_to_string(cx: &ctxt, typ: t) -> String {
fn fn_input_to_string(cx: &ctxt, input: ty::t) -> String {
ty_to_string(cx, input).to_string()
}
fn bare_fn_to_string(cx: &ctxt,
fn_style: ast::FnStyle,
abi: abi::Abi,
ident: Option<ast::Ident>,
sig: &ty::FnSig)
-> String {
let mut s = String::new();
match fn_style {
ast::NormalFn => {}
_ => {
s.push_str(fn_style.to_string().as_slice());
s.push_char(' ');
}
};
if abi != abi::Rust {
s.push_str(format!("extern {} ", abi.to_string()).as_slice());
};
s.push_str("fn");
match ident {
Some(i) => {
s.push_char(' ');
s.push_str(token::get_ident(i).get());
}
_ => { }
}
push_sig_to_string(cx, &mut s, '(', ')', sig);
s
}
fn closure_to_string(cx: &ctxt, cty: &ty::ClosureTy) -> String {
let mut s = String::new();
match cty.store {
ty::UniqTraitStore => {}
ty::RegionTraitStore(region, _) => {
s.push_str(region_to_string(cx, "", true, region).as_slice());
}
}
match cty.fn_style {
ast::NormalFn => {}
_ => {
s.push_str(cty.fn_style.to_string().as_slice());
s.push_char(' ');
}
};
match cty.store {
ty::UniqTraitStore => {
assert_eq!(cty.onceness, ast::Once);
s.push_str("proc");
push_sig_to_string(cx, &mut s, '(', ')', &cty.sig);
}
ty::RegionTraitStore(..) => {
match cty.onceness {
ast::Many => {}
ast::Once => s.push_str("once ")
}
push_sig_to_string(cx, &mut s, '|', '|', &cty.sig);
}
}
if !cty.bounds.is_empty() {
s.push_str(":");
s.push_str(cty.bounds.repr(cx).as_slice());
}
s
}
fn push_sig_to_string(cx: &ctxt,
s: &mut String,
bra: char,
ket: char,
sig: &ty::FnSig) {
s.push_char(bra);
let strs: Vec<String> = sig.inputs.iter().map(|a| fn_input_to_string(cx, *a)).collect();
s.push_str(strs.connect(", ").as_slice());
if sig.variadic {
s.push_str(", ...");
}
s.push_char(ket);
if ty::get(sig.output).sty != ty_nil {
s.push_str(" -> ");
if ty::type_is_bot(sig.output) {
s.push_char('!');
} else {
s.push_str(ty_to_string(cx, sig.output).as_slice());
}
}
}
// if there is an id, print that instead of the structural type:
/*for def_id in ty::type_def_id(typ).iter() {
// note that this typedef cannot have type parameters
return ty::item_path_str(cx, *def_id);
}*/
// pretty print the structural type representation:
return match ty::get(typ).sty {
ty_nil => "()".to_string(),
ty_bot => "!".to_string(),
ty_bool => "bool".to_string(),
ty_char => "char".to_string(),
ty_int(t) => ast_util::int_ty_to_string(t, None).to_string(),
ty_uint(t) => ast_util::uint_ty_to_string(t, None).to_string(),
ty_float(t) => ast_util::float_ty_to_string(t).to_string(),
ty_box(typ) => format!("Gc<{}>", ty_to_string(cx, typ)),
ty_uniq(typ) => format!("Box<{}>", ty_to_string(cx, typ)),
ty_ptr(ref tm) => {
format!("*{} {}", match tm.mutbl {
ast::MutMutable => "mut",
ast::MutImmutable => "const",
}, ty_to_string(cx, tm.ty))
}
ty_rptr(r, ref tm) => {
let mut buf = region_ptr_to_string(cx, r);
buf.push_str(mt_to_string(cx, tm).as_slice());
buf
}
ty_tup(ref elems) => {
let strs: Vec<String> = elems.iter().map(|elem| ty_to_string(cx, *elem)).collect();
format!("({})", strs.connect(","))
}
ty_closure(ref f) => {
closure_to_string(cx, *f)
}
ty_bare_fn(ref f) => {
bare_fn_to_string(cx, f.fn_style, f.abi, None, &f.sig)
}
ty_infer(infer_ty) => infer_ty.to_string(),
ty_err => "[type error]".to_string(),
ty_param(ParamTy {idx: id, def_id: did, ..}) => {
let ident = match cx.ty_param_defs.borrow().find(&did.node) {
Some(def) => token::get_ident(def.ident).get().to_string(),
// This can only happen when a type mismatch error happens and
// the actual type has more type parameters than the expected one.
None => format!("<generic #{}>", id),
};
if !cx.sess.verbose() {
ident
} else {
format!("{}:{:?}", ident, did)
}
}
ty_enum(did, ref substs) | ty_struct(did, ref substs) => {
let base = ty::item_path_str(cx, did);
let generics = ty::lookup_item_type(cx, did).generics;
parameterized(cx, base.as_slice(), substs, &generics)
}
ty_trait(box ty::TyTrait {
def_id: did, ref substs, ref bounds
}) => {
let base = ty::item_path_str(cx, did);
let trait_def = ty::lookup_trait_def(cx, did);
let ty = parameterized(cx, base.as_slice(),
substs, &trait_def.generics);
let bound_sep = if bounds.is_empty() { "" } else { ":" };
let bound_str = bounds.repr(cx);
format!("{}{}{}",
ty,
bound_sep,
bound_str)
}
ty_str => "str".to_string(),
ty_vec(ref mt, sz) => {
match sz {
Some(n) => {
format!("[{}, .. {}]", mt_to_string(cx, mt), n)
}
None => format!("[{}]", ty_to_string(cx, mt.ty)),
}
}
}
}
pub fn explicit_self_category_to_str(category: &ty::ExplicitSelfCategory)
-> &'static str {
match *category {
ty::StaticExplicitSelfCategory => "static",
ty::ByValueExplicitSelfCategory => "self",
ty::ByReferenceExplicitSelfCategory(_, ast::MutMutable) => {
"&mut self"
}
ty::ByReferenceExplicitSelfCategory(_, ast::MutImmutable) => "&self",
ty::ByBoxExplicitSelfCategory => "Box<self>",
}
}
pub fn parameterized(cx: &ctxt,
base: &str,
substs: &subst::Substs,
generics: &ty::Generics)
-> String
{
let mut strs = Vec::new();
match substs.regions {
subst::ErasedRegions => { }
subst::NonerasedRegions(ref regions) => {
for &r in regions.iter() {
let s = region_to_string(cx, "", false, r);
if !s.is_empty() {
strs.push(s)
} else {
// This happens when the value of the region
// parameter is not easily serialized. This may be
// because the user omitted it in the first place,
// or because it refers to some block in the code,
// etc. I'm not sure how best to serialize this.
strs.push(format!("'_"));
}
}
}
}
let tps = substs.types.get_slice(subst::TypeSpace);
let ty_params = generics.types.get_slice(subst::TypeSpace);
let has_defaults = ty_params.last().map_or(false, |def| def.default.is_some());
let num_defaults = if has_defaults && !cx.sess.verbose() {
ty_params.iter().zip(tps.iter()).rev().take_while(|&(def, &actual)| {
match def.default {
Some(default) => default.subst(cx, substs) == actual,
None => false
}
}).count()
} else {
0
};
for t in tps.slice_to(tps.len() - num_defaults).iter() {
strs.push(ty_to_string(cx, *t))
}
if cx.sess.verbose() {
for t in substs.types.get_slice(subst::SelfSpace).iter() {
strs.push(format!("for {}", t.repr(cx)));
}
}
if strs.len() > 0u {
format!("{}<{}>", base, strs.connect(","))
} else {
format!("{}", base)
}
}
pub fn ty_to_short_str(cx: &ctxt, typ: t) -> String {
let mut s = typ.repr(cx).to_string();
if s.len() >= 32u {
s = s.as_slice().slice(0u, 32u).to_string();
}
return s;
}
impl<T:Repr> Repr for Option<T> {
fn repr(&self, tcx: &ctxt) -> String {
match self {
&None => "None".to_string(),
&Some(ref t) => t.repr(tcx),
}
}
}
impl<T:Repr,U:Repr> Repr for Result<T,U> {
fn repr(&self, tcx: &ctxt) -> String {
match self {
&Ok(ref t) => t.repr(tcx),
&Err(ref u) => format!("Err({})", u.repr(tcx))
}
}
}
impl Repr for () {
fn repr(&self, _tcx: &ctxt) -> String {
"()".to_string()
}
}
impl<T:Repr> Repr for Rc<T> {
fn repr(&self, tcx: &ctxt) -> String {
(&**self).repr(tcx)
}
}
impl<T:Repr + 'static> Repr for Gc<T> {
fn repr(&self, tcx: &ctxt) -> String {
(&**self).repr(tcx)
}
}
impl<T:Repr> Repr for Box<T> {
fn repr(&self, tcx: &ctxt) -> String {
(&**self).repr(tcx)
}
}
fn repr_vec<T:Repr>(tcx: &ctxt, v: &[T]) -> String {
vec_map_to_string(v, |t| t.repr(tcx))
}
impl<'a, T:Repr> Repr for &'a [T] {
fn repr(&self, tcx: &ctxt) -> String {
repr_vec(tcx, *self)
}
}
impl<T:Repr> Repr for OwnedSlice<T> {
fn repr(&self, tcx: &ctxt) -> String {
repr_vec(tcx, self.as_slice())
}
}
// This is necessary to handle types like Option<~[T]>, for which
// autoderef cannot convert the &[T] handler
impl<T:Repr> Repr for Vec<T> {
fn repr(&self, tcx: &ctxt) -> String {
repr_vec(tcx, self.as_slice())
}
}
impl Repr for def::Def {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ty::TypeParameterDef {
fn repr(&self, tcx: &ctxt) -> String {
format!("TypeParameterDef({:?}, {})", self.def_id,
self.bounds.repr(tcx))
}
}
impl Repr for ty::RegionParameterDef {
fn repr(&self, _tcx: &ctxt) -> String {
format!("RegionParameterDef({}, {:?})",
token::get_name(self.name),
self.def_id)
}
}
impl Repr for ty::t {
fn repr(&self, tcx: &ctxt) -> String {
ty_to_string(tcx, *self)
}
}
impl Repr for ty::mt {
fn repr(&self, tcx: &ctxt) -> String {
mt_to_string(tcx, self)
}
}
impl Repr for subst::Substs {
fn repr(&self, tcx: &ctxt) -> String {
format!("Substs[types={}, regions={}]",
self.types.repr(tcx),
self.regions.repr(tcx))
}
}
impl<T:Repr> Repr for subst::VecPerParamSpace<T> {
fn repr(&self, tcx: &ctxt) -> String {
format!("[{};{};{}]",
self.get_slice(subst::TypeSpace).repr(tcx),
self.get_slice(subst::SelfSpace).repr(tcx),
self.get_slice(subst::FnSpace).repr(tcx))
}
}
impl Repr for ty::ItemSubsts {
fn repr(&self, tcx: &ctxt) -> String {
format!("ItemSubsts({})", self.substs.repr(tcx))
}
}
impl Repr for subst::RegionSubsts {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
subst::ErasedRegions => "erased".to_string(),
subst::NonerasedRegions(ref regions) => regions.repr(tcx)
}
}
}
impl Repr for ty::ParamBounds {
fn repr(&self, tcx: &ctxt) -> String {
let mut res = Vec::new();
for b in self.builtin_bounds.iter() {
res.push(match b {
ty::BoundStatic => "'static".to_string(),
ty::BoundSend => "Send".to_string(),
ty::BoundSized => "Sized".to_string(),
ty::BoundCopy => "Copy".to_string(),
ty::BoundShare => "Share".to_string(),
});
}
for t in self.trait_bounds.iter() {
res.push(t.repr(tcx));
}
res.connect("+")
}
}
impl Repr for ty::TraitRef {
fn repr(&self, tcx: &ctxt) -> String {
trait_ref_to_string(tcx, self)
}
}
impl Repr for ast::Expr {
fn repr(&self, _tcx: &ctxt) -> String {
format!("expr({}: {})", self.id, pprust::expr_to_string(self))
}
}
impl Repr for ast::Path {
fn repr(&self, _tcx: &ctxt) -> String {
format!("path({})", pprust::path_to_string(self))
}
}
impl Repr for ast::Item {
fn repr(&self, tcx: &ctxt) -> String {
format!("item({})", tcx.map.node_to_string(self.id))
}
}
impl Repr for ast::Stmt {
fn repr(&self, _tcx: &ctxt) -> String {
format!("stmt({}: {})",
ast_util::stmt_id(self),
pprust::stmt_to_string(self))
}
}
impl Repr for ast::Pat {
fn repr(&self, _tcx: &ctxt) -> String {
format!("pat({}: {})", self.id, pprust::pat_to_string(self))
}
}
impl Repr for ty::BoundRegion {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
ty::BrAnon(id) => format!("BrAnon({})", id),
ty::BrNamed(id, name) => {
format!("BrNamed({}, {})", id.repr(tcx), token::get_name(name))
}
ty::BrFresh(id) => format!("BrFresh({})", id),
}
}
}
impl Repr for ty::Region {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
ty::ReEarlyBound(id, space, index, name) => {
format!("ReEarlyBound({}, {}, {}, {})",
id,
space,
index,
token::get_name(name))
}
ty::ReLateBound(binder_id, ref bound_region) => {
format!("ReLateBound({}, {})",
binder_id,
bound_region.repr(tcx))
}
ty::ReFree(ref fr) => {
format!("ReFree({}, {})",
fr.scope_id,
fr.bound_region.repr(tcx))
}
ty::ReScope(id) => {
format!("ReScope({})", id)
}
ty::ReStatic => {
"ReStatic".to_string()
}
ty::ReInfer(ReVar(ref vid)) => {
format!("ReInfer({})", vid.index)
}
ty::ReInfer(ReSkolemized(id, ref bound_region)) => {
format!("re_skolemized({}, {})", id, bound_region.repr(tcx))
}
ty::ReEmpty => {
"ReEmpty".to_string()
}
}
}
}
impl Repr for ast::DefId {
fn repr(&self, tcx: &ctxt) -> String {
// Unfortunately, there seems to be no way to attempt to print
// a path for a def-id, so I'll just make a best effort for now
// and otherwise fallback to just printing the crate/node pair
if self.krate == ast::LOCAL_CRATE {
{
match tcx.map.find(self.node) {
Some(ast_map::NodeItem(..)) |
Some(ast_map::NodeForeignItem(..)) |
Some(ast_map::NodeMethod(..)) |
Some(ast_map::NodeTraitMethod(..)) |
Some(ast_map::NodeVariant(..)) |
Some(ast_map::NodeStructCtor(..)) => {
return format!(
"{:?}:{}",
*self,
ty::item_path_str(tcx, *self))
}
_ => {}
}
}
}
return format!("{:?}", *self)
}
}
impl Repr for ty::Polytype {
fn repr(&self, tcx: &ctxt) -> String {
format!("Polytype {{generics: {}, ty: {}}}",
self.generics.repr(tcx),
self.ty.repr(tcx))
}
}
impl Repr for ty::Generics {
fn repr(&self, tcx: &ctxt) -> String {
format!("Generics(types: {}, regions: {})",
self.types.repr(tcx),
self.regions.repr(tcx))
}
}
impl Repr for ty::ItemVariances {
fn repr(&self, tcx: &ctxt) -> String {
format!("ItemVariances(types={}, \
regions={})",
self.types.repr(tcx),
self.regions.repr(tcx))
}
}
impl Repr for ty::Variance {
fn repr(&self, _: &ctxt) -> String {
// The first `.to_string()` returns a &'static str (it is not an implementation
// of the ToString trait). Because of that, we need to call `.to_string()` again
// if we want to have a `String`.
self.to_string().to_string()
}
}
impl Repr for ty::Method {
fn repr(&self, tcx: &ctxt) -> String {
format!("method(ident: {}, generics: {}, fty: {}, \
explicit_self: {}, vis: {}, def_id: {})",
self.ident.repr(tcx),
self.generics.repr(tcx),
self.fty.repr(tcx),
self.explicit_self.repr(tcx),
self.vis.repr(tcx),
self.def_id.repr(tcx))
}
}
impl Repr for ast::Name {
fn repr(&self, _tcx: &ctxt) -> String {
token::get_name(*self).get().to_string()
}
}
impl Repr for ast::Ident {
fn repr(&self, _tcx: &ctxt) -> String {
token::get_ident(*self).get().to_string()
}
}
impl Repr for ast::ExplicitSelf_ {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ast::Visibility {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ty::BareFnTy {
fn repr(&self, tcx: &ctxt) -> String {
format!("BareFnTy {{fn_style: {:?}, abi: {}, sig: {}}}",
self.fn_style,
self.abi.to_string(),
self.sig.repr(tcx))
}
}
impl Repr for ty::FnSig {
fn repr(&self, tcx: &ctxt) -> String {
fn_sig_to_string(tcx, self)
}
}
impl Repr for typeck::MethodCallee {
fn repr(&self, tcx: &ctxt) -> String {
format!("MethodCallee {{origin: {}, ty: {}, {}}}",
self.origin.repr(tcx),
self.ty.repr(tcx),
self.substs.repr(tcx))
}
}
impl Repr for typeck::MethodOrigin {
fn repr(&self, tcx: &ctxt) -> String {
match self {
&typeck::MethodStatic(def_id) => {
format!("MethodStatic({})", def_id.repr(tcx))
}
&typeck::MethodParam(ref p) => {
p.repr(tcx)
}
&typeck::MethodObject(ref p) => {
p.repr(tcx)
}
}
}
}
impl Repr for typeck::MethodParam {
fn repr(&self, tcx: &ctxt) -> String {
format!("MethodParam({},{:?},{:?},{:?})",
self.trait_id.repr(tcx),
self.method_num,
self.param_num,
self.bound_num)
}
}
impl Repr for typeck::MethodObject {
fn repr(&self, tcx: &ctxt) -> String {
format!("MethodObject({},{:?},{:?})",
self.trait_id.repr(tcx),
self.method_num,
self.real_index)
}
}
impl Repr for ty::TraitStore {
fn repr(&self, tcx: &ctxt) -> String {
trait_store_to_string(tcx, *self)
}
}
impl Repr for ty::BuiltinBound {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl UserString for ty::BuiltinBound {
fn user_string(&self, _tcx: &ctxt) -> String {
match *self {
ty::BoundStatic => "'static".to_string(),
ty::BoundSend => "Send".to_string(),
ty::BoundSized => "Sized".to_string(),
ty::BoundCopy => "Copy".to_string(),
ty::BoundShare => "Share".to_string(),
}
}
}
impl Repr for ty::BuiltinBounds {
fn repr(&self, tcx: &ctxt) -> String {
self.user_string(tcx)
}
}
impl Repr for Span {
fn repr(&self, tcx: &ctxt) -> String {
tcx.sess.codemap().span_to_string(*self).to_string()
}
}
impl<A:UserString> UserString for Rc<A> {
fn user_string(&self, tcx: &ctxt) -> String {
let this: &A = &**self;
this.user_string(tcx)
}
}
impl UserString for ty::BuiltinBounds {
fn user_string(&self, tcx: &ctxt) -> String {
self.iter()
.map(|bb| bb.user_string(tcx))
.collect::<Vec<String>>()
.connect("+")
.to_string()
}
}
impl UserString for ty::TraitRef {
fn user_string(&self, tcx: &ctxt) -> String {
let base = ty::item_path_str(tcx, self.def_id);
let trait_def = ty::lookup_trait_def(tcx, self.def_id);
parameterized(tcx, base.as_slice(), &self.substs, &trait_def.generics)
}
}
impl UserString for ty::t {
fn user_string(&self, tcx: &ctxt) -> String {
ty_to_string(tcx, *self)
}
}
impl UserString for ast::Ident {
fn user_string(&self, _tcx: &ctxt) -> String {
token::get_name(self.name).get().to_string()
}
}
impl Repr for abi::Abi {
fn repr(&self, _tcx: &ctxt) -> String {
self.to_string()
}
}
impl UserString for abi::Abi {
fn user_string(&self, _tcx: &ctxt) -> String {
self.to_string()
}
}
impl Repr for ty::UpvarId {
fn repr(&self, tcx: &ctxt) -> String {
format!("UpvarId({};`{}`;{})",
self.var_id,
ty::local_var_name_str(tcx, self.var_id),
self.closure_expr_id)
}
}
impl Repr for ast::Mutability {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ty::BorrowKind {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ty::UpvarBorrow {
fn repr(&self, tcx: &ctxt) -> String {
format!("UpvarBorrow({}, {})",
self.kind.repr(tcx),
self.region.repr(tcx))
}
}
impl Repr for ty::IntVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl Repr for ty::FloatVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl Repr for ty::RegionVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl Repr for ty::TyVid {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{}", self)
}
}
impl Repr for ty::IntVarValue {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ast::IntTy {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ast::UintTy {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl Repr for ast::FloatTy {
fn repr(&self, _tcx: &ctxt) -> String {
format!("{:?}", *self)
}
}
impl<T:Repr> Repr for infer::Bounds<T> {
fn repr(&self, tcx: &ctxt) -> String {
format!("({} <= {})",
self.lb.repr(tcx),
self.ub.repr(tcx))
}
}
impl<K:Repr,V:Repr> Repr for VV<K,V> {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
unify::Redirect(ref k) =>
format!("Redirect({})", k.repr(tcx)),
unify::Root(ref v, r) =>
format!("Root({}, {})", v.repr(tcx), r)
}
}
}
impl Repr for region_inference::VarValue {
fn repr(&self, tcx: &ctxt) -> String {
match *self {
infer::region_inference::NoValue =>
format!("NoValue"),
infer::region_inference::Value(r) =>
format!("Value({})", r.repr(tcx)),
infer::region_inference::ErrorValue =>
format!("ErrorValue"),
}
}
}
impl Repr for ty::ExplicitSelfCategory {
fn repr(&self, _: &ctxt) -> String {
explicit_self_category_to_str(self).to_string()
}
}