rust/src/matches.rs

399 lines
15 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use rustc::lint::*;
use rustc::middle::const_eval::ConstVal::{Int, Uint};
use rustc::middle::const_eval::EvalHint::ExprTypeChecked;
use rustc::middle::const_eval::{eval_const_expr_partial, ConstVal};
use rustc::middle::ty;
use rustc_front::hir::*;
use std::cmp::Ordering;
use syntax::ast::Lit_::LitBool;
use syntax::codemap::Span;
use utils::{snippet, span_lint, span_note_and_lint, span_help_and_lint, in_external_macro, expr_block};
/// **What it does:** This lint checks for matches with a single arm where an `if let` will usually suffice. It is `Warn` by default.
///
/// **Why is this bad?** Just readability `if let` nests less than a `match`.
///
/// **Known problems:** None
///
/// **Example:**
/// ```
/// match x {
/// Some(ref foo) -> bar(foo),
/// _ => ()
/// }
/// ```
declare_lint!(pub SINGLE_MATCH, Warn,
"a match statement with a single nontrivial arm (i.e, where the other arm \
is `_ => {}`) is used; recommends `if let` instead");
/// **What it does:** This lint checks for matches where all arms match a reference, suggesting to remove the reference and deref the matched expression instead. It is `Warn` by default.
///
/// **Why is this bad?** It just makes the code less readable. That reference destructuring adds nothing to the code.
///
/// **Known problems:** None
///
/// **Example:**
///
/// ```
/// match x {
/// &A(ref y) => foo(y),
/// &B => bar(),
/// _ => frob(&x),
/// }
/// ```
declare_lint!(pub MATCH_REF_PATS, Warn,
"a match has all arms prefixed with `&`; the match expression can be \
dereferenced instead");
/// **What it does:** This lint checks for matches where match expression is a `bool`. It suggests to replace the expression with an `if...else` block. It is `Warn` by default.
///
/// **Why is this bad?** It makes the code less readable.
///
/// **Known problems:** None
///
/// **Example:**
///
/// ```
/// let condition: bool = true;
/// match condition {
/// true => foo(),
/// false => bar(),
/// }
/// ```
declare_lint!(pub MATCH_BOOL, Warn,
"a match on boolean expression; recommends `if..else` block instead");
/// **What it does:** This lint checks for overlapping match arms. It is `Warn` by default.
///
/// **Why is this bad?** It is likely to be an error and if not, makes the code less obvious.
///
/// **Known problems:** None
///
/// **Example:**
///
/// ```
/// let x = 5;
/// match x {
/// 1 ... 10 => println!("1 ... 10"),
/// 5 ... 15 => println!("5 ... 15"),
/// _ => (),
/// }
/// ```
declare_lint!(pub MATCH_OVERLAPPING_ARM, Warn,
"overlapping match arms");
#[allow(missing_copy_implementations)]
pub struct MatchPass;
impl LintPass for MatchPass {
fn get_lints(&self) -> LintArray {
lint_array!(SINGLE_MATCH, MATCH_REF_PATS, MATCH_BOOL)
}
}
impl LateLintPass for MatchPass {
fn check_expr(&mut self, cx: &LateContext, expr: &Expr) {
if in_external_macro(cx, expr.span) { return; }
if let ExprMatch(ref ex, ref arms, MatchSource::Normal) = expr.node {
// check preconditions for SINGLE_MATCH
// only two arms
if arms.len() == 2 &&
// both of the arms have a single pattern and no guard
arms[0].pats.len() == 1 && arms[0].guard.is_none() &&
arms[1].pats.len() == 1 && arms[1].guard.is_none() &&
// and the second pattern is a `_` wildcard: this is not strictly necessary,
// since the exhaustiveness check will ensure the last one is a catch-all,
// but in some cases, an explicit match is preferred to catch situations
// when an enum is extended, so we don't consider these cases
arms[1].pats[0].node == PatWild &&
// we don't want any content in the second arm (unit or empty block)
is_unit_expr(&arms[1].body) &&
// finally, MATCH_BOOL doesn't apply here
(cx.tcx.expr_ty(ex).sty != ty::TyBool || cx.current_level(MATCH_BOOL) == Allow)
{
span_help_and_lint(cx, SINGLE_MATCH, expr.span,
"you seem to be trying to use match for destructuring a \
single pattern. Consider using `if let`",
&format!("try\nif let {} = {} {}",
snippet(cx, arms[0].pats[0].span, ".."),
snippet(cx, ex.span, ".."),
expr_block(cx, &arms[0].body, None, "..")));
}
// check preconditions for MATCH_BOOL
// type of expression == bool
if cx.tcx.expr_ty(ex).sty == ty::TyBool {
if arms.len() == 2 && arms[0].pats.len() == 1 { // no guards
let exprs = if let PatLit(ref arm_bool) = arms[0].pats[0].node {
if let ExprLit(ref lit) = arm_bool.node {
match lit.node {
LitBool(true) => Some((&*arms[0].body, &*arms[1].body)),
LitBool(false) => Some((&*arms[1].body, &*arms[0].body)),
_ => None,
}
} else { None }
} else { None };
if let Some((ref true_expr, ref false_expr)) = exprs {
if !is_unit_expr(true_expr) {
if !is_unit_expr(false_expr) {
span_help_and_lint(cx, MATCH_BOOL, expr.span,
"you seem to be trying to match on a boolean expression. \
Consider using an if..else block:",
&format!("try\nif {} {} else {}",
snippet(cx, ex.span, "b"),
expr_block(cx, true_expr, None, ".."),
expr_block(cx, false_expr, None, "..")));
} else {
span_help_and_lint(cx, MATCH_BOOL, expr.span,
"you seem to be trying to match on a boolean expression. \
Consider using an if..else block:",
&format!("try\nif {} {}",
snippet(cx, ex.span, "b"),
expr_block(cx, true_expr, None, "..")));
}
} else if !is_unit_expr(false_expr) {
span_help_and_lint(cx, MATCH_BOOL, expr.span,
"you seem to be trying to match on a boolean expression. \
Consider using an if..else block:",
&format!("try\nif !{} {}",
snippet(cx, ex.span, "b"),
expr_block(cx, false_expr, None, "..")));
} else {
span_lint(cx, MATCH_BOOL, expr.span,
"you seem to be trying to match on a boolean expression. \
Consider using an if..else block");
}
} else {
span_lint(cx, MATCH_BOOL, expr.span,
"you seem to be trying to match on a boolean expression. \
Consider using an if..else block");
}
} else {
span_lint(cx, MATCH_BOOL, expr.span,
"you seem to be trying to match on a boolean expression. \
Consider using an if..else block");
}
}
// MATCH_OVERLAPPING_ARM
if arms.len() >= 2 {
let ranges = all_ranges(cx, arms);
let overlap = match type_ranges(&ranges) {
TypedRanges::IntRanges(ranges) => overlaping(&ranges).map(|(start, end)| (start.span, end.span)),
TypedRanges::UintRanges(ranges) => overlaping(&ranges).map(|(start, end)| (start.span, end.span)),
TypedRanges::None => None,
};
if let Some((start, end)) = overlap {
span_note_and_lint(cx, MATCH_OVERLAPPING_ARM, start,
"some ranges overlap",
end, "overlaps with this");
}
}
}
if let ExprMatch(ref ex, ref arms, source) = expr.node {
// check preconditions for MATCH_REF_PATS
if has_only_ref_pats(arms) {
if let ExprAddrOf(Mutability::MutImmutable, ref inner) = ex.node {
let template = match_template(cx, expr.span, source, "", inner);
span_lint(cx, MATCH_REF_PATS, expr.span, &format!(
"you don't need to add `&` to both the expression \
and the patterns: use `{}`", template));
} else {
let template = match_template(cx, expr.span, source, "*", ex);
span_lint(cx, MATCH_REF_PATS, expr.span, &format!(
"instead of prefixing all patterns with `&`, you can dereference the \
expression: `{}`", template));
}
}
}
}
}
/// Get all arms that are unbounded PatRange-s.
fn all_ranges(cx: &LateContext, arms: &[Arm]) -> Vec<SpannedRange<ConstVal>> {
arms.iter()
.filter_map(|arm| {
if let Arm { ref pats, guard: None, .. } = *arm {
Some(pats.iter().filter_map(|pat| {
if_let_chain! {[
let PatRange(ref lhs, ref rhs) = pat.node,
let Ok(lhs) = eval_const_expr_partial(cx.tcx, &lhs, ExprTypeChecked, None),
let Ok(rhs) = eval_const_expr_partial(cx.tcx, &rhs, ExprTypeChecked, None)
], {
return Some(SpannedRange { span: pat.span, node: (lhs, rhs) });
}}
if_let_chain! {[
let PatLit(ref value) = pat.node,
let Ok(value) = eval_const_expr_partial(cx.tcx, &value, ExprTypeChecked, None)
], {
return Some(SpannedRange { span: pat.span, node: (value.clone(), value) });
}}
None
}))
}
else {
None
}
})
.flat_map(IntoIterator::into_iter)
.collect()
}
#[derive(Debug, Eq, PartialEq)]
struct SpannedRange<T> {
span: Span,
node: (T, T),
}
#[derive(Debug)]
enum TypedRanges {
IntRanges(Vec<SpannedRange<i64>>),
UintRanges(Vec<SpannedRange<u64>>),
None,
}
/// Get all `Int` ranges or all `Uint` ranges. Mixed types are an error anyway and other types than
/// `Uint` and `Int` probably don't make sense.
fn type_ranges(ranges: &[SpannedRange<ConstVal>]) -> TypedRanges {
if ranges.is_empty() {
TypedRanges::None
}
else {
match ranges[0].node {
(Int(_), Int(_)) => {
TypedRanges::IntRanges(ranges.iter().filter_map(|range| {
if let (Int(start), Int(end)) = range.node {
Some(SpannedRange { span: range.span, node: (start, end) })
}
else {
None
}
}).collect())
},
(Uint(_), Uint(_)) => {
TypedRanges::UintRanges(ranges.iter().filter_map(|range| {
if let (Uint(start), Uint(end)) = range.node {
Some(SpannedRange { span: range.span, node: (start, end) })
}
else {
None
}
}).collect())
},
_ => TypedRanges::None,
}
}
}
fn is_unit_expr(expr: &Expr) -> bool {
match expr.node {
ExprTup(ref v) if v.is_empty() => true,
ExprBlock(ref b) if b.stmts.is_empty() && b.expr.is_none() => true,
_ => false,
}
}
fn has_only_ref_pats(arms: &[Arm]) -> bool {
let mapped = arms.iter().flat_map(|a| &a.pats).map(|p| match p.node {
PatRegion(..) => Some(true), // &-patterns
PatWild => Some(false), // an "anything" wildcard is also fine
_ => None, // any other pattern is not fine
}).collect::<Option<Vec<bool>>>();
// look for Some(v) where there's at least one true element
mapped.map_or(false, |v| v.iter().any(|el| *el))
}
fn match_template(cx: &LateContext,
span: Span,
source: MatchSource,
op: &str,
expr: &Expr) -> String {
let expr_snippet = snippet(cx, expr.span, "..");
match source {
MatchSource::Normal => {
format!("match {}{} {{ ...", op, expr_snippet)
}
MatchSource::IfLetDesugar { .. } => {
format!("if let ... = {}{} {{", op, expr_snippet)
}
MatchSource::WhileLetDesugar => {
format!("while let ... = {}{} {{", op, expr_snippet)
}
MatchSource::ForLoopDesugar => {
cx.sess().span_bug(span, "for loop desugared to match with &-patterns!")
}
}
}
fn overlaping<T>(ranges: &[SpannedRange<T>]) -> Option<(&SpannedRange<T>, &SpannedRange<T>)>
where T: Copy + Ord {
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Kind<'a, T: 'a> {
Start(T, &'a SpannedRange<T>),
End(T, &'a SpannedRange<T>),
}
impl<'a, T: Copy> Kind<'a, T> {
fn range(&self) -> &'a SpannedRange<T> {
match *self {
Kind::Start(_, r) | Kind::End(_, r) => r
}
}
fn value(self) -> T {
match self {
Kind::Start(t, _) | Kind::End(t, _) => t
}
}
}
impl<'a, T: Copy + Ord> PartialOrd for Kind<'a, T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<'a, T: Copy + Ord> Ord for Kind<'a, T> {
fn cmp(&self, other: &Self) -> Ordering {
self.value().cmp(&other.value())
}
}
let mut values = Vec::with_capacity(2*ranges.len());
for r in ranges {
values.push(Kind::Start(r.node.0, &r));
values.push(Kind::End(r.node.1, &r));
}
values.sort();
for (a, b) in values.iter().zip(values.iter().skip(1)) {
match (a, b) {
(&Kind::Start(_, ra), &Kind::End(_, rb)) => if ra.node != rb.node { return Some((ra, rb)) },
(&Kind::End(a, _), &Kind::Start(b, _)) if a != b => (),
_ => return Some((&a.range(), &b.range())),
}
}
None
}
#[test]
fn test_overlapping() {
use syntax::codemap::DUMMY_SP;
let sp = |s, e| SpannedRange { span: DUMMY_SP, node: (s, e) };
assert_eq!(None, overlaping::<u8>(&[]));
assert_eq!(None, overlaping(&[sp(1, 4)]));
assert_eq!(None, overlaping(&[sp(1, 4), sp(5, 6)]));
assert_eq!(None, overlaping(&[sp(1, 4), sp(5, 6), sp(10, 11)]));
assert_eq!(Some((&sp(1, 4), &sp(3, 6))), overlaping(&[sp(1, 4), sp(3, 6)]));
assert_eq!(Some((&sp(5, 6), &sp(6, 11))), overlaping(&[sp(1, 4), sp(5, 6), sp(6, 11)]));
}