rust/src/libcollections/dlist.rs
Alex Crichton 511f0b8a3d std: Stabilize the std::hash module
This commit aims to prepare the `std::hash` module for alpha by formalizing its
current interface whileholding off on adding `#[stable]` to the new APIs.  The
current usage with the `HashMap` and `HashSet` types is also reconciled by
separating out composable parts of the design. The primary goal of this slight
redesign is to separate the concepts of a hasher's state from a hashing
algorithm itself.

The primary change of this commit is to separate the `Hasher` trait into a
`Hasher` and a `HashState` trait. Conceptually the old `Hasher` trait was
actually just a factory for various states, but hashing had very little control
over how these states were used. Additionally the old `Hasher` trait was
actually fairly unrelated to hashing.

This commit redesigns the existing `Hasher` trait to match what the notion of a
`Hasher` normally implies with the following definition:

    trait Hasher {
        type Output;
        fn reset(&mut self);
        fn finish(&self) -> Output;
    }

This `Hasher` trait emphasizes that hashing algorithms may produce outputs other
than a `u64`, so the output type is made generic. Other than that, however, very
little is assumed about a particular hasher. It is left up to implementors to
provide specific methods or trait implementations to feed data into a hasher.

The corresponding `Hash` trait becomes:

    trait Hash<H: Hasher> {
        fn hash(&self, &mut H);
    }

The old default of `SipState` was removed from this trait as it's not something
that we're willing to stabilize until the end of time, but the type parameter is
always required to implement `Hasher`. Note that the type parameter `H` remains
on the trait to enable multidispatch for specialization of hashing for
particular hashers.

Note that `Writer` is not mentioned in either of `Hash` or `Hasher`, it is
simply used as part `derive` and the implementations for all primitive types.

With these definitions, the old `Hasher` trait is realized as a new `HashState`
trait in the `collections::hash_state` module as an unstable addition for
now. The current definition looks like:

    trait HashState {
        type Hasher: Hasher;
        fn hasher(&self) -> Hasher;
    }

The purpose of this trait is to emphasize that the one piece of functionality
for implementors is that new instances of `Hasher` can be created.  This
conceptually represents the two keys from which more instances of a
`SipHasher` can be created, and a `HashState` is what's stored in a
`HashMap`, not a `Hasher`.

Implementors of custom hash algorithms should implement the `Hasher` trait, and
only hash algorithms intended for use in hash maps need to implement or worry
about the `HashState` trait.

The entire module and `HashState` infrastructure remains `#[unstable]` due to it
being recently redesigned, but some other stability decision made for the
`std::hash` module are:

* The `Writer` trait remains `#[experimental]` as it's intended to be replaced
  with an `io::Writer` (more details soon).
* The top-level `hash` function is `#[unstable]` as it is intended to be generic
  over the hashing algorithm instead of hardwired to `SipHasher`
* The inner `sip` module is now private as its one export, `SipHasher` is
  reexported in the `hash` module.

And finally, a few changes were made to the default parameters on `HashMap`.

* The `RandomSipHasher` default type parameter was renamed to `RandomState`.
  This renaming emphasizes that it is not a hasher, but rather just state to
  generate hashers. It also moves away from the name "sip" as it may not always
  be implemented as `SipHasher`. This type lives in the
  `std::collections::hash_map` module as `#[unstable]`

* The associated `Hasher` type of `RandomState` is creatively called...
  `Hasher`! This concrete structure lives next to `RandomState` as an
  implemenation of the "default hashing algorithm" used for a `HashMap`. Under
  the hood this is currently implemented as `SipHasher`, but it draws an
  explicit interface for now and allows us to modify the implementation over
  time if necessary.

There are many breaking changes outlined above, and as a result this commit is
a:

[breaking-change]
2015-01-07 12:18:08 -08:00

1178 lines
32 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A doubly-linked list with owned nodes.
//!
//! The `DList` allows pushing and popping elements at either end and is thus
//! efficiently usable as a double-ended queue.
// DList is constructed like a singly-linked list over the field `next`.
// including the last link being None; each Node owns its `next` field.
//
// Backlinks over DList::prev are raw pointers that form a full chain in
// the reverse direction.
#![stable]
use core::prelude::*;
use alloc::boxed::Box;
use core::cmp::Ordering;
use core::default::Default;
use core::fmt;
use core::hash::{Writer, Hasher, Hash};
use core::iter::{self, FromIterator};
use core::mem;
use core::ptr;
/// A doubly-linked list.
#[stable]
pub struct DList<T> {
length: uint,
list_head: Link<T>,
list_tail: Rawlink<Node<T>>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Rawlink<T> {
p: *mut T,
}
impl<T> Copy for Rawlink<T> {}
unsafe impl<T:'static+Send> Send for Rawlink<T> {}
unsafe impl<T:Send+Sync> Sync for Rawlink<T> {}
struct Node<T> {
next: Link<T>,
prev: Rawlink<Node<T>>,
value: T,
}
/// An iterator over references to the items of a `DList`.
#[stable]
pub struct Iter<'a, T:'a> {
head: &'a Link<T>,
tail: Rawlink<Node<T>>,
nelem: uint,
}
// FIXME #19839: deriving is too aggressive on the bounds (T doesn't need to be Clone).
#[stable]
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> {
Iter {
head: self.head.clone(),
tail: self.tail,
nelem: self.nelem,
}
}
}
/// An iterator over mutable references to the items of a `DList`.
#[stable]
pub struct IterMut<'a, T:'a> {
list: &'a mut DList<T>,
head: Rawlink<Node<T>>,
tail: Rawlink<Node<T>>,
nelem: uint,
}
/// An iterator over mutable references to the items of a `DList`.
#[derive(Clone)]
#[stable]
pub struct IntoIter<T> {
list: DList<T>
}
/// Rawlink is a type like Option<T> but for holding a raw pointer
impl<T> Rawlink<T> {
/// Like Option::None for Rawlink
fn none() -> Rawlink<T> {
Rawlink{p: ptr::null_mut()}
}
/// Like Option::Some for Rawlink
fn some(n: &mut T) -> Rawlink<T> {
Rawlink{p: n}
}
/// Convert the `Rawlink` into an Option value
fn resolve_immut<'a>(&self) -> Option<&'a T> {
unsafe {
mem::transmute(self.p.as_ref())
}
}
/// Convert the `Rawlink` into an Option value
fn resolve<'a>(&mut self) -> Option<&'a mut T> {
if self.p.is_null() {
None
} else {
Some(unsafe { mem::transmute(self.p) })
}
}
/// Return the `Rawlink` and replace with `Rawlink::none()`
fn take(&mut self) -> Rawlink<T> {
mem::replace(self, Rawlink::none())
}
}
impl<T> Clone for Rawlink<T> {
#[inline]
fn clone(&self) -> Rawlink<T> {
Rawlink{p: self.p}
}
}
impl<T> Node<T> {
fn new(v: T) -> Node<T> {
Node{value: v, next: None, prev: Rawlink::none()}
}
}
/// Set the .prev field on `next`, then return `Some(next)`
fn link_with_prev<T>(mut next: Box<Node<T>>, prev: Rawlink<Node<T>>)
-> Link<T> {
next.prev = prev;
Some(next)
}
// private methods
impl<T> DList<T> {
/// Add a Node first in the list
#[inline]
fn push_front_node(&mut self, mut new_head: Box<Node<T>>) {
match self.list_head {
None => {
self.list_tail = Rawlink::some(&mut *new_head);
self.list_head = link_with_prev(new_head, Rawlink::none());
}
Some(ref mut head) => {
new_head.prev = Rawlink::none();
head.prev = Rawlink::some(&mut *new_head);
mem::swap(head, &mut new_head);
head.next = Some(new_head);
}
}
self.length += 1;
}
/// Remove the first Node and return it, or None if the list is empty
#[inline]
fn pop_front_node(&mut self) -> Option<Box<Node<T>>> {
self.list_head.take().map(|mut front_node| {
self.length -= 1;
match front_node.next.take() {
Some(node) => self.list_head = link_with_prev(node, Rawlink::none()),
None => self.list_tail = Rawlink::none()
}
front_node
})
}
/// Add a Node last in the list
#[inline]
fn push_back_node(&mut self, mut new_tail: Box<Node<T>>) {
match self.list_tail.resolve() {
None => return self.push_front_node(new_tail),
Some(tail) => {
self.list_tail = Rawlink::some(&mut *new_tail);
tail.next = link_with_prev(new_tail, Rawlink::some(tail));
}
}
self.length += 1;
}
/// Remove the last Node and return it, or None if the list is empty
#[inline]
fn pop_back_node(&mut self) -> Option<Box<Node<T>>> {
self.list_tail.resolve().map_or(None, |tail| {
self.length -= 1;
self.list_tail = tail.prev;
match tail.prev.resolve() {
None => self.list_head.take(),
Some(tail_prev) => tail_prev.next.take()
}
})
}
}
#[stable]
impl<T> Default for DList<T> {
#[inline]
#[stable]
fn default() -> DList<T> { DList::new() }
}
impl<T> DList<T> {
/// Creates an empty `DList`.
#[inline]
#[stable]
pub fn new() -> DList<T> {
DList{list_head: None, list_tail: Rawlink::none(), length: 0}
}
/// Adds all elements from `other` to the end of the list.
///
/// This operation should compute in O(1) time.
///
/// # Examples
///
/// ```rust
/// use std::collections::DList;
///
/// let mut a = DList::new();
/// let mut b = DList::new();
/// a.push_back(1i);
/// a.push_back(2);
/// b.push_back(3i);
/// b.push_back(4);
///
/// a.append(b);
///
/// for e in a.iter() {
/// println!("{}", e); // prints 1, then 2, then 3, then 4
/// }
/// ```
#[unstable = "append should be by-mutable-reference"]
pub fn append(&mut self, mut other: DList<T>) {
match self.list_tail.resolve() {
None => *self = other,
Some(tail) => {
// Carefully empty `other`.
let o_tail = other.list_tail.take();
let o_length = other.length;
match other.list_head.take() {
None => return,
Some(node) => {
tail.next = link_with_prev(node, self.list_tail);
self.list_tail = o_tail;
self.length += o_length;
}
}
}
}
}
/// Provides a forward iterator.
#[inline]
#[stable]
pub fn iter(&self) -> Iter<T> {
Iter{nelem: self.len(), head: &self.list_head, tail: self.list_tail}
}
/// Provides a forward iterator with mutable references.
#[inline]
#[stable]
pub fn iter_mut(&mut self) -> IterMut<T> {
let head_raw = match self.list_head {
Some(ref mut h) => Rawlink::some(&mut **h),
None => Rawlink::none(),
};
IterMut{
nelem: self.len(),
head: head_raw,
tail: self.list_tail,
list: self
}
}
/// Consumes the list into an iterator yielding elements by value.
#[inline]
#[stable]
pub fn into_iter(self) -> IntoIter<T> {
IntoIter{list: self}
}
/// Returns `true` if the `DList` is empty.
///
/// This operation should compute in O(1) time.
#[inline]
#[stable]
pub fn is_empty(&self) -> bool {
self.list_head.is_none()
}
/// Returns the length of the `DList`.
///
/// This operation should compute in O(1) time.
#[inline]
#[stable]
pub fn len(&self) -> uint {
self.length
}
/// Removes all elements from the `DList`.
///
/// This operation should compute in O(n) time.
#[inline]
#[stable]
pub fn clear(&mut self) {
*self = DList::new()
}
/// Provides a reference to the front element, or `None` if the list is
/// empty.
#[inline]
#[stable]
pub fn front(&self) -> Option<&T> {
self.list_head.as_ref().map(|head| &head.value)
}
/// Provides a mutable reference to the front element, or `None` if the list
/// is empty.
#[inline]
#[stable]
pub fn front_mut(&mut self) -> Option<&mut T> {
self.list_head.as_mut().map(|head| &mut head.value)
}
/// Provides a reference to the back element, or `None` if the list is
/// empty.
#[inline]
#[stable]
pub fn back(&self) -> Option<&T> {
self.list_tail.resolve_immut().as_ref().map(|tail| &tail.value)
}
/// Provides a mutable reference to the back element, or `None` if the list
/// is empty.
#[inline]
#[stable]
pub fn back_mut(&mut self) -> Option<&mut T> {
self.list_tail.resolve().map(|tail| &mut tail.value)
}
/// Adds an element first in the list.
///
/// This operation should compute in O(1) time.
#[stable]
pub fn push_front(&mut self, elt: T) {
self.push_front_node(box Node::new(elt))
}
/// Removes the first element and returns it, or `None` if the list is
/// empty.
///
/// This operation should compute in O(1) time.
#[stable]
pub fn pop_front(&mut self) -> Option<T> {
self.pop_front_node().map(|box Node{value, ..}| value)
}
/// Appends an element to the back of a list
///
/// # Examples
///
/// ```rust
/// use std::collections::DList;
///
/// let mut d = DList::new();
/// d.push_back(1i);
/// d.push_back(3);
/// assert_eq!(3, *d.back().unwrap());
/// ```
#[stable]
pub fn push_back(&mut self, elt: T) {
self.push_back_node(box Node::new(elt))
}
/// Removes the last element from a list and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
/// ```rust
/// use std::collections::DList;
///
/// let mut d = DList::new();
/// assert_eq!(d.pop_back(), None);
/// d.push_back(1i);
/// d.push_back(3);
/// assert_eq!(d.pop_back(), Some(3));
/// ```
#[stable]
pub fn pop_back(&mut self) -> Option<T> {
self.pop_back_node().map(|box Node{value, ..}| value)
}
}
#[unsafe_destructor]
#[stable]
impl<T> Drop for DList<T> {
fn drop(&mut self) {
// Dissolve the dlist in backwards direction
// Just dropping the list_head can lead to stack exhaustion
// when length is >> 1_000_000
let mut tail = self.list_tail;
loop {
match tail.resolve() {
None => break,
Some(prev) => {
prev.next.take(); // release Box<Node<T>>
tail = prev.prev;
}
}
}
self.length = 0;
self.list_head = None;
self.list_tail = Rawlink::none();
}
}
#[stable]
impl<'a, A> Iterator for Iter<'a, A> {
type Item = &'a A;
#[inline]
fn next(&mut self) -> Option<&'a A> {
if self.nelem == 0 {
return None;
}
self.head.as_ref().map(|head| {
self.nelem -= 1;
self.head = &head.next;
&head.value
})
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelem, Some(self.nelem))
}
}
#[stable]
impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a A> {
if self.nelem == 0 {
return None;
}
self.tail.resolve_immut().as_ref().map(|prev| {
self.nelem -= 1;
self.tail = prev.prev;
&prev.value
})
}
}
#[stable]
impl<'a, A> ExactSizeIterator for Iter<'a, A> {}
#[stable]
impl<'a, A> Iterator for IterMut<'a, A> {
type Item = &'a mut A;
#[inline]
fn next(&mut self) -> Option<&'a mut A> {
if self.nelem == 0 {
return None;
}
self.head.resolve().map(|next| {
self.nelem -= 1;
self.head = match next.next {
Some(ref mut node) => Rawlink::some(&mut **node),
None => Rawlink::none(),
};
&mut next.value
})
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelem, Some(self.nelem))
}
}
#[stable]
impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut A> {
if self.nelem == 0 {
return None;
}
self.tail.resolve().map(|prev| {
self.nelem -= 1;
self.tail = prev.prev;
&mut prev.value
})
}
}
#[stable]
impl<'a, A> ExactSizeIterator for IterMut<'a, A> {}
// private methods for IterMut
impl<'a, A> IterMut<'a, A> {
fn insert_next_node(&mut self, mut ins_node: Box<Node<A>>) {
// Insert before `self.head` so that it is between the
// previously yielded element and self.head.
//
// The inserted node will not appear in further iteration.
match self.head.resolve() {
None => { self.list.push_back_node(ins_node); }
Some(node) => {
let prev_node = match node.prev.resolve() {
None => return self.list.push_front_node(ins_node),
Some(prev) => prev,
};
let node_own = prev_node.next.take().unwrap();
ins_node.next = link_with_prev(node_own, Rawlink::some(&mut *ins_node));
prev_node.next = link_with_prev(ins_node, Rawlink::some(prev_node));
self.list.length += 1;
}
}
}
}
impl<'a, A> IterMut<'a, A> {
/// Inserts `elt` just after the element most recently returned by `.next()`.
/// The inserted element does not appear in the iteration.
///
/// # Examples
///
/// ```rust
/// use std::collections::DList;
///
/// let mut list: DList<int> = vec![1, 3, 4].into_iter().collect();
///
/// {
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// // insert `2` after `1`
/// it.insert_next(2);
/// }
/// {
/// let vec: Vec<int> = list.into_iter().collect();
/// assert_eq!(vec, vec![1i, 2, 3, 4]);
/// }
/// ```
#[inline]
#[unstable = "this is probably better handled by a cursor type -- we'll see"]
pub fn insert_next(&mut self, elt: A) {
self.insert_next_node(box Node::new(elt))
}
/// Provides a reference to the next element, without changing the iterator.
///
/// # Examples
///
/// ```rust
/// use std::collections::DList;
///
/// let mut list: DList<int> = vec![1, 2, 3].into_iter().collect();
///
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// assert_eq!(it.peek_next().unwrap(), &2);
/// // We just peeked at 2, so it was not consumed from the iterator.
/// assert_eq!(it.next().unwrap(), &2);
/// ```
#[inline]
#[unstable = "this is probably better handled by a cursor type -- we'll see"]
pub fn peek_next(&mut self) -> Option<&mut A> {
if self.nelem == 0 {
return None
}
self.head.resolve().map(|head| &mut head.value)
}
}
#[stable]
impl<A> Iterator for IntoIter<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> { self.list.pop_front() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.list.length, Some(self.list.length))
}
}
#[stable]
impl<A> DoubleEndedIterator for IntoIter<A> {
#[inline]
fn next_back(&mut self) -> Option<A> { self.list.pop_back() }
}
#[stable]
impl<A> FromIterator<A> for DList<A> {
fn from_iter<T: Iterator<Item=A>>(iterator: T) -> DList<A> {
let mut ret = DList::new();
ret.extend(iterator);
ret
}
}
#[stable]
impl<A> Extend<A> for DList<A> {
fn extend<T: Iterator<Item=A>>(&mut self, mut iterator: T) {
for elt in iterator { self.push_back(elt); }
}
}
#[stable]
impl<A: PartialEq> PartialEq for DList<A> {
fn eq(&self, other: &DList<A>) -> bool {
self.len() == other.len() &&
iter::order::eq(self.iter(), other.iter())
}
fn ne(&self, other: &DList<A>) -> bool {
self.len() != other.len() ||
iter::order::ne(self.iter(), other.iter())
}
}
#[stable]
impl<A: Eq> Eq for DList<A> {}
#[stable]
impl<A: PartialOrd> PartialOrd for DList<A> {
fn partial_cmp(&self, other: &DList<A>) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
#[stable]
impl<A: Ord> Ord for DList<A> {
#[inline]
fn cmp(&self, other: &DList<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
#[stable]
impl<A: Clone> Clone for DList<A> {
fn clone(&self) -> DList<A> {
self.iter().map(|x| x.clone()).collect()
}
}
#[stable]
impl<A: fmt::Show> fmt::Show for DList<A> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "DList ["));
for (i, e) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{:?}", *e));
}
write!(f, "]")
}
}
#[stable]
impl<S: Writer + Hasher, A: Hash<S>> Hash<S> for DList<A> {
fn hash(&self, state: &mut S) {
self.len().hash(state);
for elt in self.iter() {
elt.hash(state);
}
}
}
#[cfg(test)]
mod tests {
use prelude::*;
use std::rand;
use std::hash::{self, SipHasher};
use std::thread::Thread;
use test::Bencher;
use test;
use super::{DList, Node};
pub fn check_links<T>(list: &DList<T>) {
let mut len = 0u;
let mut last_ptr: Option<&Node<T>> = None;
let mut node_ptr: &Node<T>;
match list.list_head {
None => { assert_eq!(0u, list.length); return }
Some(ref node) => node_ptr = &**node,
}
loop {
match (last_ptr, node_ptr.prev.resolve_immut()) {
(None , None ) => {}
(None , _ ) => panic!("prev link for list_head"),
(Some(p), Some(pptr)) => {
assert_eq!(p as *const Node<T>, pptr as *const Node<T>);
}
_ => panic!("prev link is none, not good"),
}
match node_ptr.next {
Some(ref next) => {
last_ptr = Some(node_ptr);
node_ptr = &**next;
len += 1;
}
None => {
len += 1;
break;
}
}
}
assert_eq!(len, list.length);
}
#[test]
fn test_basic() {
let mut m: DList<Box<int>> = DList::new();
assert_eq!(m.pop_front(), None);
assert_eq!(m.pop_back(), None);
assert_eq!(m.pop_front(), None);
m.push_front(box 1);
assert_eq!(m.pop_front(), Some(box 1));
m.push_back(box 2);
m.push_back(box 3);
assert_eq!(m.len(), 2);
assert_eq!(m.pop_front(), Some(box 2));
assert_eq!(m.pop_front(), Some(box 3));
assert_eq!(m.len(), 0);
assert_eq!(m.pop_front(), None);
m.push_back(box 1);
m.push_back(box 3);
m.push_back(box 5);
m.push_back(box 7);
assert_eq!(m.pop_front(), Some(box 1));
let mut n = DList::new();
n.push_front(2i);
n.push_front(3);
{
assert_eq!(n.front().unwrap(), &3);
let x = n.front_mut().unwrap();
assert_eq!(*x, 3);
*x = 0;
}
{
assert_eq!(n.back().unwrap(), &2);
let y = n.back_mut().unwrap();
assert_eq!(*y, 2);
*y = 1;
}
assert_eq!(n.pop_front(), Some(0));
assert_eq!(n.pop_front(), Some(1));
}
#[cfg(test)]
fn generate_test() -> DList<int> {
list_from(&[0i,1,2,3,4,5,6])
}
#[cfg(test)]
fn list_from<T: Clone>(v: &[T]) -> DList<T> {
v.iter().map(|x| (*x).clone()).collect()
}
#[test]
fn test_iterator() {
let m = generate_test();
for (i, elt) in m.iter().enumerate() {
assert_eq!(i as int, *elt);
}
let mut n = DList::new();
assert_eq!(n.iter().next(), None);
n.push_front(4i);
let mut it = n.iter();
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &4);
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_iterator_clone() {
let mut n = DList::new();
n.push_back(2i);
n.push_back(3);
n.push_back(4);
let mut it = n.iter();
it.next();
let mut jt = it.clone();
assert_eq!(it.next(), jt.next());
assert_eq!(it.next_back(), jt.next_back());
assert_eq!(it.next(), jt.next());
}
#[test]
fn test_iterator_double_end() {
let mut n = DList::new();
assert_eq!(n.iter().next(), None);
n.push_front(4i);
n.push_front(5);
n.push_front(6);
let mut it = n.iter();
assert_eq!(it.size_hint(), (3, Some(3)));
assert_eq!(it.next().unwrap(), &6);
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(it.next_back().unwrap(), &4);
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next_back().unwrap(), &5);
assert_eq!(it.next_back(), None);
assert_eq!(it.next(), None);
}
#[test]
fn test_rev_iter() {
let m = generate_test();
for (i, elt) in m.iter().rev().enumerate() {
assert_eq!((6 - i) as int, *elt);
}
let mut n = DList::new();
assert_eq!(n.iter().rev().next(), None);
n.push_front(4i);
let mut it = n.iter().rev();
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &4);
assert_eq!(it.size_hint(), (0, Some(0)));
assert_eq!(it.next(), None);
}
#[test]
fn test_mut_iter() {
let mut m = generate_test();
let mut len = m.len();
for (i, elt) in m.iter_mut().enumerate() {
assert_eq!(i as int, *elt);
len -= 1;
}
assert_eq!(len, 0);
let mut n = DList::new();
assert!(n.iter_mut().next().is_none());
n.push_front(4i);
n.push_back(5);
let mut it = n.iter_mut();
assert_eq!(it.size_hint(), (2, Some(2)));
assert!(it.next().is_some());
assert!(it.next().is_some());
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_iterator_mut_double_end() {
let mut n = DList::new();
assert!(n.iter_mut().next_back().is_none());
n.push_front(4i);
n.push_front(5);
n.push_front(6);
let mut it = n.iter_mut();
assert_eq!(it.size_hint(), (3, Some(3)));
assert_eq!(*it.next().unwrap(), 6);
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(*it.next_back().unwrap(), 4);
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(*it.next_back().unwrap(), 5);
assert!(it.next_back().is_none());
assert!(it.next().is_none());
}
#[test]
fn test_insert_prev() {
let mut m = list_from(&[0i,2,4,6,8]);
let len = m.len();
{
let mut it = m.iter_mut();
it.insert_next(-2);
loop {
match it.next() {
None => break,
Some(elt) => {
it.insert_next(*elt + 1);
match it.peek_next() {
Some(x) => assert_eq!(*x, *elt + 2),
None => assert_eq!(8, *elt),
}
}
}
}
it.insert_next(0);
it.insert_next(1);
}
check_links(&m);
assert_eq!(m.len(), 3 + len * 2);
assert_eq!(m.into_iter().collect::<Vec<int>>(), vec![-2,0,1,2,3,4,5,6,7,8,9,0,1]);
}
#[test]
fn test_mut_rev_iter() {
let mut m = generate_test();
for (i, elt) in m.iter_mut().rev().enumerate() {
assert_eq!((6-i) as int, *elt);
}
let mut n = DList::new();
assert!(n.iter_mut().rev().next().is_none());
n.push_front(4i);
let mut it = n.iter_mut().rev();
assert!(it.next().is_some());
assert!(it.next().is_none());
}
#[test]
fn test_send() {
let n = list_from(&[1i,2,3]);
Thread::scoped(move || {
check_links(&n);
let a: &[_] = &[&1,&2,&3];
assert_eq!(a, n.iter().collect::<Vec<&int>>());
}).join().ok().unwrap();
}
#[test]
fn test_eq() {
let mut n: DList<u8> = list_from(&[]);
let mut m = list_from(&[]);
assert!(n == m);
n.push_front(1);
assert!(n != m);
m.push_back(1);
assert!(n == m);
let n = list_from(&[2i,3,4]);
let m = list_from(&[1i,2,3]);
assert!(n != m);
}
#[test]
fn test_hash() {
let mut x = DList::new();
let mut y = DList::new();
assert!(hash::hash::<_, SipHasher>(&x) == hash::hash::<_, SipHasher>(&y));
x.push_back(1i);
x.push_back(2);
x.push_back(3);
y.push_front(3i);
y.push_front(2);
y.push_front(1);
assert!(hash::hash::<_, SipHasher>(&x) == hash::hash::<_, SipHasher>(&y));
}
#[test]
fn test_ord() {
let n: DList<int> = list_from(&[]);
let m = list_from(&[1i,2,3]);
assert!(n < m);
assert!(m > n);
assert!(n <= n);
assert!(n >= n);
}
#[test]
fn test_ord_nan() {
let nan = 0.0f64/0.0;
let n = list_from(&[nan]);
let m = list_from(&[nan]);
assert!(!(n < m));
assert!(!(n > m));
assert!(!(n <= m));
assert!(!(n >= m));
let n = list_from(&[nan]);
let one = list_from(&[1.0f64]);
assert!(!(n < one));
assert!(!(n > one));
assert!(!(n <= one));
assert!(!(n >= one));
let u = list_from(&[1.0f64,2.0,nan]);
let v = list_from(&[1.0f64,2.0,3.0]);
assert!(!(u < v));
assert!(!(u > v));
assert!(!(u <= v));
assert!(!(u >= v));
let s = list_from(&[1.0f64,2.0,4.0,2.0]);
let t = list_from(&[1.0f64,2.0,3.0,2.0]);
assert!(!(s < t));
assert!(s > one);
assert!(!(s <= one));
assert!(s >= one);
}
#[test]
fn test_fuzz() {
for _ in range(0u, 25) {
fuzz_test(3);
fuzz_test(16);
fuzz_test(189);
}
}
#[test]
fn test_show() {
let list: DList<int> = range(0i, 10).collect();
assert_eq!(format!("{:?}", list), "DList [0i, 1i, 2i, 3i, 4i, 5i, 6i, 7i, 8i, 9i]");
let list: DList<&str> = vec!["just", "one", "test", "more"].iter()
.map(|&s| s)
.collect();
assert_eq!(format!("{:?}", list), "DList [\"just\", \"one\", \"test\", \"more\"]");
}
#[cfg(test)]
fn fuzz_test(sz: int) {
let mut m: DList<int> = DList::new();
let mut v = vec![];
for i in range(0, sz) {
check_links(&m);
let r: u8 = rand::random();
match r % 6 {
0 => {
m.pop_back();
v.pop();
}
1 => {
if !v.is_empty() {
m.pop_front();
v.remove(0);
}
}
2 | 4 => {
m.push_front(-i);
v.insert(0, -i);
}
3 | 5 | _ => {
m.push_back(i);
v.push(i);
}
}
}
check_links(&m);
let mut i = 0u;
for (a, &b) in m.into_iter().zip(v.iter()) {
i += 1;
assert_eq!(a, b);
}
assert_eq!(i, v.len());
}
#[allow(deprecated)]
#[test]
fn test_append() {
{
let mut m = DList::new();
let mut n = DList::new();
n.push_back(2i);
m.append(n);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
{
let mut m = DList::new();
let n = DList::new();
m.push_back(2i);
m.append(n);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
let v = vec![1i,2,3,4,5];
let u = vec![9i,8,1,2,3,4,5];
let mut m = list_from(v.as_slice());
m.append(list_from(u.as_slice()));
check_links(&m);
let mut sum = v;
sum.push_all(u.as_slice());
assert_eq!(sum.len(), m.len());
for elt in sum.into_iter() {
assert_eq!(m.pop_front(), Some(elt))
}
}
#[bench]
fn bench_collect_into(b: &mut test::Bencher) {
let v = &[0i; 64];
b.iter(|| {
let _: DList<int> = v.iter().map(|x| *x).collect();
})
}
#[bench]
fn bench_push_front(b: &mut test::Bencher) {
let mut m: DList<int> = DList::new();
b.iter(|| {
m.push_front(0);
})
}
#[bench]
fn bench_push_back(b: &mut test::Bencher) {
let mut m: DList<int> = DList::new();
b.iter(|| {
m.push_back(0);
})
}
#[bench]
fn bench_push_back_pop_back(b: &mut test::Bencher) {
let mut m: DList<int> = DList::new();
b.iter(|| {
m.push_back(0);
m.pop_back();
})
}
#[bench]
fn bench_push_front_pop_front(b: &mut test::Bencher) {
let mut m: DList<int> = DList::new();
b.iter(|| {
m.push_front(0);
m.pop_front();
})
}
#[bench]
fn bench_iter(b: &mut test::Bencher) {
let v = &[0i; 128];
let m: DList<int> = v.iter().map(|&x|x).collect();
b.iter(|| {
assert!(m.iter().count() == 128);
})
}
#[bench]
fn bench_iter_mut(b: &mut test::Bencher) {
let v = &[0i; 128];
let mut m: DList<int> = v.iter().map(|&x|x).collect();
b.iter(|| {
assert!(m.iter_mut().count() == 128);
})
}
#[bench]
fn bench_iter_rev(b: &mut test::Bencher) {
let v = &[0i; 128];
let m: DList<int> = v.iter().map(|&x|x).collect();
b.iter(|| {
assert!(m.iter().rev().count() == 128);
})
}
#[bench]
fn bench_iter_mut_rev(b: &mut test::Bencher) {
let v = &[0i; 128];
let mut m: DList<int> = v.iter().map(|&x|x).collect();
b.iter(|| {
assert!(m.iter_mut().rev().count() == 128);
})
}
}